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ABSTRACT. Drilling bore holes in deep, cold ice masses
by hot-water methods and maintaining these holes with
sufficient diameter to allow down-hole experimentation poses
a major obstacle to the investigation of conditions beneath
ice sheets and ice streams. Closure of the water-filled holes
by refreezing is the dominant difficulty. In this paper, we
describe calculations of heat transfer from the drilling
system to the ice and the subsequent time-dependent motion
of the phase boundary defining the bore-hole wall. Results
are presented with the view of optimizing the bore-hole
radius at depth for a fixed drill performance and a variable
rate of drilling.

Calculation of melting/refreezing rates at the bore-hole
wall requires the use of a one-dimensional, time-dependent
numerical heat-flow model with a distorting mesh which
follows the changing hole size. The delay of hole closure is
discussed with a view to keeping holes open long enough to
allow instruments to be lowered to the glacier bed, while
realizing that drilling-system performance may be marginal
because of logisitical and/or expenditure constraints. The
relative merits of drilling a large hole, which is very time
consuming with a small drill, and the use of water-soluble
antifreezes, which have a history of creating plugs of ice
slush, are discussed. A method of creating a stable hole
filled with antifreeze in which ice slush does not occur is
described.

The recent application of these theoretical ideas to the
planning and implementation of successful hot-water drilling
programs in Antarctica and Greenland is also presented.

1. INTRODUCTION

Hot-water drilling has become a standard technique for
rapidly accessing the interior or basal regions of glaciers
(e.g. Iken and others, 1977; Taylor, 1984). A vertical hole is
melted with a hot fluid, either water or antifreeze, which is
pumped into the ice under pressure. The fluid is injected
down a hose that is lowered into the glacier. Cooled fluid
and melt water circulate back up the bore hole to the
surface and can be recovered if necessary. Most grilling has
been in temperate ice; however, several recent projects have
used hot-water drills to penetrate cold ice. In many cases
(e.g. ice temperature " -20°C), the drilling of cold ice is
only marginally slower than drilling temperate ice. This is a
consequence of the large latent heat of fusion for ice as
compared to the sensible heat required to raise the ice to
the melting temperature. The bulk of the heat delivered to
the drilling nozzle goes to melt the ice in both cold and
temperate regimes. A major difficulty when drilling in cold
ice, as opposed to warm ice, is maintaining the hole against
closure by refreezing, both during drilling and, more
critically, after drilling so as to allow later access to the
hole. Unless the fluid level in the bore hole is far below
that required to balance the ice-overburden pressure, the
closure due to ice deformation will be negligible in

comparison with this closure by refreezing.
There has been limited experience with deep hot-water

drilling in cold ice. Napoleoni and Clarke (1978) and Koci
(1984) drilled to shallow depths, while Blatter (1987) drilled
somewhat deeper into an Arctic glacier for temperature
measurements. An essentially temperate-glacier drilIing
system was used to drill through the Ronne Ice Shelf
(500 m) by Engelhardt and Determann (1987). Their
objective was mainly to verify the ice thickness and there
was no attempt to keep the hole open. In 1987, the Polar
Ice Coring Office tested a large hot-water drill by drilling
through Crary Ice Rise on Ross Ice Shelf (Koci and
Bindschadler, 1989). The PICO operation avoided most of
the problems discussed in this paper by drilling a large hole
(nominal 0.35 m radius; personal communication from B.
Koci) with an insulated hose. This large-diameter hole was
required to remain open only long enough to insert a
thermistor cable. The drilling system used was not easily
portable and required large-scale logistic support.

In contrast, two ongoing drilling projects, one on
Jakobshavns Isbra:, Greenland (lken and others, 1988;
Echelmeyer and others, 1989), and one on Ice Stream B,
Antarctica (Engelhardt and others, in press), require bore
holes in deep, cold ice which must be maintained unfrozen
and accessible for a period of hours or days, allowing for
access for down-hole instruments. These two projects are
attempting to drill to considerable depths (1 km at Ice
Stream B and up to 1.7 km at Jakobshavns Isbra:) with
light-weight drills. The need for a light-weight system is
especially true of the Greenland project, where surface ice
conditions limit logistic support to helicopters and where the
drilling system must be moved manuaIly and piecewise
between neighboring holes. The drilling has been highly
successful at reaching great depths, but the difficulty of
keeping the bore holes open against refreezing has made it
obvious that accurate modeling of heat transfer and melt/
freezing rates in the bore hole is necessary. Much of this
thermal modeling of the drilling process can be adequately
achieved using heat-exchanger types of calculations derived
from the eng'ineering literature. This is true in particular of
the estimation of heat losses in the flow of the drilling
fluid down the high-pressure hose, and the decay of heat
in the return flow of fluid up the bore hole, as described
by Iken and others (1977) and Iken (1988).

However, two problems, the melting and freezing of
the bore-hole wall and the behavior of antifreeze in a bore
hole, require more detailed calculations. These problems
require knowledge of the temperature in the ice surrounding
the bore hole and the motion of the ice/fluid phase
boundary. The presence of the moving boundary limits the
use of an analytical approach. Solutions may be obtained
using a finite-element (or finite-difference) model of radial
heat flow in the ice surrounding the bore hole.

In the following, numerical models are developed which
allow the position of the moving boundary at the melting/
refreezing bore-hole waIl to be followed. The problem
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TABLE I

0.5 x 10-3 m3 S-l
(30 I min'l)

hole or reservoir, through heaters and into the high-
pressure hose going down the bore hole. The sensible-heat
input to the bore hole is easily determined from the water
temperature and flux at the pump outlet (the temperature
drop is minimal, -5 K, along the coiled hose to the top of
the bore hole). When drilling through a firn layer, the
potential energy in the water from its height above the
fluid surface in the hole is negligible (less than 0.2 °C
equivalent water temperature), but the energy in the water
from the pressure pump may be important. Typically,
pressures are in the 100-200 bar range, which translates to
about 2 ° or 3°C equivalent of water temperature. Although
usually only of minor importance, this energy is not subject
to the exponential decay that is typical of the sensible heat
in the hose as it travels into the glacier. In small drilling
systems with considerable heat loss, the flow energy can
become a significant source of thermal energy at the
drilling nozzle.

Heat losses in the hose
The drilling fluid takes some number of minutes to

travel down the hose to the drill tip. During that time, the
hose conducts heat from the drilling fluid to the
surrounding fluid in the bore hole. A parcel of fluid
traveling down the hose loses heat only through the walls
of the hose, since the temperature gradients along the
direction of flow in the hose (the y-direction) are negligible
(over six orders of magnitude less than the radial gradients).

Further simplification occurs, because the pump and
heaters supply a nearly constant volume of warm water to
the drilling hose, and thus the temperature at a particular
depth within the hose is constant with time. Also, although
there is some structure to the radial temperature profile
within the hose, the highly turbulent flow will lead to
mixing. Following Bird and others (1965), the difference
between the inner-wall temperature and that of the center
line can be calculated to be on the order of 0.01 K, which
is negligible.

