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Abstract. We obtain a new characterisation for weighted Bergman spaces Ap
α on the

unit ball �n of �n in terms of a double integral of the functions |f (z) − f (w)|/|z − w| and
|f (z) − f (w)|/|1 − 〈z, w〉|.

2000 Mathematics Subject Classification. 32A36.

1. Introduction. Let �n denote the open unit ball in the n-dimensional complex
Euclidean space �n. For z = (z1, . . . , zn) and w = (w1, . . . , wn) in �n we write

〈z, w〉 = z1w1 + · · · + znwn, |z| =
√

|z1|2 + · · · + |zn|2.

Thus �n = {z ∈ �n : |z| < 1}. When n = 1, �n is the open unit disc in the complex plane,
and we will denote it by �.

Let dv denote the Lebesgue volume measure on �n. For any real parameter α we
consider the weighted volume measure

dvα(z) = (1 − |z|2)α dv(z).

It is well known that vα is a finite measure if and only if α > −1 (see [16]). When n = 1,
we will use dAα instead, because in this case we are dealing with weighted area measures.
We emphasise here that we do not make the a priori assumption α > −1 in this paper.

Suppose 0 < p < ∞ and α is real. We define the weighted Bergman space Ap
α as the

space of f ∈ H(�n) such that

(1 − |z|2)N∂mf (z) ∈ Lp(�n, dvα)
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for all multi-index m = (m1, . . . , mn) of non-negative integers satisfying |m| = N, where
N is any fixed non-negative integer with pN + α > −1 and H(�n) is the space of all
holomorphic functions in �n. Here we use the standard notation that |m| = m1 + · · · + mn

and

∂mf = ∂ |m|f
∂zm1

1 . . . ∂zmn
n

.

It is well known that the space Ap
α thus defined is independent of the choice of N (see [14]

for a systematic study of Ap
α).

We mention that if α > −1, we can choose N = 0, and the resulting spaces Ap
α are the

usual weighted Bergman spaces with standard radial weight (1 − |z|2)α . If α = −(n + 1),
the spaces Ap

α coincide with the standard diagonal Besov spaces Bp that have appeared in
numerous places in the literature. Another special case that is worth mentioning is A2

−1,
which is nothing but the standard Hardy space H2. It should be clear now what kind of
spaces this paper is concerned with.

For any f ∈ H(�n) we write

L1f (z, w) = |f (z) − f (w)|
|1 − 〈z, w〉| (1 − |z|2)1/2(1 − |w|2)1/2

and

L2f (z, w) = |f (z) − f (w)|
|z − w| (1 − |z|2)1/2(1 − |w|2)1/2.

We can now formulate the main results of the paper as the following two theorems. The
first one is valid for all dimensions but only in the case α > −1.

THEOREM A. Suppose α > −1, p > n + 1 + α, and f ∈ H(�n). Then f ∈ Ap
α if and

only if ∫
�n

∫
�n

|L1f (z, w)|p dvt(z) dvt(w) < ∞,

where t = [α − (n + 1)]/2.

The second theorem is for the unit disc, but no restriction on α is required.

THEOREM B. Suppose α is real, p > max(−α, α + 2) and f is analytic in the unit
disc. Then f ∈ Ap

α if and only if∫
�

∫
�

|L1f (z, w)|p dAt(z) dAt(w) < ∞

if and only if ∫
�

∫
�

|L2f (z, w)|p dAt(z) dAt(w) < ∞,

where t = (α − 2)/2.
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Results of this type first appeared in [1], where it was shown that an analytic function
f in the unit disc � belongs to the Bloch space if and only if

sup{|L2f (z, w)| : z, w ∈ �, z �= w} < ∞.

This result was then generalised to higher dimensions in [5].
On the other hand, it was shown in [10] that an analytic function f in the unit disc �

belongs to the diagonal Besov space Bp if and only if∫
�

∫
�

|L2f (z, w)|p dτ (z) dτ (w) < ∞,

where p > 2 and dτ is the Möbius invariant area measure on �. This result was then
generalised to higher dimensions in [3].

2. The case of the unit ball. In this section we consider Bergman spaces in the unit
ball of arbitrary dimension. When combined, the results of this section represent something
more than Theorem A stated in the introduction. We begin with several preliminary
estimates.

