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Abstract

Given a positive Borel measure µ on the n-dimensional Euclidean space Cn, we characterise the
boundedness (and compactness) of Toeplitz operators Tµ between Fock spaces F∞(ϕ) and F p(ϕ) with
0 < p ≤ ∞ in terms of t-Berezin transforms and averaging functions of µ. Our result extends recent
work of Mengestie [‘On Toeplitz operators between Fock spaces’, Integral Equations Operator Theory
78 (2014), 213–224] and others.
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1. Introduction

Let dv denote the Lebesgue measure on Cn and ω0 = ddc|z|2 the Euclidean Kähler form
on Cn, where dc = (

√
−1/4)(∂ − ∂). Throughout the paper, we assume that ϕ ∈ C2(Cn)

and satisfies 0 < mω0 ≤ ddcϕ ≤ Mω0 for two positive constants m and M.
Given 0 < p < ∞ and µ ≥ 0, the space Lp(ϕ, µ) consists of all µ-measurable

functions f for which

‖ f ‖p,ϕ,µ =

(∫
Cn
| f (z)|pe−pϕ(z) dµ(z)

)1/p
<∞.

When dµ = dv, we write Lp(ϕ, µ) and ‖ f ‖p,ϕ,µ as Lp(ϕ) and ‖ f ‖p,ϕ for short. Let H(Cn)
be the family of all holomorphic functions on Cn. The Fock space is defined to be

F p(ϕ) = Lp(ϕ) ∩ H(Cn)

and
F∞(ϕ) =

{
f ∈ H(Cn) : ‖ f ‖∞,ϕ = sup

z∈Cn
| f (z)|e−ϕ(z) <∞

}
.

It is well known that F p(ϕ) is a Banach space with norm ‖ · ‖p,ϕ for 1 ≤ p ≤ ∞ and
F p(ϕ) is a Fréchet space under d( f , g) = ‖ f − g‖pp,ϕ for 0 < p < 1. In the simplest case
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that ϕ(z) = (α/2)|z|2 with α > 0, F p(ϕ) is the classical Fock space F p
α, which has been

studied by many authors (see [2, 7] and the references therein).
With the Bergman kernel Kϕ(·, ·) for F2(ϕ) (see [6]), the orthogonal projection

P : L2(ϕ)→ F2(ϕ) can be represented as

P f (z) =

∫
Cn

Kϕ(z,w) f (w)e−2ϕ(w) dv(w).

By [6], we have P f = f for f ∈ F p(ϕ) and 0 < p ≤ ∞. Given a positive Borel measure
µ on Cn (written as µ ≥ 0 for short), we define the Toeplitz operator Tµ on F p(ϕ) as

Tµ f (z) =

∫
Cn

Kϕ(z,w) f (w)e−2ϕ(w) dµ(w), z ∈ Cn,

if it can be well defined.
Positive Toeplitz operators on Fock spaces have been studied by many authors.

In 2010, Isralowitz and Zhu [4] identified the boundedness, compactness and Schatten
class of Tµ with µ ≥ 0 on the classical Fock space F2

α with α > 0, in terms of the average
function and the t-Berezin transform. Hu and Lv discussed the same problems from
one Fock space F p

α to another Fq
α for all possible 1 < p, q < ∞ in [2]. Mengestie [5]

extended the corresponding problems from F p
α to F∞α and from F∞α to F p

α for 1 < p <∞,
respectively. In 2012, Schuster and Varolin [6] gave the definition of the Fock space
F p(ϕ) and obtained the characterisation on µ ≥ 0 such that Tµ are bounded or compact
on F p(ϕ) for 1 < p <∞. Hu and Lv discussed the same problems from F p(ϕ) to Fq(ϕ)
for 0 < p, q <∞ in [3].

The purpose of this paper is to characterise those measures µ ≥ 0 for which the
induced Toeplitz operators Tµ are bounded (or compact) from F p(ϕ) to F∞(ϕ) (or
from F∞(ϕ) to F p(ϕ)), where 0 < p ≤ ∞. Our result extends those in [2–6]. Notice
that F∞(ϕ) is not self-adjoint and neither is F p(ϕ) a Banach space for 0 < p < 1, so the
approach in [2, 4–6] does not work.