Based on these simplifications, the temperature in the
drilling fluid, Td' at a depth y in the hose, can be
determined from Iken and others (1977, Equation (3».
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constitutes a classical "Stefan" problem. Related problems
have previously been discussed by Harrison (1972) and
Jarvis and Clarke (1974). Harrison (1972) described the
closure of an unheated bore hole in a temperate glacier,
where the rate of closure can be used to infer the ambient
ice temperature. Jarvis and Clarke (1974) described a
numerical solution of the unheated bore-hole closure
problem. However, they did not describe the evolution of
the bore hole through time. Preliminary results of modeling
bore-hole closure along the lines presented herein have been
described by Iken and others (1989) with application to the
drilling program on Jakobshavns Isbrre.

We begin with a description of the drilling system in
terms of heat-exchanger type equations. Much of this has
previously been described by Iken and others (1977), Iken
(1988), and Iken and others (1989). We present the
discussion here because it forms the background necessary
for bore-hole closure models since heat is added to the ice
along the drill hose for the duration of drilling. Also, our
development differs somewhat from that of Iken and her
collaborators. Following this, we give a detailed discussion
of the thermal behavior of the bore-hole walls as they
refreeze in either water or antifreeze. We present an
alternative to drilling with large, high heat-through-put
drills which are not easily portable. Although virtually all
the problems discussed in this paper could be solved by
quickly drilling a large hole (0.5 m diameter or larger), the
emphasis here is on solving the refreezing problems using a
much more efficient and mobile drill capable of drilling a
hole on the order of 0.1 to 0.2 m in diameter.

II. DRILLING AS A THERMAL SYSTEM

A hot-water drill consists of two heat exchangers
coupled by a long, thermally leaky connection. The heat
exchanger at the glacier surface adds some hundreds of
kilowatts of heat and a few kilowatts of pressurization to
the drilling fluid. The fluid then flows down the drill hose
to the drilling nozzle. At the nozzle, the heat is transferred
from the drilling fluid to the ice. Any inefficiency at the
nozzle releases waste heat which, along with the melted ice,
returns up the drilled hole towards the surface. While the
fluid is flowing back up the bore hole, it is acting as both
a heat-sink for the hose and a heat source to the walls of
the bore hole. Although all the parts of the system
thermally affect each other, in practice it is possible to
separate the system into four zones: the surface heaters, the
high-pressure hose, the nozzle, and the return flow. The
zones are coupled together by the heat advected to the next
zone in the flow path, and small leakage terms across
non-adjacent zones. Each thermal zone is defined by
dominant heat sources and sinks, and each thermal zone acts
as a boundary condition for the adjacent zones. Separating
the flow system greatly simplifies calculations and makes it
possible to identify the specific heat losses in the system.

The solution techniques presented here should be useful
for a wide range of drilling systems. Two cases are used
for numerical examples, and are given in Table I. Case A
is based on the drilling system used at the Upstream B
camp ("Up-B") on Ice Stream B (Antarctica) to drill to
depths of 1050 m in the 1988-89 field season (Engelhardt
and others, in press). Case B is a system that has essentially
twice the capacity and power output of case A. It was used
to drill to a depth of 1630 m on Jakobshavns Isbrre in 1988
and 1989 (Echelmeyer and others, 1989; Iken and others,
1989).

The actual drilling at Up-B and Jakobshavns Isbrre
always took longer than the nominal time indicated in Table
I to drill a hole. The drills used several lengths of hose,
and the drilling style involved redrilling (or "reaming")
sections of the bore hole or pulling the drill back up
several tens of meters as each hose length was added. And,
of course, the glacier gremlins are always hard at work
deep in the ice causing time-delaying problems. As a result,
modeling of any particular bore hole is quite complicated,
and these cases are only to be considered as representative
of the capabilities of an idealized drilling system.

Surface zone
At the surface, the drilling fluid is pumped out of the
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Water flux

Water temperature (at
surface, maximum)

Pressure (nominal)

Hose diameter, inner
(nominal)

Hose diameter, outer
(nominal)

Effective thermal resistance
of hose, Z
(Equations (2)-(3»

Bore-hole diameter
(nominal)

Ice temperature
(minimum)

Temperature profile

Hose decay length, )..

Bore-hole depth

Time to drill (nominal)

Case A

180 bar

12.7 mm

22.6 mm

0.29 m K W-1

0.1 m

-24°C

Increasing with
depth

605m

1000 m

24 h

Case B

1.33 x 10.3 m3 S·l
(80 I min'l)

90 bar

19.1 mm

29.1 mm

0.27 m K W·1

0.2 m

-24°C

Decreasing with
depth

1500 m

1600 m

20 h
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where Tin is the entrance temperature at y = 0, Twall is the
bore-hole wall temperature (~oC if drilling with water),
and l. is a characteristic decay length (assumed to be
independent of depth) given by

where Pd and cd are, respectively, the density and specific
heat capacity per unit mass of the drilling fluid, Qd is the
volume flux of drilling fluid through the hose, and Z is
the effective thermal resistance of the hose ("effective
impedance") plus that of the surrounding fluid layer within
the bore hole (Iken, 1988; equal to I/(effective thermal
conductivity». (The drilling fluid is generally water, but we
admit the possibility of drilling with antifreeze at this stage;
hence the subscript d instead of w.) The thermal resistance
of the hose is given by

function of fluid discharge. Because of the exponential
decay of temperature along the hose (Equation (1», it is
important to maximize the discharge within the pressure
capability of the drilling hose. Generally, ).. 'll 500-1500 m
for small drilling systems, as shown in Table 1.

The temperature of the drilling fluid as a function of
depth is shown in Figure 2a and b for the two systems
described in Table 1. Also shown in these figures are
approximate ice tmperatures at depth as measured in bore
holes and extrapolated to the bed. Note that the temperature
profiles in Ice Stream B, Antarctica, and in Jakobshavns
Isbrre show markedly different behavior at depth. This is
important in determining the evolution of bore holes in
these respective ice streams. (These profiles are used in the
following calculations. If, however, the actual temperatures
are not known prior to drilling, an "educated" guess of
Tice(Y) will suffice. It is best to err on the cold side when
predicting bore-hole closure rates.)
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where f£v is the latent heat of fusion per unit volume and
Pi' ci are the density and specific heat per unit mass of
ice. (Ro is the radius of the bore hole at some height above

Fig. 2. Hot-water temperature along drilling hose and ice
temperature at depth (estimated) in (a) Ice Stream B. and
(b) lakobshavns Isbr{£.

The exponential decay of fluid temperature along the
hose has several implications. The loss from the hose, which

. also decays exponentially with depth, is available as a
source of heat to prevent refreezing of the hole and to
warm the ice surrounding the bore hole during drilling.
This warming is minimal at depth, and a hole in cold ice
may actually close in on the drill hose at depth while
drilling if the heat loss is insufficient. This could lead to
severe problems!