LEMMA 1. Let r > 0, and let D(z, r) denote the Bergman metric ball at z with radius
r. Then

1 − |z|2 ∼ 1 − |w|2 ∼ |1 − 〈z, w〉|

for all z ∈ �n and w ∈ D(z, r). Furthermore, there exists a positive constant C such that

(1 − |z|2)p|∇f (z)|p ≤ C
(1 − |z|2)n+1

∫
D(z,r)

|f (z) − f (w)|p dv(w)

for all z ∈ �n and all f ∈ H(�n).

Proof. The first part is well known (see Lemma 2.27 of [16] for example).
To prove the second part, we use |∇̃f (z)| to denote the invariant holomorphic gradient

of f at z; that is

|∇̃f (z)| = |∇(f ◦ ϕz)(0)|,

where ϕz is the involutive automorphism of the unit ball that interchanges the points 0 and
z. It is well known that

|∇̃(f ◦ ϕ)(z)| = |∇̃f (ϕ(z))|

for any holomorphic automorphism ϕ of the unit ball (see [16] for more information about
the Möbius invariant gradient).

It is easy to see (using Cauchy’s estimate for example) that there exists a positive
constant C such that

|∇f (0)|p ≤ C
∫

D(0,r)
|f (w) − f (0)|p dv(w)

https://doi.org/10.1017/S0017089509004996 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509004996


318 SONGXIAO LI ET AL.

for all f ∈ H(�n). Replace f by f ◦ ϕz and make a change of variables. Then

|∇̃f (z)|p ≤ C
∫

D(z,r)
|f (z) − f (w)|p (1 − |z|2)n+1

|1 − 〈z, w〉|2(n+1)
dv(w)

for all f ∈ H(�n) and z ∈ �n. Combining this with the first part of the lemma, we can find
another positive constant C such that

|∇̃f (z)|p ≤ C
(1 − |z|2)n+1

∫
D(z,r)

|f (z) − f (w)|p dv(w)

for all f ∈ H(�n) and z ∈ �n. By Lemma 2.14 of [16], we always have

(1 − |z|2)|∇f (z)| ≤ |∇̃f (z)|,
so the desired result is proved. �

LEMMA 2. The involutive automorphism ϕz has the following properties:

1 − |ϕz(w)|2 = (1 − |z|2)(1 − |w|2)
|1 − 〈z, w〉|2

and

|ϕz(w)|2 = |z − w|2 + |〈z, w〉|2 − |z|2|w|2
|1 − 〈z, w〉|2 .

Consequently,

|ϕz(w)| ≤ |z − w|
|1 − 〈z, w〉|

and

(1 − |z|2)(1 − |w|2)
|z − w|2 ≤ 1 − |ϕz(w)|2

|ϕz(w)|2

and

1
|z − w| ≤ 1

|ϕz(w)||1 − 〈z, w〉| .

Furthermore, when n = 1, all the inequalities above become equalities.

Proof. The first equality follows from (1.5) in Lemma 1.2 of [16], and the second
equality follows from the first one and some elementary calculations. The first inequality
follows from the second equality and the Cauchy–Schwarz inequality. The second
inequality follows from the first inequality, while the third inequality follows from the
first equality and the second inequality. �

We now proceed to the proof of Theorem A.

LEMMA 3. Suppose p + α > −1 and f is holomorphic in �n. If β and γ are real
parameters such that

β + γ = α + p − (n + 1), (1)
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and if ∫
�n

∫
�n

|f (z) − f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w) < ∞,

then f ∈ Ap
α .

Proof. Recall that D(z, r) is the Bergman metric ball at z with radius r, where r is any
fixed positive radius. By the second part of Lemma 1, there exists a positive constant C
such that

(1 − |z|2)p|∇f (z)|p ≤ C
(1 − |z|2)n+1

∫
D(z,r)

|f (w) − f (z)|p dv(w).

Combining this with the first part of Lemma 1, we see that there is another constant C > 0
such that

(1 − |z|2)p|∇f (z)|p ≤ C(1 − |z2|)p−γ

(1 − |z|2)n+1

∫
D(z,r)

|f (w) − f (z)|p
|1 − 〈z, w〉|p dvγ (w),

and so

(1 − |z|2)p|∇f (z)|p ≤ C(1 − |z2|)p−γ

(1 − |z|2)n+1

∫
�n

|f (w) − f (z)|p
|1 − 〈z, w〉|p dvγ (w).

Since

α + p − γ − (n + 1) = β,

we conclude that∫
�n

(1 − |z|2)p|∇f (z)|p dvα(z) ≤ C
∫

�n

∫
�n

|f (z) − f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w).

