Growth Rates of 3-dimensional Hyperbolic Coxeter Groups are Perron Numbers

Tomoshige Yukita

Abstract

In this paper we consider the growth rates of 3-dimensional hyperbolic Coxeter polyhedra with at least one dihedral angle of the form $\frac{\pi}{k}$ for an integer $k \geq 7$. Combining a classical result by Parry with a previous result of ours, we prove that the growth rates of 3-dimensional hyperbolic Coxeter groups are Perron numbers.

1 Introduction

Let \mathbb{H}^{d} denote the upper half-space model of hyperbolic d-space and $\overline{\mathbb{H}}^{d}$ its closure in $\mathbb{R}^{d} \cup\{\infty\}$. A convex polyhedron $P \subset \overline{\mathbb{H}}^{d}$ of finite volume is called a Coxeter polyhedron if all of its dihedral angles are of the form $\frac{\pi}{k}$ for an integer $k \geq 2$ or $k=\infty$, i.e., the intersection of the respective facets is a point on the boundary $\partial \mathbb{H}^{d}$. The set S of reflections with respect to the facets of P generates a discrete group Γ, called a hyperbolic Coxeter group, and the pair (Γ, S) is called the Coxeter system associated with P. Then P becomes a fundamental domain for Γ. If P is compact (resp. noncompact), the hyperbolic Coxeter group Γ is called cocompact (resp. cofinite). The growth series $f_{S}(t)$ of a Coxeter system (Γ, S) is the formal power series $\sum_{l=0}^{\infty} a_{l} t^{l}$ where a_{l} is the number of elements of Γ whose word length with respect to S is equal to l. Then $\tau_{\Gamma}:=\lim \sup _{l \rightarrow \infty} \sqrt[l]{a_{l}}$ is called the growth rate of the Coxeter system (Γ, S). By means of the Cauchy-Hadamard theorem, τ_{Γ} is equal to the reciprocal of the radius of convergence R of $f_{S}(t)$. The growth series and the growth rate of a hyperbolic Coxeter polyhedron P is defined to be the growth series and the growth rate of the Coxeter system (Γ, S) associated with P, respectively. It is known that the growth rate of a hyperbolic Coxeter polyhedron is a real algebraic integer bigger than 1 [3]. Recall that a real algebraic number $\tau>1$ is a Perron number if all other algebraic conjugates are less than τ in absolute value. By results of Parry [13] in the compact case (resp. by results of [9-12] in the case of certain families of non-compact hyperbolic Coxeter polyhedra), the growth rate τ_{Γ} is a Salem number (resp. a Perron number). In [18], we proved that the growth rate of any non-compact Coxeter polyhedron in \mathbb{H}^{3} with all dihedral angles of type $\frac{\pi}{k}$ for $2 \leq k \leq 6$ is a Perron number. The main result of this work is the extension of our result [18] to non-compact Coxeter polyhedra P in \mathbb{H}^{3} having at least one dihedral angle of the form $\frac{\pi}{k}$ for some integer $k \geq 7$. More precisely, we shall prove the following Theorem A, which, together with the results of Parry $[13,18]$, can be summarized in Theorem B.

[^0]Theorem A The growth rates of non-compact 3-dimensional hyperbolic Coxeter polyhedra having at least one dihedral angle of the form $\frac{\pi}{k}$ for some integer $k \geq 7$ are Perron numbers.

Theorem B The growth rates of 3-dimensional hyperbolic Coxeter groups are Perron numbers.

Theorem B settles the 3-dimensional case of a conjecture by Kellerhals and Perren [7] and states that the set of growth rates of 3-dimensional hyperbolic Coxeter polyhedra consists of Perron numbers only. As for their small representatives, notice that the minimal growth rate among all compact Coxeter polyhedra was found by Kellerhals-Kolpakov [6], while the minimal growth rate among all non-compact ones was discovered by Kellerhals [5].

In Section 2, we provide the necessary background and review a useful formula from [18], which allow us to calculate the growth function of a hyperbolic Coxeter polyhedron. In Section 3, we establish the growth function of a non-compact hyperbolic Coxeter polyhedron with at least one dihedral angle of the form $\frac{\pi}{k}$ for some $k \geq 7$.

2 Preliminaries

In this section, we introduce the relevant notation and review some useful identities in [18] in order to calculate the growth functions of hyperbolic Coxeter polyhedra.

Definition 2.1 (Coxeter system, Coxeter graph, growth rate)
(i) A Coxeter system (Γ, S) consists of a group Γ and a finite set of generators $S \subset \Gamma$, $S=\left\{s_{i}\right\}_{i=1}^{N}$, with relations $\left(s_{i} s_{j}\right)^{m_{i j}}$ for each i, j, where $m_{i i}=1$ and $m_{i j} \geq 2$ or $m_{i j}=\infty$ for $i \neq j$. We call Γ a Coxeter group. For any subset $I \subset S$, we define Γ_{I} to be the subgroup of Γ generated by $\left\{s_{i}\right\}_{i \in I}$. Then Γ_{I} is called the Coxeter subgroup of Γ generated by I.
(ii) The Coxeter graph of (Γ, S) is constructed as follows: Its vertex set is S. If $m_{i j} \geq 3\left(s_{i} \neq s_{j} \in S\right)$, we join the pair of vertices by an edge and label it with $m_{i j}$. If $m_{i j}=\infty\left(s_{i} \neq s_{j} \in S\right)$, we join the pair of vertices by a bold edge.
(iii) The growth series $f_{S}(t)$ of a Coxeter system (Γ, S) is the formal power series $\sum_{l=0}^{\infty} a_{l} t^{l}$ where a_{l} is the number of elements of Γ whose word length with respect to S is equal to l. Then $\tau=\lim \sup _{l \rightarrow \infty} \sqrt[l]{a_{l}}$ is called the growth rate of (Γ, S).

A Coxeter group Γ is irreducible if the Coxeter graph of (Γ, S) is connected. In this paper, we are interested in Coxeter groups that act discontinuously on the hyperbolic space \mathbb{H}^{d}.

Definition 2.2 (hyperbolic polyhedron) A subset $P \subset \overline{\mathbb{H}}^{d}$ is called a hyperbolic polyhedron if P can be written as the intersection of finitely many closed half spaces: $P=\bigcap H_{i}^{-}$, where H_{i}^{-}is the closed domain of \mathbb{H}^{d} bounded by a hyperplane H_{i}.

Suppose that $H_{i} \cap H_{j} \neq \varnothing$ in \mathbb{H}^{d}. Then we define the dihedral angle between H_{i} and H_{j} as follows: let us choose a point $x \in H_{i} \cap H_{j}$ and consider the outer normal
vectors u_{i} and u_{j}. Then the dihedral angle between H_{i} and H_{j} is defined as the real number $\theta \in[0, \pi)$ satisfying $\cos \theta=-\left(u_{i}, u_{j}\right)$, where (\cdot, \cdot) denotes the Euclidean inner product on \mathbb{R}^{d} at x.