Throughout the paper, the symbol C will stand for a positive constant, which may
change from line to line, but does not depend on the functions being considered. Two
quantities A and B are called equivalent, denoted by ‘A ' B’, if there exists some C
such that C−1A ≤ B ≤ CA.

2. Main results

In this section, we state our main results. Before that, let us give some notation and
lemmas.

For z ∈ Cn and r > 0, let B(z, r) = {w ∈ Cn : |w − z| < r}. Given µ ≥ 0, the average of
µ is µ(B(z, r))/v(B(z, r)). We simply write the average function of µ as

µ̂r(·) = µ(B(·, r)),

since v(B(·, r)) ' r2n. Fixing t > 0, the t-Berezin transform of µ is defined to be

µ̃t(z) =

∫
Cn

∣∣∣∣∣ Kϕ(z,w)√
Kϕ(z, z)Kϕ(w,w)

∣∣∣∣∣t dµ(w).
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Notice that µ̃2 is just the classical Berezin transform µ̃ defined in [6]. When ϕ(z) =
1
2 |z|

2, the t-Berezin transform is closely connected with the heat flow as mentioned in
[1].

Given some r > 0, we call a sequence {ak}
∞
k=1 in Cn an r-lattice if the balls

{B(ak, r)}∞k=1 cover Cn and {B(ak, r/2)}∞k=1 are pairwise disjoint. For r > 0, much more
easily than in the Bergman space setting, we can find r-lattices in Cn and there exists
an integer N such that

1 ≤
∞∑

k=1

χB(ak ,2r)(z) ≤ N, z ∈ Cn.

For 0 < p <∞, the Lebesgue space Lp is defined as

Lp =

{
f is Lebesgue measurable on Cn : ‖ f ‖Lp =

(∫
Cn
| f |p dv

)1/p
<∞

}
.

The space lp consists of all sequences {bk}
∞
k=1 ⊂ C

n with

‖{bk}k‖lp =

( ∞∑
k=1

|bk|
p
)1/p

<∞.

Lemma 2.1 lists some well-known results, which will be useful in the following
section (see [3]).

Lemma 2.1. The Bergman kernel Kϕ(·, ·) has the following properties.
(1) There exist positive constants θ and C such that for all z,w ∈ Cn,

|Kϕ(z,w)|e−ϕ(z)e−ϕ(w) ≤ Ce−θ|z−w| ≤ C.

(2) There exists C such that for z ∈ Cn and w ∈ B(z, r0),

|Kϕ(z,w)|e−ϕ(z)e−ϕ(w) ≥ C.

(3) For z ∈ Cn,
Kϕ(z, z) ' e2ϕ(z).

(4) For z ∈ Cn and 0 < p ≤ ∞,

‖kϕ,z‖p,ϕ ' 1, where kϕ,z(·) =
Kϕ(·, z)√
Kϕ(z, z)

.

Lemma 2.2. Suppose µ ≥ 0, R > 0 and 0 < p, q ≤ ∞. Set µR(E) =
∫

E∩{z:|z|≤R} dµ for
E ⊆ Cn measurable. If µ̂r ∈ Ls for some r, s > 0, then the Toeplitz operator TµR :
F p(ϕ)→ Fq(ϕ) is compact.

Proof. Suppose that { fm}∞m=1 is a bounded sequence in F p(ϕ) which converges
uniformly to 0 on compact subsets of Cn as m→∞. By Montel’s theorem, we only
need to show that

‖TµR fm‖q,ϕ → 0 as m→∞. (2.1)
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Since µ̂r ∈ Ls, we have µ̂r ∈ L∞. Therefore,

|(TµR fm)(z)|e−ϕ(z) ≤

∫
Cn
| fm(w)||Kϕ(z,w)|e−2ϕ(w) dµR(w)e−ϕ(z)

≤ C
∫
|w|≤R+r

| fm(w)||Kϕ(z,w)|e−2ϕ(w)µ̂r(w) dv(w)e−ϕ(z)

≤ C‖̂µr‖L∞

∫
|w|≤R+r

| fm(w)||Kϕ(z,w)|e−2ϕ(w) dv(w)e−ϕ(z).