Taking N = 1 in the proof of Ap
α shows that f ∈ Ap

α . �
LEMMA 4. Suppose α > −1, f ∈ Ap

α and β and γ satisfy (1). If, in addition,

−1 < β < p − (n + 1), −1 < γ < p − (n + 1), (2)

then ∫
�n

∫
�n

|f (z) − f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w) < ∞.

Proof. Fix f ∈ Ap
α , and let I denote the integral above. An elementary triangle type

inequality then shows that we can find a positive constant C such that

I ≤ C
∫

�n

∫
�n

|f (z)|p + |f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w).

So the integral I will be finite if each of the following two integrals is finite:

I1 =
∫

�n

∫
�n

|f (z)|p dvβ(z) dvγ (w)
|1 − 〈z, w〉|p
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and

I2 =
∫

�n

∫
�n

|f (w)|p dvβ(z) dvγ (w)
|1 − 〈z, w〉|p .

By Fubini’s theorem

I1 =
∫

�n

|f (z)|p dvβ(z)
∫

�n

dvγ (w)
|1 − 〈z, w〉|p .

By (1) and (2), we have

β − α = p − γ − (n + 1) > 0.

It follows from this and a standard integral estimate (see Proposition 1.4.10 of [6] or
Theorem 1.12 of [16]) that there exists another positive constant C such that

I1 ≤ C
∫

�n

|f (z)|p dvβ(z)
(1 − |z|2)β−α

= C
∫

�n

|f (z)|p dvα(z) < ∞.

A similar argument shows that I2 < ∞. This completes the proof of the lemma. �
We now combine Lemmas 3 and 4 to obtain one of our main results.

THEOREM 5. Suppose α > −1 and f is holomorphic in �n. If β and γ are real
parameters satisfying (1) and (2), then f ∈ Ap

α if and only if∫
�n

∫
�n

|f (z) − f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w) < ∞.

Proof. Since α > −1 and p > 0, the assumption p + α > −1 in Lemma 3 is fulfilled.
The desired result then follows from Lemmas 3 and 4. �

COROLLARY 6. Suppose α > −1, p > n + 1 + α and f is holomorphic in �n. Then
f ∈ Ap

α if and only if ∫
�n

∫
�n

|L1f (z, w)|p dvt(z) dvt(w) < ∞,

where t = [α − (n + 1)]/2.

Proof. Let

β = γ = p
2

+ t = α + p − (n + 1)
2

.

Then β and γ satisfy condition (1). Also, the condition β > −1 is equivalent to p >

n − (α + 1), which clearly follows from the assumptions that p > n + 1 + α and α > −1.
Since γ = β, the condition γ > −1 is satisfied as well. Finally, the conditions β <

p − (n + 1) and γ < p − (n + 1) are each equivalent to p > n + 1 + α, which is assumed
to be true. So the desired result follows from Theorem 5. �
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3. The case of the unit disc. In this section we consider the special case n = 1. We
will be able to remove the assumption α > −1 in several results of the previous section.

LEMMA 7. Suppose n = 1, α < −1 and f is a function in Ap
α of the unit disc �. Let β

and γ be real parameters satisfying (1). If, in addition,

−1 < β < (p − 3)/2, −1 < γ < (p − 3)/2, (3)

then ∫
�

∫
�

|f (z) − f (w)|p
|z − w|p dAβ(z) dAγ (w) < ∞.

Proof. It is easy to see that the assumptions on the parameters imply that p > 1. By
the integral representation for Bergman spaces (see Corollary 31 of [14]), there exists a
function g ∈ Lp(�, dAα) such that

f (z) =
∫

�

g(u) dA−1(u)
1 − zu

, z ∈ �,

so

|f (z) − f (w)|
|z − w| ≤

∫
�

|g(u)| dA−1(u)
|1 − zu||1 − wu| .

Let 1/p + 1/q = 1, and write

1 = a + b, −1 = −1 − ε

q
−

(
1
p

+ ε

q

)
, (4)

where a and b are real and ε > 0, whose exact values are to be specified later. It follows
from Hölder’s inequality that the function |f (z) − f (w)|/|z − w| is less than or equal to[∫

�

|g(u)|p(1 − |u|2)−p( 1
p + ε

q ) dA(u)
|1 − zu|pa|1 − wu|pa

] 1
p [∫

�

(1 − |u|2)−1+ε dA(u)
|1 − zu|qb|1 − wu|qb

] 1
q

.