If $H_{i} \cap H_{j}=\varnothing$ in \mathbb{H}^{d}, then $\overline{H_{i}} \cap \overline{H_{j}} \in \overline{\mathbb{H}}^{d}$ is a point at the ideal boundary $\partial \mathbb{H}^{d}$ of \mathbb{H}^{d}, and we define the dihedral angle between H_{i} and H_{j} to be equal to zero.

Definition 2.3 (hyperbolic Coxeter polyhedron) A hyperbolic polyhedron $P \subset \mathbb{H}^{d}$ of finite volume is called a hyperbolic Coxeter polyhedron if all of its dihedral angles have the form $\frac{\pi}{k}$ for an integer $k \geq 2$ or $k=\infty$ if the intersection of the respective bounding hyperplanes is a point on the boundary $\partial \mathbb{H}^{d}$.

Notice that a hyperbolic polyhedron in \mathbb{H}_{d}^{d} is of finite volume if and only if it is the convex hull of finitely many points in $\overline{\mathbb{H}}^{d}$. If $P \subset \mathbb{H}^{d}$ is a hyperbolic Coxeter polyhedron, the set S of reflections with respect to facet hyperplanes of P generates the discrete group Γ. We call Γ the d-dimensional hyperbolic Coxeter group associated with P. Moreover, if P is compact (resp. non-compact), Γ is called cocompact (resp. cofinite).

We recall Solomon's formula and Steinberg's formula, which are very useful for calculating growth series.

Theorem 2.4 (Solomon's formula [15]) The growth series $f_{s}(t)$ of an irreducible finite Coxeter system (Γ, S) can be written as $f_{S}(t)=\left[m_{1}+1 ; m_{2}+1 ; \ldots ; m_{p}+1\right]$, where $[n]=1+t+\cdots+t^{n-1},[m ; n]=[m][n]$, etc., and where $\left\{m_{1}, m_{2}, \ldots, m_{p}\right\}$ is the set of exponents of (Γ, S).

The exponents of irreducible finite Coxeter groups are shown in Table 1 (see [4] for details).

Coxeter group	Exponents	Growth series
A_{n}	$1,2, \ldots, n$	$[2 ; 3 ; \ldots ; n+1]$
B_{n}	$1,3, \ldots, 2 n-1$	$[2 ; 4 ; \ldots ; 2 n]$
D_{n}	$1,3, \ldots, 2 n-3, n-1$	$[2 ; 4 ; \ldots ; 2 n-2 ; n]$
E_{6}	$1,4,5,7,8,11$	$[2 ; 5 ; 6 ; 8 ; 9 ; 12]$
E_{7}	$1,5,7,9,11,13,17$	$[2 ; 6 ; 8 ; 10 ; 12 ; 14 ; 18]$
E_{8}	$1,7,11,13,17,19,23,29$	$[2 ; 8 ; 12 ; 14 ; 18 ; 20 ; 24 ; 30]$
F_{4}	$1,5,7,11$	$[2 ; 6 ; 8 ; 12]$
H_{3}	$1,5,9$	$[2 ; 6 ; 10]$
H_{4}	$1,11,19,29$	$[2 ; 12 ; 20 ; 30]$
$I_{2}(m)$	$1, m-1$	$[2 ; m]$

Table 1: Exponents

Theorem 2.5 (Steinberg's formula [16]) Let (Γ, S) be a Coxeter system. Denote by Γ_{T} the Coxeter subgroup of Γ generated by the subset $T \subseteq S$, and denote by $f_{T}(t)$ the growth series of the Coxeter system $\left(\Gamma_{T}, T\right)$. Set $\mathcal{F}=\left\{T \subseteq S: \Gamma_{T}\right.$ is finite $\}$. Then

$$
\frac{1}{f_{S}\left(t^{-1}\right)}=\sum_{T \in \mathcal{F}} \frac{(-1)^{|T|}}{f_{T}(t)}
$$

By Theorem 2.4 and Theorem 2.5, the growth series of (Γ, S) is represented by a rational function $\frac{p(t)}{q(t)}(p, q \in \mathbb{Z}[t])$. The rational function $\frac{p(t)}{q(t)}$ is called the growth function of (Γ, S). The radius of convergence R of the growth series $f_{S}(t)$ is equal to the positive real root of $q(t)$ that has the smallest absolute value among all the roots of $q(t)$.

From now on, we restrict our attention to the 3-dimensional case. Suppose that P is a Coxeter polyhedron in \mathbb{H}^{3}, and let v be a vertex of P. Let F_{1}, \ldots, F_{n} be adjacent facets of P incident to v and let $\frac{\pi}{k_{i}}$ be the dihedral angle between F_{i} and F_{i+1}. By Andreev's theorem [1], the number of facets of P incident to v is at most 4 and k_{1}, \ldots, k_{n} satisfy the following conditions:

$$
\begin{array}{cl}
k_{1}=k_{2}=k_{3}=k_{4}=2 & \text { if } n=4 \\
\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}} \geq 1 & \text { if } n=3 \tag{2.2}
\end{array}
$$

Note that a vertex v of P belongs to $\partial \mathbb{H}^{3}$ if and only if $k_{1}=k_{2}=k_{3}=k_{4}=2$ or $\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}=1$, and we call such a vertex a cusp, for short. We shall use the following notation and terminology for the rest of the paper:

- If a vertex v of P satisfies the identity (2.1), we call v a cusp of type (2,2,2,2).
- If a vertex v of P satisfies the inequality (2.2), we call v a vertex of type $\left(k_{1}, k_{2}, k_{3}\right)$.
- $v_{2,2,2,2}$ denotes the number of cusps of type (2,2,2,2).
- $v_{k_{1}, k_{2}, k_{3}}$ denotes the number of vertices of type $\left(k_{1}, k_{2}, k_{3}\right)$.
- V, E, F denotes the number of vertices, edges and facets of P.
- If an edge e of P has dihedral angle $\frac{\pi}{k}$, we call it a $\frac{\pi}{k}$-edge.
- e_{k} denotes the number of $\frac{\pi}{k}$-edges.
- The growth function $f_{S}(t)$ of the Coxeter system (Γ, S) associated with P is called the growth function of P.
- The growth rate of the Coxeter system (Γ, S) associated with P is called the growth rate of P.
It is easy to see (cf. [18], for example) that the following identities and inequality hold for P :

$$
\begin{align*}
& V-E+F=2 \tag{2.3}\\
& V=v_{2,2,2,2}+\sum_{k \geq 2} v_{2,2, k}+v_{2,3,3}+v_{2,3,4}+v_{2,3,5}+v_{2,3,6}+v_{2,4,4}+v_{3,3,3} \tag{2.4}\\
& E=\sum_{k \geq 2} e_{k}, \tag{2.5}
\end{align*}
$$

$$
\begin{align*}
& 2 e_{2}=4 v_{2,2,2,2}+3 v_{2,2,2}+2 \sum_{k=3}^{\infty} v_{2,2, k}+v_{2,3,3}+v_{2,3,4}+v_{2,3,5}+v_{2,3,6}+v_{2,4,4}, \tag{2.6}\\
& 2 e_{3}=3 v_{3,3,3}+2 v_{2,3,3}+v_{2,2,3}+v_{2,3,4}+v_{2,3,5}+v_{2,3,6} \tag{2.7}\\
& 2 e_{4}=2 v_{2,4,4}+v_{2,2,4}+v_{2,3,4} \tag{2.8}\\
& 2 e_{5}=v_{2,2,5}+v_{2,3,5} \tag{2.9}\\
& 2 e_{6}=v_{2,2,6}+v_{2,3,6} \\
& 2 e_{k}=v_{2,2, k} \quad k \geq 7 \\
& v_{2,2,2,2}+v_{2,3,6}+v_{2,4,4}+v_{3,3,3} \geq 1 .
\end{align*}
$$