This, together with Lemma 2.1, gives

‖TµR fm‖∞,ϕ ≤ C sup
z∈Cn

∫
|w|≤R+r

| fm(w)||Kϕ(z,w)|e−2ϕ(w) dv(w)e−ϕ(z)

≤ C sup
z∈Cn

∫
|w|≤R+r

| fm(w)|e−ϕ(w)e−θ|w−z| dv(w)

≤ C sup
|w|≤R+r

| fm(w)|e−ϕ(w) sup
z∈Cn

e−θq|z|

≤ C sup
|w|≤R+r

| fm(w)| → 0

as m→∞. Hence, (2.1) is true if q =∞. For 0 < q <∞,∫
Cn
|(TµR fm)(z)e−ϕ(z)|q dv(z)

≤ C
∫
Cn

∣∣∣∣∣∫
|w|≤R+r

| fm(w)|e−ϕ(w)e−θ|w−z| dv(w)
∣∣∣∣∣q dv(z)

≤ C sup
|w|≤R+r

| fm(w)|e−ϕ(w)
∫
Cn

e−θq|z|+θq(R+r) dv(z)

≤ C sup
|w|≤R+r

| fm(w)|.

Thus, (2.1) is still true. This completes the proof. �

Theorem 2.3. Suppose 0 < p ≤ ∞ and µ ≥ 0. Then the following statements are
equivalent:

(A) Tµ : F p(ϕ)→ F∞(ϕ) is bounded;
(B) µ̃t is bounded on Cn for some (or any) t > 0;
(C) µ̂δ is bounded on Cn for some (or any) δ > 0;
(D) the sequence {̂µr(ak)}∞k=1 is bounded for some (or any) r-lattice {ak}

∞
k=1.

Furthermore,

‖Tµ‖F p(ϕ)→F∞(ϕ) ' sup
z∈Cn

µ̃t(z) ' sup
z∈Cn

µ̂δ(z) ' sup
k
µ̂r(ak). (2.2)

Proof. By [3, Lemma 2.3], we obtain the equivalence between statements (B), (C)
and (D) with the corresponding norm estimates in (2.2). Now, we assume that
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Tµ : F p(ϕ)→ F∞(ϕ) is bounded. For z ∈ Cn, using Lemma 2.1 and [3, (2.6)],

µ̃2(z) ' e−ϕ(z)
∫
Cn

kϕ,z(w)Kϕ(z,w)e−2ϕ(w) dµ(w)

= |Tµkϕ,z(z)|e−ϕ(z)

≤ ‖Tµkϕ,z‖∞,ϕ
≤ C‖Tµ‖F p(ϕ)→F∞(ϕ)‖kϕ,z‖p,ϕ
≤ C‖Tµ‖F p(ϕ)→F∞(ϕ). (2.3)

This shows that µ̃2 is bounded on Cn. Moreover, (2.3) gives

sup
z∈Cn

µ̃2(z) ≤ C‖Tµ‖F p(ϕ)→F∞(ϕ). (2.4)

On the other hand, suppose that µ̂δ is bounded on Cn for δ > 0. By [3, Theorem 2.6],
the embedding i : F1(ϕ)→ L1(ϕ, µ) is bounded and

‖i‖F1(ϕ)→L1(ϕ,µ) ' sup
z∈Cn

µ̂δ(z) ≤ C.

Given any f ∈ F p(ϕ), by the fact that ‖ · ‖∞,ϕ ≤ C‖ · ‖p,ϕ and Lemma 2.1,

|Tµ f (z)e−ϕ(z)| ≤

∫
Cn
|kϕ,z(w)|| f (w)|e−2ϕ(w) dµ(w)

≤ ‖ f ‖∞,ϕ

∫
Cn
|kϕ,z(w)|e−ϕ(w) dµ(w)

. ‖i‖F1(ϕ)→L1(ϕ,µ)‖ f ‖p,ϕ‖kϕ,z‖1,ϕ
' ‖i‖F1(ϕ)→L1(ϕ,µ)‖ f ‖p,ϕ.

Therefore, Tµ is bounded from F p(ϕ) to F∞(ϕ). This, together with (2.4), gives (2.2)
and completes the proof. �

Theorem 2.4. Suppose 0 < p ≤ ∞ and µ ≥ 0. Then the following statements are
equivalent:

(A) Tµ : F p(ϕ)→ F∞(ϕ) is compact;
(B) µ̃t(z)→ 0 as z→∞ for some (or any) t > 0;
(C) µ̂δ(z)→ 0 as z→∞ for some (or any) δ > 0;
(D) µ̂r(ak)→ 0 as k→∞ for some (or any) r-lattice {ak}

∞
k=1.