Denote the second integral above by I and estimate it using the Cauchy–Schwarz inequality
and Proposition 1.4.10 of [6] as follows:

I ≤
[∫

�

(1 − |u|2)−1+ε dA(u)
|1 − zu|2qb

]1/2 [∫
�

(1 − |u|2)−1+ε dA(u)
|1 − wu|2qb

]1/2

≤ C
[

1
(1 − |z|2)2qb−1−ε(1 − |w|2)2qb−1−ε

]1/2

= C[
(1 − |z|2)(1 − |w|2)

]qb−(1+ε)/2
.

Here we are assuming that b and ε satisfy

2qb − 1 − ε > 0, (5)
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which will be justified later. Thus |f (z) − f (w)|/|z − w| does not exceed a constant
multiple of

1[
(1 − |z|2)(1 − |w|2)

]b−(1+ε)/(2q)

[∫
�

|g(u)|p(1 − |u|2)−p( 1
p + ε

q ) dA(u)
|1 − zu|pa|1 − wu|pa

] 1
p

,

and |f (z) − f (w)|p/|z − w|p is less than or equal to a constant multiple of

1[
(1 − |z|2)(1 − |w|2)

]pb−p(1+ε)/(2q)

∫
�

|g(u)|p(1 − |u|2)−p( 1
p + ε

q ) dA(u)
|1 − zu|pa|1 − wu|pa

.

So the integral

J =
∫

�

|f (z) − f (w)|p
|z − w|p dAβ(z) dAγ (z)

is dominated by∫
�

∫
�

(1 − |z|2)s(1 − |w|2)tdA(z)dA(w)
∫

�

|g(u)|p(1 − |u|2)−p( 1
p + ε

q )dA(u)
|1 − zu|pa|1 − wu|pa

,

where s = β + p(1 + ε)/(2q) − pb and t = γ + p(1 + ε)/(2q) − pb. We use Fubini’s
theorem and Proposition 1.4.10 of [6] again to obtain the estimates∫

�

(1 − |z|2)s dA(z)
|1 − zu|pa

≤ C
(1 − |u|2)pa−2−β−p(1+ε)/(2q)+pb

and ∫
�

(1 − |w|2)t dA(w)
|1 − wu|pa

≤ C
(1 − |u|2)pa−2−γ−p(1+ε)/(2q)+pb

,

where the requirements (for Proposition 1.4.10 of [6])

s = β + p(1 + ε)/(2q) − pb > −1, (6)

t = γ + p(1 + ε)/(2q) − pb > −1, (7)

pa − 2 − β − p(1 + ε)/(2q) + pb > 0 (8)

and

pa − 2 − γ − p(1 + ε)/(2q) + pb > 0 (9)

are to be justified later. We deduce that

J ≤ C
∫

�

|g(u)|p(1 − |u|2)−p( 1
p + ε

q ) dA(u)
(1 − |u|2)2p(a+b)−4−β−γ−p(1+ε)/q

.
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Simplify the exponents of (1 − |u|2) above using (1). The result is

J ≤ C
∫

�

|g(u)|p dAα(z) < ∞.

It remains for us to show that it is possible to choose a, b and ε > 0 so that conditions
(4)–(9) are all satisfied. Because conditions (5)–(9) all involve strict inequalities, we may
as well assume that ε = 0. In other words, if these conditions hold for ε = 0, then they will
also hold when ε is a sufficiently small positive number. Therefore, we want to show that
it is possible to choose a and b such that a + b = 1 and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2qb − 1 > 0,

β + p
2q − pb > −1,

γ + p
2q − pb > −1,

p − 2 − β − p
2q > 0,

p − 2 − γ − p
2q > 0.

Using the relation 1/p + 1/q = 1 we can change the above conditions to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

b > (p − 1)/(2p),
b < (2β + p + 1)/(2p),
b < (2γ + p + 1)/(2p),
β < (p − 3)/2,

γ < (p − 3)/2.

The last two conditions are part of the assumptions of the theorem. It is easy to see that the
conditions β > −1 and γ > −1 are equivalent to

p − 1
2p

<
2β + p + 1

2p
,

p − 1
2p

<
2γ + p + 1

2p
.