We use these identities and the last inequality to express growth functions of the 3-dimensional hyperbolic Coxeter polyhedra under consideration. The following proposition due to Komori-Umemoto [9] will be of fundamental importance when showing that their growth rates are Perron numbers.

Proposition 2.6 ([9, Lemma 1]) Let $g(t)$ be a polynomial of degree $n \geq 2$ having the form

$$
g(t)=\sum_{k=1}^{n} n_{k} t^{k}-1,
$$

where n_{k} are non-negative integers. We assume that the greatest common divisor of $\left\{k \in \mathbb{N} \mid n_{k} \neq 0\right\}$ is 1 . Then there exists a real number $r_{0}, 0<r_{0}<1$ that is the unique zero of $g(t)$ having the smallest absolute value among all zeros of $g(t)$.

Our aim is to express the growth functions of non-compact hyperbolic Coxeter polyhedra with at least one dihedral angle of type $\frac{\pi}{k}$ for $k \geq 7$ as rational functions whose denominator polynomials satisfy the conditions of Proposition 2.6. This will be done by using Steinberg's formula (see Theorem 2.5) and the relations (2.3)-(2.12). This strategy was already successfully applied in [18].

3 Non-compact Coxeter Polyhedra Some of Whose Dihedral Angles are $\frac{\pi}{k}$ for $k \geq 7$

In this section, we calculate the growth function $f_{S}(t)$ of a non-compact hyperbolic Coxeter polyhedron P some of whose dihedral angles are $\frac{\pi}{k}$ for $k \geq 7$ and prove the growth rate of P is a Perron number.

Theorem 3.1 Let σ be the sum of the $\frac{\pi}{k}$-edges for $k \geq 7$ of a non-compact hyperbolic polyhedron P, that is, $\sigma=\sum_{k \geq 7} e_{k}$. Then we obtain the inequality $\sigma \leq F-3$. Moreover, if the equality $\sigma=F-3$ holds, then P has a unique cusp of type $(2,2,2,2)$, and all other vertices of P are of type $(2,2, k)$ for $k \geq 7$.

In order to prove Theorem 3.1, we use the following deformation argument for Coxeter polyhedra studied by Kolpakov in [8]. We present it in a modified form that is more suitable for further account.

Theorem 3.2 ([8, Propositions 1 and 2])
(i) Suppose that a non-compact hyperbolic Coxeter polyhedron $P \subset \mathbb{H}^{3}$ has some $\frac{\pi}{k}$-edges for $k \geq 7$. Then all of the $\frac{\pi}{k}$-edges can be contracted to cusps of type (2,2,2,2).
The hyperbolic Coxeter polyhedron \widehat{P} that is obtained from P by contracting all $\frac{\pi}{k}$-edges for $k \geq 7$ of P is called the pinched Coxeter polyhedron of P.
(ii) If a hyperbolic Coxeter polyhedron P has some cusps of type (2,2,2,2), then there exists a unique Coxeter polyhedron that is obtained from P by opening one cusp of type (2, 2, 2, 2). (See Fig. 1.)

Figure 1

In the sequel, \widehat{P} denotes the pinched Coxeter polyhedron obtained from P, and $\widehat{V}, \widehat{E}, \widehat{F}, \widehat{v}_{2,2,2,2}, \widehat{v}_{k_{1}, k_{2}, k_{3}}$, and \widehat{e}_{k} denote respectively the number of vertices, edges, facets, cusps of type ($2,2,2,2$), vertices of type $\left(k_{1}, k_{2}, k_{3}\right)$, and $\frac{\pi}{k}$-edges of \widehat{P}.
Proof of Theorem 3.1 Suppose that P is a non-compact hyperbolic Coxeter polyhedron and the sum of the numbers of the $\frac{\pi}{k}$-edges for $k \geq 7$ of P is σ. By substituting identities (2.4)-(2.10) for identity (2.3), we can see the following identity for \widehat{P} :

$$
\begin{equation*}
\widehat{F}-2=\widehat{v}_{2,2,2,2}+\frac{1}{2}(\text { the number of vertices of } \widehat{P} \text { with valency } 3) . \tag{3.1}
\end{equation*}
$$

Even if we contract the all $\frac{\pi}{k}$-edges for $k \geq 7$ of P, the number of facets of \widehat{P} is equal to the number of faces of P, so that we obtain the following relations for \widehat{P} :

$$
\begin{align*}
F & =\widehat{F}, \tag{3.2}\\
\widehat{v}_{2,2,2,2} & =v_{2,2,2,2}+\sigma . \tag{3.3}
\end{align*}
$$

Then, by substituting identities (3.2) and (3.3) for (3.1), we see that

$$
\begin{equation*}
F-2=v_{2,2,2,2}+\sigma+\frac{1}{2}(\text { the number of vertices of } \widehat{P} \text { with valency } 3) \tag{3.4}
\end{equation*}
$$

Identity (3.4) implies that $\sigma \leq F-2$. Moreover, if P satisfies the identity $\sigma=F-2$, then all of the vertices of \widehat{P} are cusps of type $(2,2,2,2)$ obtained from P by contracting all $\frac{\pi}{k}$-edges for $k \geq 7$ of P. This observation means that all of the vertices of P are of type $(2,2, k)$ for $k \geq 7$. Therefore, P has no cusps. This fact contradicts to the assumption that P is non-compact. Thus, we obtain the inequality. $\sigma \leq F-3$.

Suppose that $\sigma=F-3$. Then, identity (3.4) is rewritten as

$$
\begin{equation*}
F-2=v_{2,2,2,2}+F-3+\frac{1}{2}(\text { the number of vertices of } \widehat{P} \text { with valency } 3) . \tag{3.5}
\end{equation*}
$$

Since any $\frac{\pi}{k}$-edge for $k \geq 3$ is adjacent to two vertices with valency 3 , if P has at least one cusp of type $(2,3,6)$ or $(2,4,4)$ or $(3,3,3)$, then P has at least three vertices with valency 3.

