ELLIPTIC INTEGRALS IN TERMS OF LEGENDRE POLYNOMIALS

by M. O. GONZÁLEZ
(Received 13th April, 1954)

1. Consider the elliptic integral of the first kind

$$
u=\operatorname{sn}^{-1} x=\int_{0}^{x} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}
$$

or, alternatively,

$$
u=F(\phi, k)=\int_{0}^{\phi} \frac{d \phi}{\sqrt{\overline{1}-k^{2} \sin ^{2} \phi}}
$$

where $x=\sin \phi$. It is customary in the theory of elliptic integrals to let $k=\sin \alpha, k^{\prime}=\cos \alpha$, so that $k^{\prime 2}+k^{2}=1$. For convenience we shall also introduce the parameter

$$
\lambda=k^{\prime 2}-k^{2} .
$$

The substitution $x=\sin \phi$ is equivalent to

$$
x=\frac{2 v}{1+v^{2}}
$$

where $v=\tan \frac{\phi}{2} . \quad$ By means of this substitution we find that

$$
\begin{equation*}
u=2 \int_{0}^{v} \frac{d v}{\sqrt{1+2 \lambda v^{2}+v^{4}}} . \tag{1}
\end{equation*}
$$

We have

$$
\left(1+2 \lambda v^{2}+v^{4}\right)^{-\frac{1}{2}}=\sum_{n=0}^{\infty} P_{n}(-\lambda) v^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} P_{n}(\lambda) v^{2 n}
$$

where $P_{n}(\lambda)$ denotes the Legendre polynomial of order n. This series converges uniformly with respect to v and λ when $|\lambda| \leqslant a,|v| \leqslant b, a$ and b being positive constants such that $2 a b^{2}+b^{4} \leqslant 1-\delta(\delta>0)$.

Hence it follows that

$$
u=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} P_{n}(\lambda) v^{2 n+1}
$$

or

$$
\begin{equation*}
u=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} P_{n}(\lambda) \tan ^{2 n+1} \frac{\phi}{2} \tag{2}
\end{equation*}
$$

For $\phi=\frac{\pi}{2}$ we find formally

$$
\begin{equation*}
K=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} P_{n}(\lambda) . \tag{3}
\end{equation*}
$$

a formula which we shall establish rigorously in (§ 2). If, in addition, $\lambda=1$, the formula above gives

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=1-\frac{1}{3}+\frac{1}{5} \ldots
$$

Thus (3) is an extension of the Gregory-Leibnitz series.
2. Series expansions for K, K^{\prime}, E and E^{\prime}.

It is well known that the complete elliptic integral of the first kind K can be expressed in terms of Gauss's hypergeometric function as follows

$$
\begin{equation*}
K=\frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2}, 1 ; k^{2}\right) . \tag{4}
\end{equation*}
$$

On the other hand, the Legendre function of degree n of the first kind is defined by means of the equation

$$
P_{n}(\lambda)=F\left(-n, n+1,1 ; \frac{1-\lambda}{2}\right)
$$

which, for $n=-\frac{1}{2}$, gives

$$
\begin{equation*}
P_{-1 / 2}(\lambda)=F\left(\frac{1}{2}, \frac{1}{2}, 1 ; \frac{1-\lambda}{2}\right) \tag{5}
\end{equation*}
$$

Since $\frac{1-\lambda}{2}=k^{2}$, from (4) and (5) we obtain

$$
\begin{equation*}
K=\frac{\pi}{2} P_{-1 / 2}(\lambda) . \tag{6}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
K^{\prime}=\frac{\pi}{2} P_{-1 / 2}(-\lambda) . \tag{7}
\end{equation*}
$$

Also, since

$$
E=\frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2}, 1 ; k^{2}\right)
$$

and

$$
E^{\prime}=\frac{\pi}{2} F\left(-\frac{1}{2}, \frac{1}{2}, 1 ; k^{\prime 2}\right)
$$

it can be shown that

$$
\begin{equation*}
E=\frac{\pi}{4}\left[P_{-1 / 2}(\lambda)+P_{1 / 2}(\lambda)\right] \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
E^{\prime}=\frac{\pi}{4}\left[P_{-1 / 2}(-\lambda)+P_{1 / 2}(-\lambda)\right] \tag{9}
\end{equation*}
$$