Proof. The equivalence between (B), (C) and (D) comes from [3, Theorem 2.7]. Now
we suppose limz→∞ µ̂δ(z) = 0 and take µR as in Lemma 2.2. Then µ − µR ≥ 0, Tµ−µR is
bounded from F p(ϕ) to F∞(ϕ) and

‖(µ̂ − µR)r‖L∞ → 0 (R→∞)

for r > 0. By Theorem 2.3,

‖Tµ − TµR‖F p(ϕ)→F∞(ϕ) = ‖Tµ−µR‖F p(ϕ)→F∞(ϕ) ' ‖(µ̂ − µR)r‖L∞ → 0
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as R→∞. Lemma 2.2 shows that TµR : F p(ϕ)→ F∞(ϕ) is compact. So, the operator
Tµ is compact from F p(ϕ) to F∞(ϕ).

On the other hand, let Tµ be compact from F p(ϕ) to Fq(ϕ). By Theorem 2.3,
we know that µ̂δ is bounded for δ > 0. Since {kϕ,z : z ∈ Cn} is bounded in F p(ϕ),
{Tµkϕ,z : z ∈ Cn} is relatively compact in F∞(ϕ). Thus, for any sequence {zk}

∞
k=1 ⊂ C

n

satisfying lim j→∞ z j = ∞, there exists a subsequence of {Tµkϕ,z j}
∞
j=1 which converges

to some h in F∞(ϕ). Without loss of generality, we may assume that

lim
j→∞
‖Tµkϕ,z j − h‖∞,ϕ = 0. (2.5)

We claim that h ≡ 0. In fact, for any w ∈ Cn, since µ̂δ is bounded,

Tµkϕ,z j (w) = 〈Tµkϕ,z j ,Kϕ(·,w)〉 =

∫
Cn

kϕ,z j (u)Kϕ(w, u)e−2ϕ(u) dµ(u),

by Fubini’s theorem. For any ε > 0, since ‖Kϕ(w, ·)‖2,ϕ ≤ Ceϕ(w), there is some R > 0
such that ∫

|u|>R
|Kϕ(w, u)|2e−2ϕ(u) dv(u) < ε2.

Now, by Lemma 2.1,

|kϕ,z j (u)| ≤ Ce−θ|z j−u|+ϕ(u) ≤ Ce−θ|z j |eϕ(u)+θ|u| → 0

uniformly on any compact subset of Cn as j→∞. This, together with [3, Lemma 2.2],
shows that

|Tµkϕ,z j (w)| ≤
∫

Cn
|kϕ,z j (u)Kϕ(w, u)e−2ϕ(u) |̂µδ(u) dv(u)

≤ C
(∫
|u|≤R

+

∫
|u|>R

)
|kϕ,z j (u)Kϕ(w, u)e−2ϕ(u)| dv(u)

< Cε + ‖kϕ,z j‖2,ϕ

(∫
|u|>R
|Kϕ(w, u)|2e−2ϕ(u) dv(u)

)1/2

< Cε

if j is sufficiently large, where C is independent of ε. Thus,

lim
j→∞

Tµkϕ,z j (w) = 0, w ∈ Cn.

On the other hand, by (2.5),

lim
j→∞

Tµkϕ,z j (w) = h(w)

for w ∈ Cn. Therefore, h ≡ 0. That is,

lim
j→∞
‖Tµkϕ,z j‖∞,ϕ = 0.

This, combined with (2.3), implies that

µ̃2(z j) ' |Tµkϕ,z j (z j)|e−ϕ(z j) ≤ ‖Tµkϕ,z j‖∞,ϕ → 0 as j→∞.

Hence, limz→∞ µ̃2(z) = 0. The proof is complete. �
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Theorem 2.5. Suppose 0 < p < ∞ and µ ≥ 0. Then the following statements are
equivalent:

(A) Tµ : F∞(ϕ)→ F p(ϕ) is bounded;
(B) Tµ : F∞(ϕ)→ F p(ϕ) is compact;
(C) µ̃t ∈ Lp for some (or any) t > 0;
(D) µ̂δ ∈ Lp for some (or any) δ > 0;
(E) {̂µr(ak)}∞k=1 ∈ lp for some (or any) r-lattice {ak}

∞
k=1.