The rate of drilling will decrease exponentially with
depth. The rate of drill advance, v(y), required to produce
a hole of radius Ro in ice of ambient temperature To(Y) (in
°C) may be obtained from Iken and others (1989, equation
(4» (and setting Twall = 0)

(3b)

(3a)
1

-In(r2/r1)
2T1K

Fig. 1. Geometry of bore hole (radius R) in ice (i) and
drilling hose (h) of inner radius r. and outer radius r2• d
denotes drilling fluid, and f the return flow.

where R is the radius of the bore hole and Kd is the
thermal conductivity of the drilling fluid. This strictly
conductive limit is on the order of 0.5 m K W-1. However,
turbulent flow in the returning fluid will diminish the
effective resistance of the layer by adding advective heat
transfer, and, in practice Z (= Zh + Zd) from Equations
(3a, b) is only an aprroximate upp~~e board. We have found
it is best to determine an effective value of Z from
temperature measurements within the hose while drilling (a
difficult procedure) or from maximum-speed drilling tests as
explained by Iken and others (1989). Z has been found to
be approximately 0.29 m K W-1 for case A and 0.27 m K W-1
for case B following the latter method.

The decay length ).. given in Equation (2) is a linear

(from Carslaw and Jaeger, 1959, chapter 10) where K is the
thermal conductivity of the hose material and r2, r1 are the
outer and inner radii of the hose under pressure as shown
in Figure I. K is often difficult to determine for a many-
layered hose. The thermal resistance of the fluid layer
surrounding the hose will have a maximum value given by
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the tip (typically 20-30 m), where all heat available from
the drilling fluid at the tip has been transferred to the ice.
This radius is not attained at the drill tip because the
thermal efficiency there is not unity. The radius of the hole
at depth y will change with time while drilling. Ro is taken
to be the nominal initial value.) Equation (4) may be solved
for R(y) as a function of depth and drilling speed.

The time to drill to a depth L is obtained from
Equations (4) and (1):
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Fig. 4. Drilling speed (a) and time required to drill a bore
hole to depth (b) for case B drill ill Jakobshavlls lsbf(£
labeled as ill Figure 3.
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o

rrR2;to v
PdcdQdTin

t(L)

In most cases, the heat required for melting will dominate
that required to warm the ice to the melting point and the
term in brackets in the integrand may be approximated by
using a constant, yet representative, temperature at depth,
To' and the integral can be evaluated explicitly. (The rate
of drilling and the time to drill given by Equations (4) and
(5) differ from those given by Iken and others (1977) and
Iken (1988) in that these works have derived the maximum
rate of drilling and minimum time to reach a depth L at a
radius just large enough to let the drill pass. The radius in
these rapidly drilled holes will be less than Ro for a
distance above the drill tip which, in cold ice, is long
compared to the scenario described here. As such, our
formulation provides a conservative estimate, which is
important for drilling in cold ice if down-hole
experimentation is expected.)

The rate of drilling and time to drill to a given depth
are shown in Figures 3 and 4 for the two cases A and B
(with water). An increase in the required bore-hole depth
causes a substantial increase in fuel requirements and strain
on the drilling equipment and the drillers themselves. Also
shown in Figures 3 and 4 are the effects of changing the

180

-c-
.c
§.
Cl 120
ww
lL
<J)

60

o

ICE STREAM B (a)
system parameters such as the number or size of pumps
(varying Qd) and the output of the heaters (thus changing
Tin)' It is seen that a system must be run at maximum
performance. The loss of a single heater or a decrease in
pump efficiency can lead to a substantial slow-down in the
drilling and, possibly, a termination of the drilling if fuel
is limited.

As the depth of the hole is increased, the ability of a
driller to sense the optimum driIling speed (either physicaIly
or with a load ceIl) which ensures a vertical hole of
relatively uniform cross-section is reduced since vibration in
the hose or its weight are not easily observed. Rate curves,
such as those shown in Figures 3a and 4a, are invaluable
for guiding such operations. Also, a prOper choice of Ro
must be made, as discussed below.

The tip-mixing region
Once the drilling fluid leaves the drill nozzle, it enters

the highly turbulent mixing zone directly ahead of the tip.

Pressure losses in the hose and tip
There is a correction to the above development from

the energy dissipated by the flow of fluid in the hose
which depends on the pressure drop in the hose and at the
drill tip. The pressure drop along the hose can be
determined by standard, turbulent-flow theory (Reynolds
number Re - 105) in which the drop depends on the square
of the discharge, inversely to the fifth power of the inner
hose radius and linearly with a hose-dependent friction
factor (Bird and others, 1965). We have found that the
friction factor for the type of smooth hydraulic hose used
in both field projects desrribed here (i.e. Synflex) is weIl-
described by the (Re)-' - dependence of the Blasius
equation (Bird and others, 1965).

For both cases A and B, the energy dissipation due to
the pressure drop in the hose (about 70 bar at 1500 m in
case B) and at the drill tip (about 70 bar in case B) is
small in comparison with the thermal dissipation. However,
if the drilling hose is of small diameter, then the frictional
dissipation may be an important source of heat.

1000

/ ..,

750250

(b) ,I

"..'
/

/

/
/,,-

./,,-
./

/
'" .'

//' .../ .....
..-_ ...~.::~~;.:.;;:;~:~::::::.~~~

_:::::::..;;;.;;;;. ,,..,. .•":"'e\.···

(Ro, O. Tin)
--- (5, 30, 90)
••••••••• (7.30,90)
- ••• - (9,30,90)
-- •. -- (7,20,90)
----- (7,40,90)
-'-'-' (7, 30, 80)

o
o

60

80

20

500

DEPTH (m)

Fig. 3. Drilling speed (a) and time required to drill a bore
hole to depth (b) for case A drill in Ice Stream B.
Curves are labeled according to initial radius, Ro (in
cm), hot-water discharge, Q, in I min-I. and inlet
temperature. Tin (oC).
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THE PHASE CHANGE AT THE BORE-HOLE WALLS

(9a)

(9b)

(9c)

(9d)

(ge)

(10)

(II)

(8)

T
T*= --

ITol

r
r*=

Ro

R
R*

Ro

t*
to

Qh
Q*

2lTKi!Tol

and define
2v

K*
PicilTol

and
R22a v PiCj

to = ---- --K*R2

Ki!Tol K. 0
1

TABLE II

with To given in 0c. Values of to and K* for representative
depths in Ice Stream Band Jakobshavns Isbra: are given in
Table II. The strong decrease in to with depth on
Jakobshavns Isbra: will be seen to make drilling in such a
situation much more problematical than in a situation such
as Ice Stream B, Antarctica.

where it is understood that T is the ice temperature at a
depth y. The coefficients Ki and ci are well defined in the
ice, at least until the melting point is approached (Harrison,
1972). The imposed boundary conditions include the wall
temperature, Twall' and the ambient ice temperature at large
distances from the hole, To' In this section, we assume the
fluid is water, and thus Twall 'l< 0 °C. The heat flux into the
wall from the hot water within the hose is specified. The
difference between this heat flux and that away from the
wall down the temperature gradient in the ice determines
the motion of the phase boundary through a Stefan
boundary condition. If the phase boundary is located at
r = R (see Fig. I), then

Equations (7) and (8), plus the boundary conditions and
an initial condition, constitute a well-posed problem. For a
non-constant heat input, we may take Qh = Qh(t).

