VOL. 14 (1976), 289-292.

On the hamiltonian product of graphs

V. Krishnamoorthy

Let G_{1} and G_{2} be graphs and h_{1}, h_{2} be hamiltonian paths (h-paths) in G_{1} and G_{2} respectively. The hamiltonian product $\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{2}\right)$ was defined by Holton. If a hamiltonian cycle exists in G_{2}, it can give rise to $2 n h$-paths. Peckham conjectured that $\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{2}\right) \cong\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{3}\right)$ where h_{2} and h_{3} are any two of these $2 n \quad h$-paths of G_{2}. He has proved the validity of this conjecture for those h_{2}, h_{3} where h_{3} is obtainable from h_{2} by a rotation along the h-cycle of G_{2}. Here we disprove this conjecture for those h_{2}, h_{3} where one is obtained from the other by a reflection of the h-cycle.

1. A counterexample

DEFINITION. Let h_{\perp} be a hamiltonian path (h-path) in the graph G_{1}, given by $0,1,2, \ldots, m-1$ (in that order). Let h_{2} be the h-path in G_{2}, given by $0,1,2, \ldots, n-1$ (in that order). The hamiltonian product (h-product) $G=\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{2}\right)$ is defined as follows in [1]. $V(G)=V\left(G_{1}\right) \times V\left(G_{2}\right) ;(u, v)$ adj (w, x) in G iff
(i) $u=w$ and v adj x in G_{2}, or

Received 7 January 1976. The research was supported by CSIR India.
(ii) $v=x$ and u adj w in G_{1}, or
(iii) $w=(u+1)(\bmod m)$ and $x=(v+1)(\bmod n)$, or
(iv) $w=(u-1)(\bmod m)$ and $x=(v-1)(\bmod n)$.

It can be easily seen that condition (iv) in the above definition is the same as condition (iii) and hence may be omitted.

THEOREM. Let G_{2} be a graph with an h-cycle $C(0,1,2, \ldots, n-1)$ such that no reflection of the regular n-gon $0,1,2, \ldots, n-1$ is an automorphism of G_{2}. Let h_{2} be the h-path $0,1,2, \ldots, n-1$ on C and h_{3} the h-path $0, n-1, n-2, \ldots, 2,1$. Then there exists a graph G_{1} with a h-cycle C_{1} such that $\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{2}\right) \neq\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{3}\right)$ where h_{1} is an h-path in C_{1}.

Proof. Let G_{1} and h_{1} be as shown in Figure 1 ;

Figure 1
Suppose there exists an isomorphism

$$
\alpha: G=\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{2}\right) \rightarrow H=\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{3}\right) .
$$

Let us denote the vertices in G as $(r, s)_{G}$ and those in H as $(r, s)_{H}$. Clearly the vertices of maximum degree in G go to vertices of maximum degree in H and all these vertices have the first coordinate as 0 (since in G_{1}, 0 has the maximum degree). It can be easily seen that the vertices of G, at a distance $2 n$ from any vertex of maximum degree is $\left\{(2 n, r)_{G} \mid 0 \leq r \leq n-1\right\}$. A similar observation holds for H also. Hence

$$
\alpha\left(\left\{(2 n, r)_{G} \mid 0 \leq r \leq n-1\right\}\right)=\left\{(2 n, r)_{H} \mid 0 \leq r \leq n-1\right\} .
$$

The vertices $\left\{(2 n-1, r)_{G} \mid 0 \leq r \leq n-1\right\}$ are those having the vertices of maximum degree $\Delta(G)$ at a distance $2 n-1$ and those of degree $\Delta(G)-1$ at a distance greater than $2 n-1$. Hence, under α, they go to $\left\{(2 n-1, r)_{H} \mid 0 \leq r \leq n-1\right\}$. Proceeding similarly we can show that

$$
\alpha\left(\left\{(r, s)_{G} \mid 0 \leq s \leq n-1\right\}\right)=\left\{(r, s)_{H} \mid 0 \leq s \leq n-1\right\}
$$

where $0 \leq r \leq 4 n-1$. Now let $\alpha\left((0,0)_{G}\right)=(0, r)_{H}$. Then $(1,0)_{G}$ goes to $(1, r)_{H}$ or $(1, r-1)_{H}$. Suppose $(1,0)_{G}$ goes to $(1, r)_{H}$. Then $(1,1)_{G}$ goes to $(1, r-1)_{H}$ and proceeding similarly we end up with an automorphism of G_{2} which is a reflection of the n-gon $(0,1, \ldots, n-1)$, a contradiction. The case where $(1,1)_{G}$ goes to $(1, r-1)_{H}$ is similar. This completes the proof.

Note I. G_{1} is chosen as above to simplify the proof. If G_{1} need not have an h-cycle, then we can even use $K_{3} \cdot P_{4 n}$ as G_{1} with the obvious h-path in it.

Note 2. Peckham [1] conjectured that if h_{I} is an h-path in G_{1} and if h_{2} and h_{3} are two h-paths obtained from an h-cycle C of G_{2}, then $G=\left(G_{1}, h_{1}\right) *\left(G_{2}, h_{2}\right) \cong\left(G_{1}, h_{1}\right) *\left(G_{3}, h_{3}\right)=H$. Our theorem gives counter examples to this conjecture. From the definition of h-product it follows that if h_{3} can be got from h_{2} by a rotation of the n-gon (given by C) then $G \cong H$ [1, Theorem 2]. In other words, it does not matter where h_{2} starts on the n-gon, but only the orientation on the n-gon is important. It can be easily seen that if one reflection of the m-gon (imagined for h_{1} as $0,1,2, \ldots, m-1$) or one reflection of the n-gon given by C is an automorphism of G_{1} or G_{2} respectively, then $G \cong H$. We conjecture that if no such reflection is an automorphism of G_{1} or G_{2} then $G \neq H$.

The above discussion shows that the graphs G_{1} and G_{2} in Figure 2
give the smallest counter example to the conjecture of Peckham;

G_{1}

G_{2}

Figure 2

Reference

[1] I.A. Peckham, "The hamiltonian product of graphs", Combinatorial mathematics, 86-95 (Proc. Second Austral. Conf. Lecture Notes in Mathematics, 403. Springer-Verlag, Berlin, Heidelberg, New York, 1974).

Department of Mathematics, Indian Institute of Technology, Madras,
Tamil Nadu,
India.