Therefore, by identity (3.5), we obtain the inequality

$$
F-2 \geq v_{2,2,2,2}+F-3+\frac{3}{2}=v_{2,2,2,2}+F-\frac{3}{2} .
$$

Hence, if P has at least one cusp of type $(2,3,6)$ or $(2,4,4)$ or $(3,3,3)$, we arrive at a contradiction. This implies that if $\sigma=F-3, P$ has a unique cusp of type $(2,2,2,2)$, and all other vertices of P are of type $(2,2, k)$ for $k \geq 7$.
3.1 The Growth Rates in the Case of $\sigma=F-3$

By Theorem 3.1, P has a unique cusp which is furthermore of type (2,2,2,2). Apply Theorem 3.2(ii) and consider the unique hyperbolic polyhedron \widetilde{P} obtained by opening this cusp in P. Then \widetilde{P} is a compact Coxeter polyhedron whose growth rate is a Salem number. By a result of Kolpakov [8, Theorem 5], the growth rate of P is then a Pisot number and therefore also a Perron number.

3.2 The Growth Rates in the Case of $\sigma \leq F-4$

In this subsection, we prove the following theorem.
Theorem 3.3 Suppose that $\sigma \leq F-4$ and P satisfies the following inequality

$$
\begin{equation*}
v_{2,2,2,2}+e_{3}+e_{4}+e_{5}+e_{6}+F-8 \geq 0 . \tag{3.6}
\end{equation*}
$$

Then the growth rate of P is a Perron number.
In order to prove Theorem 3.3, we shall use the following notation and terminology introduced in [14].

Definition 3.4 (abstract polyhedron) An abstract polyhedron C is a simple graph on the 2-dimensional sphere S^{2} all of its vertices are 3 -valent or 4 -valent. If each edge of an abstract polyhedron C is labeled with $\frac{\pi}{k}$ for an integer $k \geq 2, C$ is called an abstract Coxeter polyhedron.

For any hyperbolic Coxeter polyhedron P, the boundary ∂P is homeomorphic to S^{2}. This implies that the 1 -skeleton of P provides an abstract Coxeter polyhedron C. We call C the abstract Coxeter polyhedron associated with P. Suppose that C is an abstract Coxeter polyhedron and that v is a vertex with valency i for $i=3$ or $i=4$. Let c_{1}, \ldots, c_{i} be the edges of C incident to v and denote by $\frac{\pi}{k_{i}}$ the label of the edge c_{i}.

- If a vertex v of C with valency 3 satisfies the inequality $\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}>1$, we call v a spherical vertex of type $\left(k_{1}, k_{2}, k_{3}\right)$.
- If a vertex v of C with valency 3 satisfies the equality $\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}=1$, we call v a Euclidean vertex of type $\left(k_{1}, k_{2}, k_{3}\right)$.
- If a vertex v of C with valency 3 satisfies the inequality $\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}<1$, we call v a hyperbolic vertex of type $\left(k_{1}, k_{2}, k_{3}\right)$.
- If a vertex v of C with valency 4 satisfies the equality $k_{1}=k_{2}=k_{3}=k_{4}=2$, we call v a Euclidean vertex of type (2,2,2,2).
- A vertex v of C with valency 4 different from a Euclidean vertex is called a hyperbolic vertex of valency 4.
- $\mathcal{V}_{k_{1}, k_{2}, k_{3}}$ denotes the number of spherical vertices of type $\left(k_{1}, k_{2}, k_{3}\right)$ of C.
- \mathcal{E}_{k} denotes the number of edges labeled by $\frac{\pi}{k}$ of C.
- \mathcal{F} denotes the number of faces of C.

A spherical, Euclidean or hyperbolic vertex v of type $\left(k_{1}, k_{2}, k_{3}\right)$ of C corresponds to a spherical, Euclidean or hyperbolic Coxeter triangle $\Delta_{k_{1}, k_{2}, k_{3}}$ whose interior angles are $\frac{\pi}{k_{1}}, \frac{\pi}{k_{2}}$ and $\frac{\pi}{k_{3}}$, respectively. We denote by $f_{k_{1}, k_{2}, k_{3}}(t)$ the growth function of $\Delta_{k_{1}, k_{2}, k_{3}}$. Then the abstract growth function $f_{C}(t)$ of C is defined by the identity

$$
\frac{1}{f_{C}\left(t^{-1}\right)}:=1-\frac{\mathcal{F}}{[2]}+\sum_{k \geq 2} \frac{\varepsilon_{k}}{[2 ; k]}-\sum_{\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}>1} \frac{\mathcal{V}_{k_{1}, k_{2}, k_{3}}}{f_{k_{1}, k_{2}, k_{3}}(t)} .
$$

In the sequel, let P be a non-compact finite volume hyperbolic Coxeter polyhedron and C be the abstract Coxeter polyhedron associated with P. Then we can see that the abstract growth function $f_{C}(t)$ of C is equal to the growth function $f_{S}(t)$ of P.

Suppose that P has some dihedral angles $\frac{\pi}{k}$ for $k \geq 7$ and C is the abstract Coxeter polyhedron associated with P. Let C^{\prime} be the abstract Coxeter polyhedron obtained from C by changing one of the labels of C from $\frac{\pi}{k}$ to $\frac{\pi}{6}$ (see Fig. 2).

Theorem 3.5 ([1], Andreev's theorem) Let C be an abstract polyhedron other than a tetrahedron or a triangular prism, and suppose that non-obtuse labels are given corresponding to each edge of C. There is a hyperbolic polyhedron P of finite volume in \mathbb{H}^{3} whose 1-skeleton provides C if and only if the following conditions are satisfied:
(i) if three distinct edges of C meet at a vertex, then the sum of the labels is greater than or equal to π;
(ii) iffour distinct edges of C meet at a vertex, then all the labels equal $\frac{\pi}{2}$;
(iii) if three faces of C are pairwise adjacent but do not meet at a vertex, then the sum of the labels on the edges formed by adjacent faces is less than π;
(iv) iffour faces of C are cyclically adjacent but do not meet at a vertex, then the sum of the labels on the edges formed by adjacent faces is less than 2π;
(v) if a face F_{i} is adjacent to faces F_{j} and F_{k}, while F_{j} and F_{k} are not adjacent but have a common vertex which F_{i} does not share, then at least one of the labels on the edges formed by F_{i} with F_{j} or with F_{k} is different from $\frac{\pi}{2}$.