In order to generalize the solutions to bore holes
drilled under various conditions, we place the problem
defined by Equations (7) and (8) into non-dimensional form.
For a hole drilled to initial radius Ro (Equation (4», let

Drilling system Depth K* Q* to

m h

Ro = 0.06 0.09 0.12m

Ice Stream B Surface 6.6 0.98 6.0 13.4 23.8
(Case A) 250 6.8 0.66 6.1 13.7 24.3

500 7.6 0.49 6.8 15.3 27.2
750 10.3 0.46 9.2 20.8 36.9

1000 31.9 4.52 26.0 64.3 114.3

Jakobshavns Surface 17.7 2.60 15.8 35.6 63.4
Isbra: 400 9.1 1.04 8.1 18.3 32.6
(Case B) 800 7.9 0.75 7.1 15.9 28.3

1200 6.8 0.46 6.1 13.7 24.3
1600 6.1 0.31 5.5 12.3 21.9
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(6)

(7)

Several experimental studies have investigated this transfer
(Iken and others, 1977; Taylor, 1984; Iken, 1988, Iken and
others, 1989). By measuring bore-hole diameter at depth,
Iken and others (1988) found a 90% efficiency of heat
transfer over the first 10 m above the drill tip using system
B and drilling at a rate approximately equal to that given
by Equation (4). B. Koci (personal communication) has
reported that, while drilling in Crary Ice Rise with a large
drilling system, the outer water temperature at a position
5 m above the tip was one-half that at the tip
(80 ° ..• 40°C). If this temperature were to decrease
exponentially with distance above the tip, then the predicted
temperature drop over the 10 m of the hose yields a
comparable thermal efficiency of 75% for this larger system.
It is reasonable that smaller drilling systems will have larger
efficiencies, since the thermal transfer lengths are reduced.
If efficiency is small, we might expect the quality of the
hole (e.g. constancy of radius and roundness) to be
reduced.

The remainder of the heat traveling upward from the
nozzle region with the fluid will continue to melt ice,
enlarging the hole to the radius Ro' The heat will decay
exponentially with a Deissler-type heat-transfer coefficient
(Bird and others, 1965). Based on the above data, the decay
length is on the order of 5-10 m for common drilling
systems. Thus, at a distance of a few tens of meters, we
can expect all of the heat delivered to the tip to be
utilized in melting ice. This is the condition which leads to
relation (4) for drilling speed and the associated bore-hole
radius, Ro' In other words, at a distance of 20 m or so
above the tip, r = Ro initially at the bore-hole wall. Also,
when drilling at the speed given by Equation (4), the tip
will be hanging free at all times and the hole will have
maximum verticality.

The return flow
As the cooled drilling fluid and melted ice travel back

up along the bore hole" to the surface, it is heated by the
"leakage" from the hose, as described above.

With the effective value of Z, the heat available from
hose leakage per cent length, Qh(Y)' at a depth Y is given
by

Refreezing will occur as heat flows from the hole to
the distant cold ice. The source of the heat in the bore
hole during drilling is the heat leakage from the hose (as
determined from Equations (I) and (6». After drilling, the
heat source is the latent heat of fusion for water freezing
to the bore-hole walls. For drilling in cold ice, the
fundamental question is: how long will the hole remain
unfrozen given this heat flow? To solve it, we have
developed a numerical-solution scheme as it has proven
intractable analytically.

The problem may be formulated in cylindrical
coordinates with y directed downward from the surface
along the axis of the hole. Symmetry allows no azimuthal
dependence. Because temperature gradients along the length
of the hole are generally small relative to those away from
the hole in radial direction, we may simplify the problem
to one of heat flow in the radial direction only. The flow
of heat in the ice is then governed by

where T dey) is the temperature of the drilling fluid and
Twall equals the pressure-melting temperature if the drilling
fluid is water (see Equation (I». This heat is available to
heat the surrounding ice. However, some of this heat is
wasted, as is indicated by a surface temperature of 1.8°C
in the water returning from the drill tip at a depth of
1000 m on Jakobshavns Isbra: while drilling. This indicates
an overall efficiency of heat transfer for case B of 98%.
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The complete formulation of the moving phase-
boundary problem with heating at the bore-hole wall
(r = R) derived from the heat loss along the hose is then
given by:

T*(R* ,t*) = 0

T*(r* ,0) = -I for r* > 1

2.0

T= -1--
-5 ----
-10 •••••••
-20 -.-.
-30 -- ••-_

-40 -"'-

1.5

Ice Temperature ("C)

1.0

I'
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o
o

0.8

0.6
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(12)

(13)

(14a)

(14b)

(14c)

R*ar*

aT* Q*
+

[T*(r* ,t*)] = -1

dR*

dl*

lim
r*-'oo

1 a [aT*] aT*K*--- r*-- ---
r* ar* ar* al*

(e.g. Jarvis and Clarke, 1974). Equations (12) and (13)
become

a2T* aT*
K* exp(-2w)-- = (12' )

aw2 at*

for T* = T*(r* ,t*), R* = R*~t*), and Q* given by Equations
(1), (6), and (9).

The problem defined by Equations (12)--(14) can be
solved using finite-difference expansions of the derivatives,
taking care to retain equal accuracy in the first-order and
second-order spatial derivatives in Equation (12). A Crank-
Nichelson implicit scheme, second-order accurate in time, is
helpful in calculating the time evolution of the boundary
with reasonably large time steps. This was the approach
originalIy used in Iken and others (1988).

A faster and more elegant method of solution involves
finite-element methods and the substitution

(16)

Fig. 5. Universal curves of bore-hole closure with no
heating. Hole is assumed to be drilled instantaneously.

drilI is quickly removed when R = Ro' Figure 5 also shows
the danger of drilling a small-radius bore hole with a
well-insulated hose (for which Qh ...•0». It is seen that
closure is very rapid indeed if the ice temperature is low
(e.g. 4-23 h with an ice temperature of -25·C and initial
radius 50-120 mm, respectively). Only if the bore hole is
very large (Ro il 0.5 m) or, as is shown below, if the time
of heating is significant, does the hole remain open for a
useful period of time (especially considering most
instruments are 50 mm or greater in diameter!). Otherwise,
the ambient ice temperature must be near the melting point
if a smalI hole is to remain open for a useful period of
time.

When drilling under normal conditions, heat is applied
to the bore- hole wall at depth y < L from the time the
drill tip passes this depth until the bottom of the hole
(y = L) is reached. The heat loss is constant at y (if
surface input is constant) until the drill is retrieved above
y. The time of heating, TQ' is then equal. to the difference
in time required to drill the bottom and to y, which, in
non-dimensional form, is

(15)

(14d)

(14e)

J
dr*
-- = Inr*
r*

w

R*(O) = 1

T(r* ,t*) = 0, r* < 1, Vt*

w ...• co as r* ...• co and w ...•0 as r* ...• I. This substitution
allows simplified coding in the finite-element scheme and
increased resolution near the phase boundary, where
temperature gradients are large. The solution region is
limited to r > R, while for r < R the temperature remains
constant at the melting point.

