On the hamiltonian product of graphs

V. Krishnamoorthy

Let G_1 and G_2 be graphs and h_1 , h_2 be hamiltonian paths (h-paths) in G_1 and G_2 respectively. The hamiltonian product $(G_1, h_1) \star (G_2, h_2)$ was defined by Holton. If a hamiltonian cycle exists in G_2 , it can give rise to 2n h-paths. Peckham conjectured that $(G_1, h_1) \star (G_2, h_2) \cong (G_1, h_1) \star (G_2, h_3)$ where h_2 and h_3 are any two of these 2n h-paths of G_2 . He has proved the validity of this conjecture for those h_2, h_3 where h_3 is obtainable from h_2 by a rotation along the h-cycle of G_2 . Here we disprove this conjecture for those h_2, h_3 where one is obtained from the other by a reflection of the h-cycle.

1. A counterexample

DEFINITION. Let h_1 be a hamiltonian path (*h*-path) in the graph G_1 , given by 0, 1, 2, ..., *m*-1 (in that order). Let h_2 be the *h*-path in G_2 , given by 0, 1, 2, ..., *n*-1 (in that order). The hamiltonian product (*h*-product) $G = (G_1, h_1) * (G_2, h_2)$ is defined as follows in [1].

$$V(G) = V(G_1) \times V(G_2); (u, v) \text{ adj } (w, x) \text{ in } G \text{ iff}$$

(i)
$$u = w$$
 and v adj x in G_{2} , or

Received 7 January 1976. The research was supported by CSIR India. 289

(ii) v = x and u adj w in G_1 , or

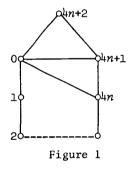
(iii)
$$w = (u+1) \pmod{m}$$
 and $x = (v+1) \pmod{n}$, or

(iv) $w = (u-1) \pmod{m}$ and $x = (v-1) \pmod{n}$.

It can be easily seen that condition (iv) in the above definition is the same as condition (iii) and hence may be omitted.

THEOREM. Let G_2 be a graph with an h-cycle C (0, 1, 2, ..., n-1)such that no reflection of the regular n-gon 0, 1, 2, ..., n-1 is an automorphism of G_2 . Let h_2 be the h-path 0, 1, 2, ..., n-1 on C and h_3 the h-path 0, n-1, n-2, ..., 2, 1. Then there exists a graph G_1 with a h-cycle C_1 such that $(G_1, h_1) * (G_2, h_2) \notin (G_1, h_1) * (G_2, h_3)$ where h_1 is an h-path in C_1 .

Proof. Let G_1 and h_1 be as shown in Figure 1;



Suppose there exists an isomorphism

$$\alpha : G = (G_1, h_1) * (G_2, h_2) \rightarrow H = (G_1, h_1) * (G_2, h_3)$$

Let us denote the vertices in G as $(r, s)_G$ and those in H as $(r, s)_H$. Clearly the vertices of maximum degree in G go to vertices of maximum degree in H and all these vertices have the first coordinate as 0 (since in G_1 , 0 has the maximum degree). It can be easily seen that the vertices of G, at a distance 2n from any vertex of maximum degree is $\{(2n, r)_G \mid 0 \leq r \leq n-1\}$. A similar observation holds for H also. Hence

$$\alpha(\{(2n, r)_G \mid 0 \le r \le n-1\}) = \{(2n, r)_H \mid 0 \le r \le n-1\}$$

The vertices $\{(2n-1, r)_G \mid 0 \le r \le n-1\}$ are those having the vertices of maximum degree $\Delta(G)$ at a distance 2n - 1 and those of degree $\Delta(G) - 1$ at a distance greater than 2n - 1. Hence, under α , they go to $\{(2n-1, r)_H \mid 0 \le r \le n-1\}$. Proceeding similarly we can show that

$$\alpha(\{(r, s)_{G} \mid 0 \le s \le n-1\}) = \{(r, s)_{H} \mid 0 \le s \le n-1\}$$

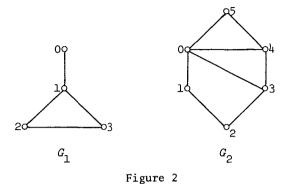
where $0 \leq r \leq 4n-1$. Now let $\alpha((0, 0)_G) = (0, r)_H$. Then $(1, 0)_G$ goes to $(1, r)_H$ or $(1, r-1)_H$. Suppose $(1, 0)_G$ goes to $(1, r)_H$. Then $(1, 1)_G$ goes to $(1, r-1)_H$ and proceeding similarly we end up with an automorphism of G_2 which is a reflection of the *n*-gon (0, 1, ..., n-1), a contradiction. The case where $(1, 1)_G$ goes to $(1, r-1)_H$ is similar. This completes the proof.

Note I. G_1 is chosen as above to simplify the proof. If G_1 need not have an *h*-cycle, then we can even use $K_3 \cdot P_{4n}$ as G_1 with the obvious *h*-path in it.

Note 2. Peckham [1] conjectured that if h_1 is an h-path in G_1 and if h_2 and h_3 are two h-paths obtained from an h-cycle C of G_2 , then $G = (G_1, h_1) * (G_2, h_2) \cong (G_1, h_1) * (G_3, h_3) = H$. Our theorem gives counter examples to this conjecture. From the definition of h-product it follows that if h_3 can be got from h_2 by a rotation of the n-gon (given by C) then $G \cong H$ [1, Theorem 2]. In other words, it does not matter where h_2 starts on the n-gon, but only the orientation on the n-gon is important. It can be easily seen that if one reflection of the m-gon given by C is an automorphism of G_1 or G_2 respectively, then $G \cong H$. We conjecture that if no such reflection is an automorphism of G_1 or G_2 then $G \notin H$.

The above discussion shows that the graphs G_1 and G_2 in Figure 2

give the smallest counter example to the conjecture of Peckham;



Reference

[1] I.A. Peckham, "The hamiltonian product of graphs", Combinatorial mathematics, 86-95 (Proc. Second Austral. Conf. Lecture Notes in Mathematics, 403. Springer-Verlag, Berlin, Heidelberg, New York, 1974).

Department of Mathematics, Indian Institute of Technology, Madras, Tamil Nadu, India.

292