By Andreev's theorem [1], the endpoints of a $\frac{\pi}{k}$-edge of P are vertices of type $(2,2, k)$ for $k \geq 7$ so that the abstract polyhedron C^{\prime} has at least one Euclidean vertex and no hyperbolic vertices of valency 4 . Then the growth function $f_{S}(t)$ of P differs from the abstract growth function $f_{C^{\prime}}(t)$ of C^{\prime} in the terms related to changing the label. This implies the following identity by using the relation $1 /\left([k]\left(t^{-1}\right)\right)=t^{k-1} /[k]$:

$$
\begin{align*}
\frac{1}{f_{S}(t)} & =\frac{1}{f_{C^{\prime}}(t)}+\left\{\left(-\frac{t^{6}}{[2 ; 6]}+\frac{2 t^{7}}{[2 ; 2 ; 6]}\right)+\left(\frac{t^{k}}{[2 ; k]}-\frac{2 t^{k+1}}{[2 ; 2 ; k]}\right)\right\} \tag{3.7}\\
& =\frac{1}{f_{C^{\prime}}(t)}+\frac{(t-1)}{[2 ; 2 ; 6 ; k]} \sum_{n=6}^{k-1} t^{n}
\end{align*}
$$

Proof of Theorem 3.3 Let $P \subset \mathbb{H}^{3}$ be a non-compact finite volume Coxeter polyhedron with $F \geq 4$ faces. Observe that the theorem holds for $F=4$ without any further restriction, since the growth rate of a finite volume Coxeter tetrahedron P has been shown to be a Perron number by [9]. Therefore, assume that $F \geq 5$. The proof of the theorem proceeds by induction on the number σ of $\frac{\pi}{k}$-edges with $k \geq 7$ of P. More specifically, denote by P_{σ} such a polyhedron with dihedral angles $\frac{\pi}{k_{1}}, \ldots, \frac{\pi}{k_{\sigma}}$ where $k_{1}, \ldots, k_{\sigma} \geq 7$. In order to prove that the growth rate of P_{σ} is a Perron number, we show that the growth function $f_{S_{\sigma}}(t)$ of P_{σ} satisfies the identity

$$
\frac{1}{f_{S_{\sigma}}(t)}=\frac{(t-1) Q_{\sigma}(t)}{\left[2 ; 2 ; 6 ; k_{1} ; \ldots ; k_{\sigma}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right)}
$$

where $Q_{\sigma}(t)$ is the integer polynomial of degree $k_{1}+\cdots+k_{\sigma}+16-\sigma$ whose constant term is equal to -1 and the coefficients of $Q_{\sigma}(t)$ except its constant term are nonnegative.

Step 1: In the case where $\sigma=1$, consider the abstract Coxeter polyhedron C_{1}^{\prime} whose labels lie in the set $\left\{\left.\frac{\pi}{k} \right\rvert\, k=2,3,4,5,6\right\}$ by construction. By the calculation of [18, subsection 3.5], $\frac{1}{f_{C_{1}^{\prime}}(t)}$ is written as

$$
\frac{1}{f_{C_{1}^{\prime}}(t)}=\frac{(t-1)}{[2 ; 4 ; 6 ; 10]} H_{2,3,4,5,6}(t),
$$

where $H_{2,3,4,5,6}(t)$ is the integer polynomial of degree 17 . Then, by using mathematica, we see that the polynomial $H_{2,3,4,5,6}$ is divisible by the polynomial [2] $=t+1$:

$$
\frac{1}{f_{C_{1}^{\prime}}(t)}=\frac{(t-1)}{[4 ; 6 ; 10]} G_{2,3,4,5,6}(t),
$$

Figure 2
where $G_{2,3,4,5,6}(t):=\frac{H_{2,3,4,5,6}(t)}{[2]}$ is the integer polynomial of degree 16 . By using mathematica, $G_{2,3,4,5,6}(t)$ can be rewritten as follows:

$$
\begin{aligned}
& G_{2,3,4,5,6}(t)=\left(v_{2,3,6}^{\prime}+v_{2,4,4}^{\prime}+v_{3,3,3}^{\prime}+v_{2,2,2,2}^{\prime}-1\right) t^{16} \\
& +\left(v_{2,3,6}^{\prime}+v_{2,4,4}^{\prime}+v_{3,3,3}^{\prime}+F^{\prime}-4\right) t^{15} \\
& +\left(\frac{1}{2} v_{2,2,3}^{\prime}+\frac{1}{2} v_{2,2,4}^{\prime}+\frac{1}{2} v_{2,2,5}^{\prime}+\frac{1}{2} v_{2,2,6}^{\prime}+v_{2,3,3}^{\prime}\right. \\
& \left.+v_{2,3,4}^{\prime}+v_{2,3,5}^{\prime}+3 v_{2,3,6}^{\prime}+3 v_{2,4,4}^{\prime}+\frac{5}{2} v_{3,3,3}^{\prime}+3 v_{2,2,2,2}^{\prime}-4\right) t^{14} \\
& +\left(\frac{1}{2} v_{2,2,2}^{\prime}+\frac{1}{2} v_{2,2,4}^{\prime}+\frac{1}{2} v_{2,2,5}^{\prime}+\frac{1}{2} v_{2,2,6}^{\prime}+\frac{1}{2} v_{2,3,3}^{\prime}+v_{2,3,4}^{\prime}\right. \\
& \left.+v_{2,3,5}^{\prime}+3 v_{2,3,6}^{\prime}+\frac{5}{2} v_{2,4,4}^{\prime}+3 v_{3,3,3}^{\prime}+v_{2,2,2,2}^{\prime}+2 F^{\prime}-10\right) t^{13} \\
& +\left(\frac{3}{2} v_{2,2,3}^{\prime}+v_{2,2,4}^{\prime}+\frac{3}{2} v_{2,2,5}^{\prime}+\frac{3}{2} v_{2,2,6}^{\prime}+2 v_{2,3,3}^{\prime}\right. \\
& \left.+\frac{5}{2} v_{2,3,4}^{\prime}+3 v_{2,3,5}^{\prime}+5 v_{2,3,6}^{\prime}+5 v_{2,4,4}^{\prime}+\frac{9}{2} v_{3,3,3}^{\prime}+5 v_{2,2,2,2}^{\prime}-8\right) t^{12} \\
& +\left(v_{2,2,2}^{\prime}+v_{2,2,4}^{\prime}+\frac{1}{2} v_{2,2,5}^{\prime}+v_{2,2,6}^{\prime}+v_{2,3,3}^{\prime}+2 v_{2,3,4}^{\prime}\right. \\
& \left.+\frac{5}{2} v_{2,3,5}^{\prime}+4 v_{2,3,6}^{\prime}+4 v_{2,4,4}^{\prime}+4 v_{3,3,3}^{\prime}+2 v_{2,2,2,2}^{\prime}+3 F^{\prime}-16\right) t^{11} \\
& +\left(2 v_{2,2,3}^{\prime}+\frac{3}{2} v_{2,2,4}^{\prime}+\frac{5}{2} v_{2,2,5}^{\prime}+2 v_{2,2,6}^{\prime}+3 v_{2,3,3}^{\prime}\right. \\
& \left.+\frac{7}{2} v_{2,3,4}^{\prime}+\frac{9}{2} v_{2,3,5}^{\prime}+6 v_{2,3,6}^{\prime}+6 v_{2,4,4}^{\prime}+6 v_{3,3,3}^{\prime}+6 v_{2,2,2,2}^{\prime}-11\right) t^{10} \\
& +\left(v_{2,2,2}^{\prime}+v_{2,2,4}^{\prime}+v_{2,2,6}^{\prime}+v_{2,3,3}^{\prime}+2 v_{2,3,4}^{\prime}\right. \\
& \left.+3 v_{2,3,5}^{\prime}+4 v_{2,3,6}^{\prime}+4 v_{2,4,4}^{\prime}+4 v_{3,3,3}^{\prime}+2 v_{2,2,2,2}^{\prime}+4 F^{\prime}-20\right) t^{9} \\
& +\left(2 v_{2,2,3}^{\prime}+\frac{3}{2} v_{2,2,4}^{\prime}+3 v_{2,2,5}^{\prime}+2 v_{2,2,6}^{\prime}+3 v_{2,3,3}^{\prime}\right. \\
& \left.+\frac{7}{2} v_{2,3,4}^{\prime}+5 v_{2,3,5}^{\prime}+6 v_{2,3,6}^{\prime}+6 v_{2,4,4}^{\prime}+6 v_{3,3,3}^{\prime}+6 v_{2,2,2,2}^{\prime}-12\right) t^{8} \\
& +\left(v_{2,2,2}^{\prime}+v_{2,2,4}^{\prime}+v_{2,2,6}^{\prime}+v_{2,3,3}^{\prime}+2 v_{2,3,4}^{\prime}\right. \\
& \left.+3 v_{2,3,5}^{\prime}+4 v_{2,3,6}^{\prime}+4 v_{2,4,4}^{\prime}+4 v_{3,3,3}^{\prime}+2 v_{2,2,2,2}^{\prime}+4 F^{\prime}-20\right) t^{7} \\
& +\left(2 v_{2,2,3}^{\prime}+\frac{3}{2} v_{2,2,4}^{\prime}+\frac{5}{2} v_{2,2,5}^{\prime}+2 v_{2,2,6}^{\prime}+3 v_{2,3,3}^{\prime}\right. \\
& \left.+\frac{7}{2} v_{2,3,4}^{\prime}+\frac{9}{2} v_{2,3,5}^{\prime}+5 v_{2,3,6}^{\prime}+5 v_{2,4,4}^{\prime}+5 v_{3,3,3}^{\prime}+5 v_{2,2,2,2}^{\prime}-11\right) t^{6} \\
& +\left(v_{2,2,2}^{\prime}+v_{2,2,4}^{\prime}+\frac{1}{2} v_{2,2,5}^{\prime}+v_{2,2,6}^{\prime}+v_{2,3,3}^{\prime}+2 v_{2,3,4}^{\prime}\right. \\
& \left.+\frac{5}{2} v_{2,3,5}^{\prime}+3 v_{2,3,6}^{\prime}+3 v_{2,4,4}^{\prime}+3 v_{3,3,3}^{\prime}+2 v_{2,2,2,2}^{\prime}+3 F^{\prime}-16\right) t^{5} \\
& +\left(\frac{3}{2} v_{2,2,3}^{\prime}+v_{2,2,4}^{\prime}+\frac{3}{2} v_{2,2,5}^{\prime}+\frac{3}{2} v_{2,2,6}^{\prime}+2 v_{2,3,3}^{\prime}\right. \\
& \left.+\frac{5}{2} v_{2,3,4}^{\prime}+3 v_{2,3,5}^{\prime}+3 v_{2,3,6}^{\prime}+3 v_{2,4,4}^{\prime}+\frac{7}{2} v_{3,3,3}^{\prime}+3 v_{2,2,2,2}^{\prime}-8\right) t^{4} \\
& +\left(\frac{1}{2} v_{2,2,2}^{\prime}+\frac{1}{2} v_{2,2,4}^{\prime}+\frac{1}{2} v_{2,2,5}^{\prime}+\frac{1}{2} v_{2,2,6}^{\prime}+\frac{1}{2} v_{2,3,3}^{\prime}\right. \\
& \left.+v_{2,3,4}^{\prime}+v_{2,3,5}^{\prime}+v_{2,3,6}^{\prime}+\frac{3}{2} v_{2,4,4}^{\prime}+v_{3,3,3}^{\prime}+v_{2,2,2,2}^{\prime}+2 F^{\prime}-10\right) t^{3} \\
& +\left(\frac{1}{2} v_{2,2,3}^{\prime}+\frac{1}{2} v_{2,2,4}^{\prime}+\frac{1}{2} v_{2,2,5}^{\prime}+\frac{1}{2} v_{2,2,6}^{\prime}+v_{2,3,3}^{\prime}\right. \\
& \left.+v_{2,3,4}^{\prime}+v_{2,3,5}^{\prime}+v_{2,3,6}^{\prime}+v_{2,4,4}^{\prime}+\frac{3}{2} v_{3,3,3}^{\prime}+v_{2,2,2,2}^{\prime}-4\right) t^{2} \\
& +\left(F^{\prime}-4\right) t-1,
\end{aligned}
$$

where $F^{\prime}, v_{2,2,2,2}^{\prime}$ and $v_{k_{1}, k_{2}, k_{3}}^{\prime}$ denote respectively the number of faces, Euclidean vertices of type $(2,2,2,2)$ and spherical vertices of type $\left(k_{1}, k_{2}, k_{3}\right)$ of C_{1}^{\prime}. We denote n_{i} by the i-th coefficient of the polynomial $G_{2,3,4,5,6}(t)$. By using identities (2.3)-(2.10)
and inequality (2.12), we can see that the following inequalities:

$$
\begin{array}{ll}
n_{i} \geq 0 & (i=1,3,5,7,9,11,13,15), \\
n_{i}+n_{i+1} \geq 0 & (i=1, \ldots, 15), \\
n_{i}+n_{i+1}+n_{i+2} \geq 0 & (i=1, \ldots, 14) .
\end{array}
$$

Using identity (3.7), we can see that

$$
\begin{aligned}
\frac{1}{f_{S_{1}}(t)} & =\frac{1}{f_{C_{1}^{\prime}}(t)}+\frac{(t-1)}{\left[2 ; 2 ; 6 ; k_{1}\right]} \sum_{i=6}^{k_{1}-1} t^{i} \\
& =\frac{(t-1)}{[4 ; 6 ; 10]} G_{2,3,4,5,6}(t)+\frac{(t-1)}{\left[2 ; 2 ; 6 ; k_{1}\right]} \sum_{i=6}^{k_{1}-1} t^{i} \\
& =\frac{(t-1)}{[2 ; 2 ; 5 ; 6]\left(1+t^{2}\right)\left(1-t+t^{2}-t^{3}+t^{4}\right)} G_{2,3,4,5,6}(t)+\frac{(t-1)}{\left[2 ; 2 ; 6 ; k_{1}\right]} \sum_{i=6}^{k_{1}-1} t^{i} \\
& =\frac{(t-1)\left\{\left[k_{1}\right] G_{2,3,4,5,6}(t)+\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right) \sum_{i=6}^{k_{1}-1} t^{i}\right\}}{\left[2 ; 2 ; 6 ; k_{1}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right)} .
\end{aligned}
$$