Therefore, if we choose any b according to

p − 1
2p

< b < min
(

2β + p + 1
2p

,
2γ + p + 1

2p

)
,

then all the requirements are satisfied. This completes the proof of the lemma. �
LEMMA 8. Suppose n = 1, α = −1 and p > 1. If f ∈ Ap

α , then∫
�

∫
�

|f (z) − f (w)|p
|z − w|p dAβ(z) dAγ (w) < ∞,

where β = γ = (p − 3)/2.

Proof. Since p > 1, we have 0 < p + α1 < p − 1 whenever α1 < −1 and α1 is
sufficiently close to −1. Fix such an α1. Similarly, fix an α2 such that 0 < p + α2 <

2(p − 1), which is equivalent to −1 < α2 < p − 2. Then there is a unique θ ∈ (0, 1) such
that −1 = (1 − θ )α1 + θα2.

For k = 1, 2 let

βk = γk = αk + p − 2
2

.
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Then βk + γk = αk + p − 2. We also have

−1 < β1 = γ1 <
p − 3

2

and

−1 < β2 = γ2 < p − 2

and

(1 − θ )β1 + θβ2 = p − 3
2

= β.

It follows from Lemmas 4 and 7 that the operator T defined by

Tf = f (z) − f (w)
z − w

maps Ap
αk into Lp(� × �, dAβk × dAγk ), where k = 1, 2. By complex interpolation, the

operator T maps the space [
Ap

α1
, Ap

α2

]
θ

= Ap
−1

(see Corollary 37 of [[14]]) into the space[
Lp(� × �, dAβ1 × dAγ1 ), Lp(� × �, dAβ2 × dAγ2 )

]
θ
,

which, according to a classical theorem of Stein–Weiss (see [7]) concerning the complex
interpolation of Lp spaces with different weights, is the same as

Lp(� × �, dAβ × dAγ ).

Therefore, f ∈ Ap
−1 implies that∫

�

∫
�

|f (z) − f (w)|p
|z − w|p dAβ(z) dAγ (w) < ∞,

where β = γ = (p − 3)/2. Combining this with Lemma 3, we obtain the desired
result. �

Note that a different interpolation argument can be given when n = 1, α = −1 and p ≥
2 (which is stricter than required). In fact, in this case, we can also consider the operator 


defined by


(f ) = f (z) − f (w)
z − w

(1 − |z|2)1/2(1 − |w|2)1/2.

We already know that 
 maps the Bloch space B of the unit disc into L∞(� × �)
(see [1]). Next we consider the case p = 2, so that β + γ = −1. If

f (z) =
∞∑

n=0

anzn
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is a function in H2 = A2
−1 of the unit disc, then the integral

I =
∫

�

∫
�

|f (z) − f (w)|2
|z − w|2 dAβ(z) dAγ (w)

can be evaluated as follows:

I =
∫

�

∫
�

∣∣∣∣ f (z) − f (w)
z − w

∣∣∣∣2

dAβ(z) dAγ (w)

=
∫

�

∫
�

∣∣∣∣ ∞∑
n=1

an

∑
i+j=n−1

ziwj
∣∣∣∣2

dAβ(z) dAγ (w)

=
∞∑

n=1

|an|2
∫

�

∫
�

∣∣∣∣ ∑
i+j=n−1

ziwj
∣∣∣∣2

dAβ(z) dAγ (w)

=
∞∑

n=1

|an|2
∑

i+j=n−1

∫
�

|zi|2 dAβ(z)
∫

�

|wj|2 dAγ (w)

∼
∞∑

n=1

|an|2
∑

i+j=n−1

1
(i + 1)β+1(j + 1)γ+1

.

Consider the positive coefficients

Cn =
∑

i+j=n−1

1
(i + 1)β+1(j + 1)γ+1

, n ≥ 1.

If we write

Cn =
n−1∑
i=0

1(
1
n

+ i
n

)β+1 (
1 − i

n

)γ+1

1
n
,

then it is clear that, for large n, the coefficient Cn is comparable to∫ 1

0

dx
xβ+1(1 − x)γ+1

,

which is a convergent integral, as the assumptions on β and γ easily imply that −1 < β <

0 and −1 < γ < 0. We conclude that∫
�

∫
�

|f (z) − f (w)|2
|z − w|2 dAβ(z) dAγ (w) ∼

∞∑
n=1

|an|2,

provided β + γ = −1. In particular, the operator 
 defined earlier maps A2
−1 = H2

boundedly into L2(� × �, dA−3/2 × dA−3/2). By complex interpolation, the operator 


maps the space [A2
−1,B]θ = Ap

−1 (see Theorem 38 of [14]) boundedly into the space[
L2(� × �, dA−3/2 × dA−3/2), L∞]

θ
= Lp(� × �, dA−3/2 × dA−3/2),
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where θ ∈ (0, 1) and

1
p

= 1 − θ

2
+ θ

∞ .