Now, if we expand the Legendre function $P_{-1 / 2}(\lambda)$ in a series of Legendre polynomials we obtain

$$
\begin{equation*}
P_{-1 / 2}(\lambda)=\frac{4}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} P_{n}(\lambda) . \tag{10}
\end{equation*}
$$

Similarly, by expanding $P_{1 / 2}(\lambda)$ in a series of Legendre polynomials we obtain

$$
\begin{equation*}
P_{1 / 2}(\lambda)=\frac{4}{\pi} \sum_{n=0}^{\infty}(-1)^{n+1} \frac{2 n+1}{(2 n-1)(2 n+3)} P_{n}(\lambda) . \tag{11}
\end{equation*}
$$

Whence,

$$
\begin{align*}
K & =2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} P_{n}(\lambda), \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{12}\\
K^{\prime} & =2 \sum_{n=0}^{\infty} \frac{1}{2 n+1} P_{n}(\lambda), \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{13}\\
E & =4 \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)(2 n+1)(2 n+3)} P_{n}(\lambda), \tag{14}\\
E^{\prime} & =-4 \sum_{n=0}^{\infty} \frac{1}{(2 n-1)(2 n+1)(2 n+3)} P_{n}(\lambda) . \tag{15}
\end{align*}
$$

For $\lambda=1$ it follows from (14) that

$$
\frac{\pi}{8}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{(2 n-1)(2 n+1)(2 n+3)}
$$

3. Series expansions for $\mathrm{en}^{-1} x$ and for $\mathrm{s}^{-1}(x)$.

By letting $x=\left(1-v^{2}\right) /\left(1+v^{2}\right)$ it can be shown that

$$
\mathrm{en}^{-1} x=\int_{x}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(k^{\prime 2}+k^{2} x^{2}\right)}}=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} P_{n}(\lambda)\left(\frac{1-x}{1+x}\right)^{n+1} .
$$

Also, by letting $x=e_{1}+\gamma^{2} u^{-2}$, where $3 e_{1}=2 \lambda \gamma^{2}, g_{2}=12 e_{1}{ }^{2}-4 \gamma^{4}$, it is easy to verify that

$$
\wp^{-1}(x)=\int_{x}^{\infty} \frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1} \gamma^{2 n} P_{n}(\lambda)\left(x-e_{1}\right)^{-(n+4)} .
$$

4. Expansion for the elliptic integral of the second kind.

Since

$$
E(\phi, k)=\frac{k^{2} \sin \phi \cos \phi}{\sqrt{1-k^{2} \sin ^{2} \phi}}+k^{\prime 2}\left[k \frac{\partial F}{\partial k}+F\right]
$$

we obtain, after introducing the parameter λ, and making use of (2) :

$$
E(\phi, \lambda)=\frac{(1-\lambda) \tan \phi}{\sqrt{4+2(1+\lambda) \tan ^{2} \phi}}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left[2\left(\lambda^{2}-1\right) P_{n}{ }^{\prime}(\lambda)+(\lambda+1) P_{n}(\lambda)\right] \tan { }^{2 n+1} \frac{\phi}{2},
$$

or, alternatively,

$$
E(\phi, \lambda)=\frac{(1-\lambda) \tan \phi}{\sqrt{4+2(1+\lambda) \tan ^{2} \phi}}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}\left[((2 n+1) \lambda+1) P_{n}(\lambda)-2 n P_{n-1}(\lambda)\right] \tan ^{2 n+1} \frac{\phi}{2}
$$

since

$$
\left(\lambda^{2}-1\right) P_{n}^{\prime}(\lambda)=n \lambda P_{n}(\lambda)-n P_{n-1}(\lambda) .
$$

University of Alabama,
 U.S.A.