Let $Q_{1}(t):=\left[k_{1}\right] G_{2,3,4,5,6}(t)+\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right) \sum_{i=6}^{k_{1}-1} t^{i}$,

$$
\begin{aligned}
{\left[k_{1}\right] G_{2,3,4,5,6}(t) } & =\left(\sum_{j=0}^{k_{1}-1} t^{j}\right)\left(\sum_{i=1}^{16} n_{i} t^{i}-1\right) \\
& =\sum_{j=0}^{k=1-1} \sum_{i=1}^{16} n_{i} t^{i+j}-\sum_{j=0}^{k_{1}-1} t^{j} \\
& =\sum_{i=1}^{k_{1}+15}\left\{\chi_{\left[1, k_{1}\right]}(i) n_{1}+\cdots+\chi_{\left[16, k_{1}+15\right]}(i) n_{16}\right\} t^{i}-\sum_{j=0}^{k_{1}-1} t^{j},
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right) \sum_{i=6}^{k_{1}-1} t^{i}= \\
& \sum_{i=8}^{k_{1}+9}\left\{2\left(\chi_{\left[8, k_{1}+1\right]}+\chi_{\left[10, k_{1}+3\right]}+\chi_{\left[12, k_{1}+5\right]}+\chi_{\left[14, k_{1}+7\right]}\right)(i)+\chi_{\left[16, k_{1}+9\right]}(i)\right\} t^{i}+\sum_{j=6}^{k_{1}-1} t^{j},
\end{aligned}
$$

where $\chi_{[p, q]}$ is defined to be the simple function on the closed interval $[p, q]$. Then the degree of $Q_{1}(t)$ is $k_{1}+15$, so that we can represent $Q_{1}(t)$ as $\sum_{i=1}^{k_{1}+15} n_{i}^{(1)} t^{i}-1$ and $n_{i}^{(1)}$ is written as follows:

$$
\begin{array}{r}
n_{i}^{(1)}=\sum_{j=1}^{16} \chi_{\left[j, k_{1}+j-1\right]}(i) n_{j}+2\left(\chi_{\left[8, k_{1}+1\right]}+\chi_{\left[10, k_{1}+3\right]}+\chi_{\left[12, k_{1}+5\right]}+\chi_{\left[14, k_{1}+7\right]}\right)(i) \\
\\
+\chi_{\left[16, k_{1}+9\right]}(i)-\chi_{[1,5]}(i) .
\end{array}
$$

Therefore, by combining inequalities (3.8), (3.9), and (3.10), we can obtain the following inequalities and identities:

$$
\begin{aligned}
& \left.n_{i}^{(1)} \geq 0 \quad 6 \leq i \leq k_{1}+15\right), \\
& n_{5}^{(1)}=n_{5}+n_{4}+n_{3}+n_{2}+n_{1}-1, \\
& n_{4}^{(1)}=n_{4}+n_{3}+n_{2}+n_{1}-1, \\
& n_{3}^{(1)}=n_{3}+n_{2}+n_{1}-1, \\
& n_{2}^{(1)}=n_{2}+n_{1}-1=v_{2,2,2,2}^{\prime}+e_{3}^{\prime}+e_{4}^{\prime}+e_{5}^{\prime}+e_{6}^{\prime}+F^{\prime}-9, \\
& n_{1}^{(1)}=n_{1}-1=F^{\prime}-5 .
\end{aligned}
$$

Since C_{1}^{\prime} is obtained from P_{1} by changing one dihedral angle from $\frac{\pi}{k_{1}}$ to $\frac{\pi}{6}, n_{2}^{(1)}$ can be rewritten as

$$
\begin{equation*}
n_{2}^{(1)}=v_{2,2,2,2}+e_{3}+e_{4}+e_{5}+e_{6}+F-8 . \tag{3.11}
\end{equation*}
$$

Equality (3.11) together with $F^{\prime}=F \geq 5$ mean that the coefficients of $Q_{1}(t)$ except its constant term are non-negative under the assumption of Theorem 3.3. Therefore, by Proposition 2.6, the growth rate of P_{1} is a Perron number.

Step 2: We assume that the following identity holds for the growth function $f_{S_{\sigma-1}}(t)$ of $P_{\sigma-1}$ for $\sigma \geq 2$ as inductive hypothesis:

$$
\frac{1}{f_{S_{\sigma-1}}(t)}=\frac{(t-1) Q_{\sigma-1}(t)}{\left[2 ; 2 ; 5 ; 6 ; k_{1} ; \ldots ; k_{\sigma-1}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right)}
$$

where $Q_{\sigma-1}(t)$ is a polynomial of degree $k_{1}+\cdots+k_{\sigma-1}+16-(\sigma-1)$ and the coefficients of $Q_{\sigma-1}(t)$ except its constant term are non-negative. By identity (3.7) we deduce that the following identities hold:

$$
\begin{aligned}
& \frac{1}{f_{S_{\sigma}}(t)} \\
& =\frac{(t-1)}{[2 ; 2 ; 6]}\left\{\frac{Q_{\sigma-1}(t)}{\left[k_{1} ; \ldots ; k_{\sigma-1}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right)}+\frac{\sum_{n=6}^{k_{\sigma}-1} t^{n}}{\left[k_{\sigma}\right]}\right\} \\
& =\frac{(t-1)\left\{\left[k_{\sigma}\right] Q_{\sigma-1}(t)+\left[k_{1} ; \ldots ; k_{\sigma-1}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right) \sum_{n=6}^{k_{\sigma}-1} t^{n}\right\}}{\left[2 ; 2 ; 6 ; k_{1} ; \ldots ; k_{\sigma}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right)} .
\end{aligned}
$$

Let $Q_{\sigma}(t):=\left[k_{\sigma}\right] Q_{\sigma-1}(t)+\left[k_{1} ; \ldots ; k_{\sigma-1}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right) \sum_{n=6}^{k_{\sigma}-1} t^{n}$ and $R(t):=\left[k_{1} ; \ldots ; k_{\sigma-1}\right]\left(1+2 t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}\right) \sum_{n=6}^{k_{\sigma}-1} t^{n}$. Note that the coefficients of $R(t)$ is non-negative. Moreover, the coefficients of i-th terms are positive for $6 \leq$ $i \leq k_{\sigma}-1$:

$$
\begin{align*}
\operatorname{deg}\left[k_{\sigma}\right] Q_{\sigma}(t) & =\left(k_{\sigma}-1\right)+\operatorname{deg} Q_{\sigma-1} \tag{3.12}\\
& =k_{1}+\cdots+k_{\sigma}+16-\sigma, \\
\operatorname{deg} R(t) & =\left(k_{1}-1\right)+\cdots+\left(k_{\sigma-1}-1\right)+10+\left(k_{\sigma}-1\right) \tag{3.13}\\
& =k_{1}+\cdots+k_{\sigma}+10-\sigma .
\end{align*}
$$