Equivalently, if p > 2, then f ∈ Ap
−1 implies that∫

�

∫
�

|f (z) − f (w)|p
|z − w|p dAβ(z) dAγ (w) < ∞,

where β = γ = (p − 3)/2.
We now put the necessary pieces together to prove the other main result of the paper.

THEOREM 9. Suppose n = 1, α is real, p > max(−α, α + 2) and f is analytic in the
unit disc. Then f ∈ Ap

α if and only if∫
�

∫
�

[ |f (z) − f (w)|
|z − w| (1 − |z|2)

1
2 (1 − |w|2)

1
2

]p

dAt(z) dAt(w) < ∞,

where t = (α − 2)/2.

Proof. Let

β = γ = p
2

+ t = α + p − 2
2

.

Then condition (1) is satisfied:

β + γ = α + p − 2 = α + p − (n + 1).

Also, the assumption p > −α is equivalent to β = γ > −1. Finally, the assumption p >

α + 2 is equivalent to β = γ < p − (n + 1). The desired result is then a consequence of
Lemmas 3, 7 and 8 and Corollary 6. �

As an example, we can take α = −2 and p > 2, so an analytic function f in the unit
disc belongs to Ap

−2 (which is the classical diagonal Besov space Bp) if and only if∫
�

∫
�

[ |f (z) − f (w)|
|z − w| (1 − |z|2)

1
2 (1 − |w|2)

1
2

]p

dA−2(z) dA−2(w) < ∞,

where

dA−2(z) = dτ (z) = dA(z)
(1 − |z|2)2

is the Möbius invariant area measure on the unit disc. This is a theorem that was proved in
[10].

4. Further remarks. We first make a general comparison between double integrals
of the functions L1f (z, w) and L2f (z, w).
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PROPOSITION 10. Suppose β and γ are real, p > 0 and n ≥ 1. Then there exists a
positive constant C such that I(f ) ≤ CJ(f ) for all f ∈ H(�n), where

I(f ) =
∫

�n

∫
�n

|f (z) − f (w)|p
|z − w|p dvβ (z) dvγ (w)

and

J(f ) =
∫

�n

∫
�n

|f (z) − f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w).

Proof. By Lemma 2,

1
|z − w| ≤ 1

|ϕz(w)||1 − 〈z, w〉|
for all z �= w, so

I(f ) =
∫

�n

dvβ(z)
∫

�n

|f (w) − f (z)|p
|w − z|p dvγ (w)

≤
∫

�n

dvβ(z)
∫

�n

|f (w) − f (z)|p
|ϕz(w)|p

dvγ (w)
|1 − 〈z, w〉|p .

Making the change of variables w 
→ ϕz(w) in the inner integral above according to
Proposition 1.13 of [16], we obtain

I(f ) ≤
∫

�n

dvα(z)
∫

�n

|f ◦ ϕz(w) − f ◦ ϕz(0)|p
|w|p

dvγ (w)
|1 − 〈z, w〉|2(n+1+γ )−p

.

It is elementary to show that there exists a positive constant C (independent of f ) such that

I(f ) ≤ C
∫

�n

dvα(z)
∫

�n

|f ◦ ϕz(w) − f ◦ ϕz(0)|p
|1 − 〈z, w〉|2(n+1+γ )−p

dvγ (w).

Making the change of variables w 
→ ϕz(w) in the inner integral again, we obtain

I(f ) ≤ C
∫

�n

∫
�n

|f (z) − f (w)|p
|1 − 〈z, w〉|p dvβ(z) dvγ (w). �

When n = 1, the inequality in the proposition above can be reversed. In fact, in this
case, we always have

1
|1 − zw| = 1

|z − w|
|z − w|
|1 − zw| ≤ 1

|z − w| .