Evenly sized elements are used in the logarithmic space.
The mesh is moved at each time step to maintain the
w = 0 node at the fluid/ice boundary. Interpolations and
integrations are performed with linear functions.

Numerical solutions are well behaved for useful time
steps, except as the hole actualIy freezes closed. At closure,
the logarithmic transform introduces a singularity, and
Equation (12') is not valid. However, closure may be
approached arbitrarily closely. The temperature profile at
closure can be used as input to the analytical solution
outlined in the section on "temperatures after hole freezing"
given below.

Solutions to Equations (12)--(14) with no heat input
from the hose (Q* = 0) for different values of ambient
temperature yield the one-parameter family of curves shown
in Figure 5. Because of the non-dimensionalization
(Equation (9», these curves are applicable to the closure of
any bore hole drilled instantaneously to a radius Ro' The
ambient ice temperature enters through the dimensionless
parameter K*. Ro determines the closure time, which is on
the order of to (0( R~) as defined in Equation (9). These
curves apply to the bottom of a drilI hole for which the

I'

Fig. 6. Representative curve of bore-hole closure. Time of
heating tQ * = 1 with drill system B at 1000 m in
lakobshavns IsbN(? Closure following drilling with
differenl values of hot-waler discharge is shown.

where the drilling times are given by Equation (5). (Any
time spent retrieving the hose under heat must also be
included.) In some cases, the hole is then reamed using hot
water. In this case, Qh is a function of time at y, and tQ
and Qh must be appropriately adjusted. However, the results
are the same whether the heat is added by the hose loss
during drilling or applied via repeated reaming operations.

Figure 6 shows a representative solution for a heating
time approximately equal to the unheated closure time
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heat removal to closure is increased. Of course, there are
practical limits on the time of heating. Drilling slowly may
enable the hole to enlarge and store sufficient preventative
heat at shallow depths, but heat loss from the hose (i.e.
system performance) may not be able to counteract hole
closure while drilling at greater depths, especially if ice
temperatures are low. Similarly, re-reaming the hole several
times may put substantial heat into the ice, but bore-hole
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-20

-15

2.0

The benefits of heating the hole for longer periods of
.ime are shown in Figure 8. Not only is the hole returned
.0 a radius equal to or greater than Ro but the time from

*tQ = I). The hole initially closes (as it will in all cases
,ince the infinite temperature gradient imposed as part of
he initial temperature condition drives closure until the
mposed heat supply, Qh' matches the temperature
lradient-induced heat flow away from the hole
-Ki8T/8r/Ro»' The time period for which the hole initially
:Ioses is related to the ambient ice temperature and the
nagnitude of the heat loss from the hose.

Once the two heat fluxes balance (into and away from
he wall), further heating will cause the hole to enlarge
,lowly. Depending on the ice temperature, time of drilling,
md heat loss from the hose, the hole radius can increase to
,orne radius which may be greater than the initial radius.
luch is the case in the upper part of many deep holes, as
;vill be seen below. A zone of warm ice grows around the
Iole until the heat is turned off, as shown in Figure 7.
fhe dashed curves represent warming during drilling, and
he solid curves show cooling after the heat is turned off.
<\n interesting feature of the solution is the complexity of
:he time evolution of the temperature field. The newly
'ormed ice near the refreezing hole is cooling while the
nore distant ice is still warming.

'/g. 7. Temperature in ice around bore hole drilled to 200 m
(To = -24°C) with drill A and heat for tQ* equal to 5.8
(1 d for Ro = 5 em). Dashed curves show iievelopment of
temperature field while drilling is in progress below
200 m depth; solid shows evolution of the field after
drill is removed above this depth. Time interval /iJ* for
dashed curves is 0.82; for solid it is 0.27.

R*

1.5

1.0

0.5

0.0
a 2 4

(d) 1600m

6 8
t'

·ig. 8. Closure of bore hole at 200 m in Ice Stream B
heated by system A for different lengths of time (tQ *).
Hole initially closes, then enlarges until heating is
stopped.

t*
Fig. 9. Closure of bore holes at different depths in lakobs-

hams Isbr{I! (drilled with system B) for different heating
times tQ*. Vertical and time scales are the same from
figure to figure.
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closure between reaming operations (while the reamer is
being pulled up) may cause loss of the hole.

DEPTH (m)

Fig. 10. (aJ Time evolution of bore-hole radius at depth
after drilling to 1600 m. Ro is constant at 0.12 m. t equal
to zero signifies the time when the drill reached 1600 m
and power was shut off. (b) Similar to (aJ except Ro
was 0.09 m above 1000 m depth. 0.10 m from 1000 to
1200 m, and 0.12 m below 1200 m.

Application to Jakobshavns Isbne bore hole
Using the above models, the drill described in case B,

and the temperature profile for Jakobshavns Isbra: shown in
Figure 2b, we may develop a drilling strategy and model
the time evolution of a bore hole drilled to 1600 rn. The
effects of heating for tQ = 0,1,2,3 at representative depths
are shown in Figure 9. Note that at shallow depths
(y < 1000 m) the case B drilling system will cause hole
enlargement for all heating times (and, therefore, in all bore
holes drilled deeper than this). At greater depths
(y > -1200 m), the hole radius is reduced from its initial
value at all times if tQ < 5. At depths on the order of
1400-1600 m, the reduction in radius is monotonic and
rapid down to about half the original radius. This is true
for all practical heating times. This implies that drilling
system B is marginal for holes about 1600 m deep for
which the ambient ice temperature steadily decreases with
depth. It is also important to note that drilling a
small-diameter hole at these depths could be disastrous since
the rapid drop to R* 'l> 0.5 could lead to a hole radius less
than that of the drill tip or hose. If the ice temperature is
warmer at depth than that shown in Figure 2b, the closure
will proceed at a slower rate.

Increasing the entrance temperature to the practical
limit of 95°C does not significantly change these
considerations. The only feasible method to drill below
1600 m in such cold ice is to increase the hot-water
discharge, Qw' This increases the characteristic decay length
).. in Equations (I) and (2) and thus increases the heat loss
along the hose as given by Equation (6). Because the
pressure rating of the hose and other components of the
system is limited, a substantial increase in Qw (say to
180 I min-lor 3 x 10-3 m3 S-I) requires an increase in hose
diameter, say to 25.4 mm inside diameter.