Furthermore,

‖Tµ‖F∞(ϕ)→F p(ϕ) ' ‖µ̃t‖Lp ' ‖̂µδ‖Lp ' ‖{̂µr(ak)}k‖lp . (2.6)

Proof. By [3, Lemma 2.3], we obtain the equivalence of (C), (D) and (E) with the
corresponding norm estimates in (2.6). The implication (B) ⇒ (A) is trivial, so we
complete the proof by showing that (A)⇒ (E) and (E)⇒ (B).

(A) ⇒ (E). Given any bounded sequence {λk} and r0-lattice {ak}, with r0 as in
Lemma 2.1(2), set

fak (z) =

∞∑
k=1

λkkϕ,ak (z).

By [3, Lemma 2.4], fak ∈ F∞(ϕ) and ‖ fak‖∞,ϕ ≤ C supk |λk|. Since Tµ : F∞(ϕ)→ F p(ϕ)
is bounded, Tµ fak ∈ F p(ϕ). By Khinchine’s inequality and Fubini’s theorem,∫

Cn

( ∞∑
k=1

|λkTµ(kϕ,ak )(z)|2
)p/2

e−pϕ(z) dv(z)

≤ C
∫
Cn

∫ 1

0

∣∣∣∣∣ ∞∑
k=1

ψk(t)λkTµ(kϕ,ak )(z)
∣∣∣∣∣p dte−pϕ(z) dv(z)

= C
∫ 1

0

∥∥∥∥∥Tµ
( ∞∑

k=1

ψk(t)λkkϕ,ak

)∥∥∥∥∥p

p,ϕ
dt

≤ C
∫ 1

0
‖Tµ‖

p
F∞(ϕ)→F p(ϕ)

∥∥∥∥∥ ∞∑
k=1

ψ(t)λkkϕ,ak

∥∥∥∥∥p

∞,ϕ
dt

≤ C‖Tµ‖
p
F∞(ϕ)→F p(ϕ) sup

k
|λk|

p,

where ψk is the kth Rademacher function on [0, 1]. Since the balls {B(a j, r0)} j cover
Cn and the cover has a bounded number of sheets,∫

Cn

( ∞∑
k=1

|λkTµ(kϕ,ak )(z)|2
)p/2

e−pϕ(z) dv(z)

≥ C
∞∑
j=1

∫
B(a j,r0)

( ∞∑
k=1

|λkTµ(kϕ,ak )(z)|2
)p/2

e−pϕ(z) dv(z)

≥ C
∞∑
j=1

∫
B(a j,r0)

|λ jTµ(kϕ,a j )(z)|pe−pϕ(z) dv(z)
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≥ C
∞∑
j=1

|λ j|
p|Tµ(kϕ,a j )(a j)|pe−pϕ(a j)

≥ C
∞∑
j=1

|λ j|
pµ̂r0 (a j)p.

Take β j = |λ j|
p for each j. Then {β j}

∞
j=1 is bounded and

∞∑
j=1

β jµ̂r0 (a j)p ≤ C‖Tµ‖
p
F∞(ϕ)→F p(ϕ) sup

j
|β j|.

Therefore, {̂µr0 (a j)p}∞j=1 ∈ l1 and

‖{̂µr0 (a j)} j‖lp ≤ C‖Tµ‖F∞(ϕ)→F p(ϕ). (2.7)

(E)⇒ (B). Define µR as in Lemma 2.2. Then µ − µR ≥ 0. Similarly to the proof of
Theorem 3.6 in [3],

‖Tµ‖F∞(ϕ)→F p(ϕ) ≤ C‖{̂µr(ak)}k‖lp . (2.8)

So,

‖Tµ − TµR‖F∞(ϕ)→F p(ϕ) = ‖Tµ−µR‖F∞(ϕ)→F p(ϕ) ' ‖{ ̂(µ − µR)r(ak)}k‖lp → 0

as R→∞, since {̂µr(ak)}k ∈ lp. Lemma 2.2 shows that TµR : F∞(ϕ)→ F p(ϕ) is compact
and so Tµ : F∞(ϕ)→ F p(ϕ) is compact.

The estimate (2.6) comes from (2.7) and (2.8). The proof is complete. �
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