This last inequality, however, is invalid in higher dimensions. To see this, take any
z ∈ �n − {0} and take w = ϕz(u) for some u ∈ �n with |u| = |z| and 〈z, u〉 = 0. Then it is
easy to verify that

|z − w|
|1 − 〈z, w〉| = |z|√

1 − |z|2
,

which is clearly unbounded as z approaches the unit sphere.
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Our second remark still concerns higher dimensions, for which so far we need the
extra assumption that α > −1. Although we do not know how to deal with general α, we
can improve our Theorem A to the case in which α ≥ −(n + 1). In fact, according to [3],
Theorem A is valid for α = −(n + 1) and p large enough. Combining this with the α > −1
case, with the help of an interpolation argument as used in the proof of Lemma 8, we
conclude that Theorem A remains true whenever α ≥ −(n + 1), as long as p is sufficiently
large.

Our next remark concerns a generalisation of our results in a different direction. More
specifically, for any θ ∈ (0, 1) we consider the operator

Lθ f (z, w) = |f (z) − f (w)|
|z − w| (1 − |z|2)θ (1 − |w|2)1−θ

or, somewhat differently,

Lθ f (z, w) = |f (z) − f (w)|
|1 − 〈z, w〉| (1 − |z|2)θ (1 − |w|2)1−θ .

Then for certain α we conjecture that there exists a positive cutoff constant p0 (dependent
on θ and α) such that for p > p0 and f ∈ H(�n) we have f ∈ Ap

α if and only if∫
�n

∫
�n

|Lθ f (z, w)|p dvt(z) dvt(w) < ∞,

where t = [α − (n + 1)]/2 is the same as before. At least one such result can be found in
the literature, namely a holomorphic function f in �n belongs to the Bloch space if and
only if

sup {|Lθ f (z, w)| : z, w ∈ �n, z �= w} < ∞,

where Lθ f (z, w) is the first version above. See [15] for a simple proof in the one-
dimensional case, and see [13] for the higher-dimensional case.

There are several other results in the literature that are related to our main results. For
example, Lemma 4 follows from a result in [11]. In fact, if f ∈ Ap

α , then by the proof of
Theorem 13 in [11], there exists a non-negative continuous function g ∈ Lp(�n, dvα) such
that

|f (z) − f (w)|p
|z − w|p ≤ g(z)p

|1 − 〈z, w〉|p + g(w)p

|1 − 〈z, w〉|p

for all z and w in �n with z �= w. The desired estimate is then a consequence of Fubini’s
theorem and Proposition 1.4.10 of [6] (or Theorem 1.12 of [16]).

Another interesting connection of our results to prior results in the literature concerns
the so-called diagonal operator �, which maps a holomorphic function f (z, w) in the bidisc
� × � to the analytic function f (z, z) in the unit disc �. More specifically, if∫

�

∫
�

|f (z) − f (w)|p
|z − w|p dAβ(z) dAβ(w) < ∞,
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where β = (α + p − 2)/2 > −1 (which is equivalent to p + α > 0 or p > −α), then the
function

g(z, w) =
{

(f (z) − f (w))/(z − w), z �= w,

f ′(z), z = w,

belongs to the Bergman space Ap
β of the bidisc � × �. If we apply the diagonal operator to

g, then by a well-known result (see [8] for example), the function g(z, z) = f ′(z) belongs
to Ap

2(β+2)−2 of the unit disc. Since 2β + 2 = α + p, it follows that f ∈ Ap
α .

The main problem that is left unanswered in the paper is whether or not Theorem B
remains valid in higher dimensions for any real α and sufficiently large p. Here we want
to convince the reader that the proof of Lemma 7 is strictly one-dimensional. In fact, if we
tried the same idea, even if we used the more general Theorem 30 of [14] (instead of its
simpler corollary), we would realise that we still had to use the integral representation

f (z) =
∫

�n

g(u) dv−n(u)
1 − 〈z, u〉 .

After going through the same details, we would have arrived at the following ‘theorem’:
Suppose α < −(n − 1)p − 1 and β + γ = α + p − (n + 1). If

−1 < β <
2p − np − n − 2

2
, −1 < γ <

2p − np − n − 2
2

,

then f ∈ Ap
α implies that∫

�n

∫
�n

|f (z) − f (w)|p
|z − w|p dvβ(z) dvγ (w) < ∞.

What is wrong with this analogue of Lemma 7 in higher dimensions is that there exist
no parameters β and γ that satisfy the above conditions, unless n = 1. In fact, for such β

and γ , we must have

−2 < β + γ < 2p − np − n − 2,

which implies 2p > np + n. Obviously, this is is possible only when n = 1.
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