Suppose that, based on examination of illustrations such
as Figure 9, we choose to drill a hole of constant initial
radius Ro' The hole will be drilled at a speed given by
Equation (4) (e.g. see Fig. 4). The drill is removed upon
reaching the bottom (leaving this drill down for any
reasonable length of time does not serve to combat hole
closure at great depths, as seen in Figure 9c and d). What
then is the time evolution of the bore hole? Using
Equations (15) and (14) to calculate tQ and Q* at a given
depth, we may model the closure of the hole there.
Combining several such models allows the bore-hole wall to
be followed through time along its length. Figure lOa shows
the result of such a study in dimensional space for Ro =
120 mm. In this figure, t = 0 h corresponds to the time
when the drill reaches the bottom (L = 1600 m; total of
26 h to drill). As shown in this figure, the radius at large
depths is significantly smaller than Ro, even at the time the
drill is removed. The radius decreases steadily and rapidly
at those depths, making the hole almost unusable near the
bottom after only 6 h. Enlargement occurs at depths of less
than 800 m. A critical region of depth between 1300 and
1400 m exists where heat losses from the hose are
insufficient to keep the hole open at a reasonable radius.
Drilling below this depth must be accomplished quickly if
the entire hole is to be useful for experimentation.

Hole enlargement to such large radii at shallow depths
would seem to be inefficient and to be avoided. However,
such avoidance is generally not the prerogative of the
driller, since the maximum speed of drilling can only be
increased slightly above that given by Equation (4). This is
because the maximum drilling speed, as determined by Iken
and others (1988), is reached. Above this speed, inefficient
heat transfer leads to a non-vertical and poor-quality bore
hole. In some cases, using a larger system with a
better-insulated hose (such as that used by PICa (personal
communication from B. Koci» to drill a hole of larger
radius may prove more efficient. The increased bulk and
weight of insulated hose must be compared to the decrease
in overall efficiency in drilling the bore hole at improper
radius.

In order to minimize drilling time, the initial radius of
the hole may be decreased from 120 to 90 mm at depths
less than 1000 m and to 100 mm from 1000 to 1200 m. The
decrease in drilling time is substantial (26 to 19 h). The
critical depth is shifted to about 1200 m because of the
trade-off in smaller Ro and longer tQ(y).

The model results shown in Figures 9 and 10 proved
invaluable for drilling to the bed of Jakobshavns Isbra:
(1627 m) in 1989 (Echelmeyer and others, 1989). Drilling to
depths much in excess of 1700 m in cold ice would require
an increased hot-water discharge, as explained above.

Optimal drilling
While the numerical approach just described for

determining drilling speed and initial radius as a function
of depth is useful in planning a field operaton, it does not
provide continuous and complete specifications of v(y) and
Ro(y). The actual solution for the best v(y) would require a
non-linear optimization of the rate of drilling, time of
heating, and bore-hole closure rate. This optimal solution
would produce a v(y) which leads to simultaneous hole
closure for all depths at some time after drilling. In this
case, no "extra" heat would be applied nor any time wasted
in drilling too large a hole at any depth. While this optim-
ization cannot be obtained analytically, a few simpler cases
show the pertinent points of such a solution.

As a first model, assume that the ice is isothermal.
Also, assume there is no heat loss along the hose and that
all heat available is used to melt ice near the tip. This is
the case of a well-insulated drill hose and slow drill speed.
As such, it might be more applicable to the system
designed by PICa and used on Crary Ice Rise, Antarctica.
Then, the speed of drilling will be related to the radius by
Equation (4) with the term in brackets set equal to one (or
nearly so). (Assume the drilling fluid is water.)

As the non-dimensionalization (Equation (II» shows,
the time of complete hole closure when no heat is applied
after drilling (Qh = 0) is approximately equal to the time to
(i.e. t* 'l> 1 at complete closure). This is also shown in
Figure 5. Thus, the total time of refreezing, tf, is
proportional to R~:

1600

1600

./

(a)

1200

1200

800

BOO

400

400

t=O hrs.
1=4
!=8
1=10
t= 15
1= 20

o
o

20

16

0
0

20

16

E
.8-

12en:::J
C
<{
c::

8

E
.8-
en 12:::J
C
<{
c::

294
https://doi.org/10.3189/002214390793701354 Published online by Cambridge University Press

https://doi.org/10.3189/002214390793701354


Humphrey and Echelmeyer: Bore-hole closure in cold ice

Suppose we wish the entire bore hole, of length L, to
freeze shut simultaneously at a time T since the initiation
of drilling, where T > teL). Then

+

0.014

+

+

0.006 0.010

1/(TIME) (hr-1)

where ). is given by Equation (2) and A is as stated above
for an isothermal ice mass. For system B, this gives an
extreme (nearly exponential) decrease in drilling speed with
depth (and also a similar decrease in radius). Indeed, for a
bore hole with a closure time of 20 h (v rf = 150 m h'I)
the speed at 500, 1000, and 1500 m woui'd ~~ed to be 53,
28, and 14 m h,I, respectively. Such slow speeds would
surely make a great deal of heat available to the bore-hole
wall, which violates the assumptions used in this simple
model.

As the numerical results for the Jakobshavns !sbrre
bore hole (Figs 9 and II) show, the actual optimal variation
of radius and drilling speed with depth lies somewhere in
between the results given by Equations (20), (21), and (22),
(23). An increase in bore-hole radius and a decrease in
speed are indicated for drilling system B in ice where the
temperature decreases with depth.
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which, using Equations (4') and (17) leads to

From Equation (4)

••••.here A = (pcQT)w/nKi ITo p, which has units of length.
rhis integral equation tor Ro may easily be solved by
iifferentiating each side of Equation (19) with respect to y,
~ielding a differential equation for Ro' Solving this equation
;ubject to the boundary condition that trC0) = T gives

rhus, for an isothermal glacier with no heat loss along the
~ose, the speed of drilling should increase exponentially
••••.ith depth. This leads to an exponential decrease in the
Initial radius with depth. The scale length A is directly
Jroportional to the power output of the drilling system,
:pcQDw' For system A, A - 1100 m, while for case B (and
'or the drill used on Crary Ice Rise (personal
;ommunication from B. Koci», A - 3000 m. Basically, this
large value of A means that the initial radius and, to a
lesser extent, the speed of drilling, should be nearly
;onstant down to a depth of 1500 m or so for the larger
lrilling systems. If the bore hole should remain open for
W h, then the speed of drilling down to 1500 m would be
in the range 150-250 m h-I with a radius of 0.ll-o.09 m
••••.ith such a system. The drilling time would be about 8 h.
fhese simple calculations suggest that drilling with an
insulated hose may be appropriate if the power output of
the system and logistical/budgetary constraints do not dictate
Jtherwise.

If there is a finite and depth-dependent heat loss along
the hose, then the exponential increase in speed indicated
by Equation (21) will no longer be valid. A non-linear
integral equation results for the optimization problem if
both the exponential heat loss along the hose (Equation (I»
md an increase in closure time which is approximately
Jroportional to the square root of the total heat applied to
the bore hole (after drilling to Ro) are taken into account.
fhe latter assumption is based on the model results depicted
in Figure 8.

If instead the simplification is made that the heat loss
1I0ng the hose is given by Equation (I), but we assume
that none of the lost heat is used to prevent hole closure
:i.e. no dependence of closure rate on the time of heating),
then

1.00.80.4 0.6

In[t/(t - s}]

0.2
-17

o

Fig. 11. (a) Temperature of thermistor at depth in
lakobshavns lsbr~ versus 1It. where t is hours since drill
was removed. Line shows extrapolation to steady-state ice
temperature using Equation (24). (b) Same thermistor
record versus In{tl(t-s)J, where s is the time since
complete hole closure at this depth (16.25 h). Line
represents extrapolation from Equation (25).

Ater the hole has completely refrozen (in the case of
no antifreeze), the Stefan boundary condition is removed,
and the temperature field around the bore hole may be
obtained analytically for times significantly longer than the
time of heating. This solution is useful in analyzing
temperature measurements in refrozen bore holes. The
asymptotic behavior at times that are long compared with
the time the hole was open (including the drilling time) has
been given by Carslaw and Jaeger (1959, chapter 10). Along
the axis of the refrozen hole,

IV. TEMPERATURE PROFILES AFTER COMPLETE RE-
FREEZING
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where q is the total amount of heat per unit length put
into the hole while drilling and refreezing, and t is the
time since drilling occurred at the depth in question.

If the duration, s, of the time the hole was open is
not small compared with the elapsed time, t, since the drill
reached a particular depth, a better approximation is

(Lachenbruch and Brewer, 1959, equation (3». The lit and
"nearly" lit dependencies shown by Equations (24) and. (25),
respectively, are useful in extrapolating temperature-sensor
measurements made over relatively long but limited time to
find ambient ice temperatures. Figure II gives an example
of such an extrapolation using both Equations (24) and (25).
Equation (25) provides a better extrapolation over shorter
measurement periods. Jarvis and Clarke (1974) and
Humphrey (paper submitted) solved the diffusion equation,
Equation (9), using a numerical scheme similar to that
described here (with Qh = 0) in order to extrapolate
temperature measurements over very limited time periods
when even Equation (25) is invalid.

I q [t ]T(t) - T = ---In --
o 411Ki s t - s

(24)

(25)

faster the wall melts, the more stored heat goes into melting
before the reservoir of heat is lost to the bulk ice. This
leads to more water in solution and, thus, more slush
following the final cooling.

The rate of dissolution depends on both heat
conduction and fluid diffusion near the wall. At the wall, a
flow of melt water diffuses away from the ice and into the
bulk fluid, creating a zone of low antifreeze concentration
next to the wall. There is a counter flow of antifreeze
diffusing towards the wall. The wall is a heat sink to the
ice, since it is melting (and either a source or sink of heat
to the fluid, depending on the relative dilution of the fluid;
during most of the dilution the wall is a source of heat to
the fluid). If the fluid were unstirred and convective
motion suppressed, the rate of wall melting would be
effectively controlled by the low molecular diffusion rate of
water away from and antifreeze towards the wall. However,
in the bore hole, we expect effective fluid mixing initially
during the hour or so that it takes to inject the alcohol,
and convective mixing is likely even after the external
disturbances are removed from the hole. Mixing the fluid
greatly increases the diffusion of water and antifreeze, and
molecular diffusion is confined to a narrow laminar
sub-layer near the wall boundary. If this is the case, the
rate of wall melting is controlled by the rate of heat
delivery. In the calculations below, we assume that the
thermal flow dominates the problem and that it determines
the rate of wall melting. This sets an upper bound on the
formation of slush.

V. THE ANTIFREEZE PARADOX

-25 o

"Fig. 12. Model of time evolution for the temperature in a
200 m bore hole in Ice Stream B after antifreeze was
added to 50% concentration. Heavy solid line is initial
temperature profile about bore hole before antifreeze
addition. Dash-dot curve represents a time 2 min after
injection; the next solid line is 12 min later. Each
following curve is taken 24 min apart. Initial radius is
0.05 m.

A calculation of slush formation
To illustrate this process, we analyze the freezing of a

bore hole at Up-B, Antarctica, in the winter of 1988-89.
After successfully drilling a nominal 0.1 m diameter hole to
the bed of the glacier, 31001 of alcohol were pumped into
the hole to create high-alcohol concentration in the upper,
colder part of the hole. The final concentration was
expected to be between 35 and 45% alcohol by volume,
which should have been sufficient to prevent the freezing
of the hole in -24°C ice. One sampler was lowered to the
bed and retrieved, but when a second was lowered 3 h
later, it stuck in slush at the water surface. The hole was
effectively frozen and had to be redrilled.

The time evolution of the hole can be modeled
approximately using the finite-element heat-flow model
described in the previous section. However, in this
particular problem, the temperature at the wall interface is
not fixed at 00 C, but depends on the concentration of
antifreeze in the fluid near the wall. If the concentration is
large, then the ice wall will melt until the local temperature
drops to the point where the wall is in equilibrium with
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~
wg; -10
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<{a:
w
n.
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It is commonly believed that a water-soluble antifreeze
may be injected into hot-water bore holes in order to
combat refreezing in cold ice. However, in practice, ice
slush forms in the holes despite the antifreeze. This has
been the experience at both Ice Stream Band Jakobshavns
Isbra:, and in the bore hole at J9 (Zotikov, 1986). The
cause of much of the slush formation is undoubtedly zones
of mismatched antifreeze concentration and wall temperature.
However, slush formation is a predictable outcome of
injecting antifreeze into almost any water-drilled hole in
cold ice (some exceptions are described below). Our
experience has shown that the vexing problem of slush
formation occurs even in holes that are filled with
antifreeze at a nominal concentration considerably higher
than needed to prevent freezing.

Slush-ice formation with antifreezes
The long-term behavior of an antifreeze-filled hole is a

complex problem that depends on the solubility of the
antifreeze in ice as well as consideration of surface energies
for the antifreeze/ice interface. Here, we discuss only the
short-term behavior that depends on the thermal evolution
in the first tens of hours. Ethanol is used as the antifreeze
for an illustrative, non-toxic example.

After completion, a bore hole drilled with hot water
lies in a cylinder of ice that contains a large amount of
heat with respect to the cold bulk ice. Typically, if the
hole takes a day to drill, then the energy in the ice
surrounding the bore hole is several times the energy
that was required to melt the bore hole itself. Antifreeze
added to such a hole contacts a bore-hole wall which is
much warmer than the bulk ice temperature. Ice
immediately around the hole is near 00 C, and is quickly
dissolved by the antifreeze. The required heat initially
comes from the fluid in the hole, causing the temperature
of the fluid to drop, until the freezing point of the anti-
freeze mixture in the hole is reached. The fluid temperature
is then lower than the surrounding ice temperature, at least
out to some radius. Heat flows down this temperature
gradient allowing further melting and also raising the fluid
temperature as the antifreeze is diluted.

This process continues, with dilution of the antifreeze
and a slow rise in its temperature. The cylinder. of warm
ice around the hole is losing heat to the hole and also to
the distant ice. If enough melt occurs, the fluid temperature
can rise above the distant ice. When the temperature of the
wall ice drops below the fluid temperature, the diluted
antifreeze is at its freezing point. Further cooling causes
dissolved water to freeze out into slush ice. The amount of
slush formation depends on the rate of wall dissolution. The
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the fluid. Similarly, if the antifreeze concentration is low,
fluid will tend to freeze. Slight gradients in antifreeze, with
higher concentrations near the wall, will cause this freezing
to occur as nucleation of slush throughout the fluid.

Heat flow in ice is described by Equation (7). The
initial conditions of temperature are given from a
calculation on the temperature around a water-filled hole
after drilling (as in Figure 7). We assume that the hole is
reasonably well mixed and the problem is dominated by
thermal gradients, not diffusion/concentration gradients, and
that the temperature of the ice/fluid boundary is at the
freezing point of the average antifreeze mixture in the hole.
Temperature changes within the bore-hole fluid are used as
a heat source or sink but the actual heat flow in the fluid
is ignored. The concentration of antifreeze in the hole
depends on the amount of water melted from the wall.

Figure 12 shows the results of a thermal calculation in
which it was assumed that the hole took I d to drill. The
calculated initial temperature profile in the ice is shown by
the upper solid line. Antifreeze, with a temperature of O°C,
was instantly injected to achieve an initial 50%
concentration. Rapid melting occurs at the wall as antifreeze
(with a freezing point of about -40°C) comes in contact
with the ice that is at 0 °e. The majority of the heat for
the initial melting comes from the heat capacity of the
bore-hole fluid. This melting dilutes the antifreeze
concentration so that soon after injection the fluid is at
-23°C and the temperature profile in the wall is that given
by the dash--dot curve. The important point is that the
fluid temperature and the wall temperature are well below
the ice temperature near the hole. For the next several
hours, melting at the wall further dilutes the fluid.
Eventually, as the temperature of the fluid slowly rises and
the heat around the hole diffuses away to the distant cold
ice, the fluid and the near-hole ice reach the same temp-
erature. At this point, the melting stops (3 h after adding
the antifreeze). After this, the heat flows from the hole,
which now contains fluid that has a melting point of about
-I70e.

This flow of heat away from the hole results in slush
formation, although the amount formed will depend upon
how well the hole is mixed. Slush generation will be a
maximum for no mixing, because, while antifreeze will be
concentrated at the bore-hole wall by freezing, molecular
diffusion is too slow to maintain the necessary concentration
within the hole to prevent slush formation as cooling
occurs. The time of initial slush formation is the same in
the numerical solution and in the observed bore hole. The
creation of slush in the hole within a few hours of
introducing antifreeze should be contrasted with the 8 h
required for the hole to freeze closed if left filled with
water only.

Note that a higher initial antifreeze concentration does
not alleviate this "slushing" problem. Typically, enough heat
is stored in the annular zone of ice around the hole to
dilute even pure alcohol to a point where its freezing
temperature is above the bulk ice temperature. Since it is
heat stored in the ice that causes the antifreeze to follow
this melting/freezing cycle, the problem could be alleviated
by drilling with antifreeze. This would reduce the heat that
is released to the ice after the drill tip has passed a region.
Unfortunately, drilling with antifreeze in current drills is
technically difficult and expensive.

Solution to the antifreeze problem
The heat driving the dilution comes from antifreeze in

the warm ice around the bore hole. If the temperature
gradients can be maintained outward, then dilution will not
occur. However, outward gradients cause refreezing/slush
formation. A minimum of dilution or refreezing can be
achieved if the antifreeze in the hole is always at
equilibrium with the temperature of the wall. This
eliminates the heat source/sink of the phase change at the
wall. Since the heat in the ice near the hole drains to the
distant cold ice, the antifreeze concentration must slowly be
increased with time to match the cooling ice.

Figure 13 shows the cooling of the wall and the
required alcohol concentration that would be needed to fill
a length of bore hole drilled with system A in ice at
-24°C. In practice, the ice temperature is not constant with
depth, nor is the stored heat after drilling. Thus, multiple

Humphrey and Echelmeyer: Bore-hole closure in cold ice

versions of Figure 13 are required to cover the bore-hole
conditions. With this information, a careful program of
alcohol injection could be devised. From Figure 13, it is
seen that in the first 12 h requires over 90% of the total
alcohol must be added. After a length of time, comparable
to the drilling time of the hole, the temperature will change
only slowly and an instrument could be placed in the hole
for a period of time before the next re-injection.
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Fig. 13. Bore-hole temperature and optimal antifreeze
concentration as a function of time since drilling. To =
-24°C and 1 d of heating at this depth (200 mY.

VI. CONCLUSIONS

Hot-water drilling provides a rapid and relatively
inexpensive method for drilling holes in warm and cold ice.
The major problem facing a driller in attempting to drill a
bore hole in cold ice to great depths is that the hole will
refreeze rapidly over time. If the heat loss from the hose is
insufficient, as it might be at depths approaching the limit
for a particular drill system, this closure will be an ongoing
problem even while drilling. In any case, once the hose is
removed from the bore hole, the hole will start to close.
The time of closure at any depth depends on the heat put
into the bore hole (e.g. the heat-loss characteristics of the
hose and the time of drilling and reaming), the square of
the initial radius, and the ambient ice temperature. Heat is
stored both in the ice itself and in the melted ice of the
bore hole. A bore hole of large radius (~O.5 m) could be
drilled using a large drilling system (e.g. personal
communication from B. Koci and R. Bindschadler), which
would minimize the effects of this closure. However,
drilling at many scientifically interesting locations requires
ease of portability, minimal logistical support, and low cost.
Iken (1988) and Iken and others (1989) have shown how
such a small drilling system can be designed to drill these
bore holes.

In the present paper we have described the rate of
closure and its relation to the thermal properties of the
drill, the initial radius, and the ice temperature. In order to
maximize the usefulness of a deep bore hole, the initial
radius and, thus, the speed of drilling must be appropriately
chosen at depth. This choice depends upon the
ice-temperature profile with depth and heat-loss
characteristics of the drill hose.

It is important to plan any deep hot-water drilling
program in cold ice based on these ideas of bore-hole
closure. Even when the temperature profile shows an
adverse decrease with depth (as in Fig. 4), useful bore holes
may be successfully drilled to great depths as shown by
recent drilling programs in Greenland (Echelmeyer and
others, 1989; Iken and others, 1989) and Antarctica
(Engelhardt and others, in press).

If a bore hole must remain open for more than a short
time (say, more than I d), it must either be very large
(requiring a relatively unportable drilling system) or it must
be filled with antifreeze. If antifreeze is used, it must be
carefully injected following a strict, calculated, time-
dependent schedule. Otherwise, slush formation will occur
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and the hole will quickly become unusable. The actual
antifreeze injection schedule requires accurate knowledge of
the temperature profile at depth. In some cases, the amount
of antifreeze required may increase logistical support
requirements to the point that a much larger drill could be
used more effectively.

The rapid closure rates of non-antifreeze-filled
hot-water bore holes in cold ice suggests that many
measurements should be made using in-situ sensors (such as
for tilt, temperature, and basal conductivity). Such devices
have recently been emplaced in the deep bore holes drilled
in Jakobshavns Isbrre.
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