Equalities (3.12) and (3.13) imply that the degree of $Q_{\sigma}(t)$ is equal to $k_{1}+\cdots+k_{\sigma}+16-\sigma$. We denote by $n_{i}^{(\sigma-1)}$ the i-th coefficient of the polynomial $Q_{\sigma-1}(t)$, so that $Q_{\sigma-1}(t)$ can be rewritten as $\sum_{i \geq 1} n_{i}^{(\sigma-1)} t^{i}-1$:

$$
\begin{aligned}
Q_{\sigma}(t)= & {\left[k_{\sigma}\right]\left(\sum_{i \geq 1} n_{i}^{(\sigma-1)} t^{i}\right)-\left[k_{\sigma}\right]+R(t) } \\
= & \left(\sum_{i=0}^{6} t^{i}+\sum_{i=7}^{k_{\sigma}-1} t^{i}\right)\left(\sum_{i \geq 1} n_{i}^{(\sigma-1)} t^{i}\right)-\left(1+\sum_{i=1}^{5} t^{i}+\sum_{i=6}^{k_{\sigma}-1} t^{i}\right)+R(t) \\
= & \left(\sum_{i \geq 1} n_{i}^{(\sigma-1)} t^{i}\right)+\left(\sum_{i \geq 2} n_{i-1}^{(\sigma-1)} t^{i}\right)+\left(\sum_{i \geq 3} n_{i-2}^{(\sigma-1)} t^{i}\right)+\left(\sum_{i \geq 4} n_{i-3}^{(\sigma-1)} t^{i}\right) \\
& +\left(\sum_{i \geq 5} n_{i-4}^{(\sigma-1)} t^{i}\right)+\left(\sum_{i \geq 6} n_{i-5}^{(\sigma-1)} t^{i}\right)+\left(\sum_{i \geq 7} n_{i-6}^{(\sigma-1)} t^{i}\right) \\
& +\sum_{j=7}^{k_{\sigma}-1} \sum_{i \geq 1} n_{i}^{(\sigma-1)} t^{i+j}+\left\{R(t)-\sum_{i=6}^{k_{\sigma}-1} t^{i}\right\}-\sum_{i=1}^{5} t^{i}-1,
\end{aligned}
$$

and hence we obtain the following inequality and identities once we represent $Q_{k}(t)$ as $\sum n_{i}^{(\sigma)} t^{i}-1$:

$$
\begin{aligned}
& n_{i}^{(\sigma)} \geq 0(i \geq 6), \\
& n_{5}^{(\sigma)}=n_{5}^{(\sigma-1)}+n_{4}^{(\sigma-1)}+n_{3}^{(\sigma-1)}+n_{2}^{(\sigma-1)}+n_{1}^{(\sigma-1)}-1, \\
& n_{4}^{(\sigma)}=n_{4}^{(\sigma-1)}+n_{3}^{(\sigma-1)}+n_{2}^{(\sigma-1)}+n_{1}^{(\sigma-1)}-1, \\
& n_{3}^{(\sigma)}=n_{3}^{(\sigma-1)}+n_{2}^{(\sigma-1)}+n_{1}^{(\sigma-1)}-1, \\
& n_{2}^{(\sigma)}=n_{2}^{(\sigma-1)}+n_{1}^{(\sigma-1)}-1, \\
& n_{1}^{(\sigma)}=n_{1}^{(\sigma-1)}-1=n_{1}^{(1)}-(\sigma-1) .
\end{aligned}
$$

By the result of Step 1,

$$
n_{1}^{(\sigma)}=n_{1}^{(1)}-(\sigma-1)=F-4-\sigma .
$$

Therefore, the coefficients of $Q_{\sigma}(t)$ except its constant term are non-negative and the constant term of $Q_{\sigma}(t)$ is equal to -1 if P satisfies the inequality $F-4 \geq k$. Therefore, by Proposition 2.6, the growth rate of P_{σ} is a Perron number.

3.3 The Proof of Theorem A

By Theorem 3.3, condition (3.6) is sufficient in order to deduce that the growth rate of P is a Perron number when $F-4 \geq \sigma$. First, suppose that P is a non-compact hyperbolic Coxeter polyhedron with $F \geq 7$. Since P has at least 1 cusp, we get the inequality

$$
v_{2,2,2,2}+e_{3}+e_{4}+e_{5}+e_{6}+F-8 \geq 1+7-8=0
$$

which allows us to conclude. Therefore, it remains to consider non-compact Coxeter polyhedra with $F=5$ or $F=6$ faces and that do not satisfy inequality (3.6) of Theorem 3.3. Figure 3 shows all possible combinatorial structures of acute-angled convex polyhedra with 4,5 or 6 faces [2].

Figure 3

We use Andreev's Theorem (see Section 3.2) in order to describe a non-compact hyperbolic Coxeter polyhedron with 5 or 6 faces that does not satisfy inequality (3.6). By Theorem 3.2 and Andreev's Theorem, it is not difficult to see that a non-compact finite volume hyperbolic Coxeter polyhedron P with 5 or 6 faces and with at least one $\frac{\pi}{k}$-edge for $k \geq 7$ has to be of combinatorial type (ii), (iv), (v), (viii), (ix), (x). If the combinatorial structure of P is (viii), P has 2 cusps of type ($2,2,2,2$), and if the combinatorial structure is (ix) or (x), P has at least one of cusps of type $(2,3,6)$ or $(2,4,4)$ or $(3,3,3)$. Hence, inequality (3.6) holds for polyhedra P of type (viii), (iv), or (x), and by Theorem 3.3, their growth rates are Perron numbers.

Consider finally Coxeter polyhedra P of type (ii), (iv), or (v). First and by means of Theorem 3.2, we determine which edges of P subject to (ii), (iv), or (v) can be of the form $\frac{\pi}{k}$ for $k \geq 7$. In this way, we can deduce that each such polyhedron P results from opening cusps of type (2,2,2,2) as shown in Figure 4.

In Figure 4, labels on edges mean the dihedral angles and $k, k_{1}, k_{2} \geq 7$. If the inequality (3.6) does not hold for the case of (iv) or (v), all of the dihedral angles other than $\frac{\pi}{k_{1}}, \frac{\pi}{k_{2}}$ are $\frac{\pi}{2}$, since $v_{2,2,2,2}=1$.

Figure 4

Proposition 3.6 Suppose that the combinatorial structure of P is (iv) or (v). Then the growth rate of P is a Perron number.

Proof By means of Steinberg's formula (see Theorem 2.5), we can calculate the growth function $f_{S}(t)$ of P as follows:

$$
\begin{aligned}
\frac{1}{f_{S}(t)} & =1-\frac{6 t}{[2]}+\frac{9 t^{2}}{[2 ; 2]}+\frac{t^{k_{1}}}{\left[2 ; m_{1}\right]}+\frac{t^{k_{2}}}{\left[2 ; k_{2}\right]}-\frac{2 t^{3}}{[2 ; 2 ; 2]}-\frac{2 t^{k_{1}+1}}{\left[2 ; 2 ; k_{1}\right]}-\frac{2 t^{k_{2}+1}}{\left[2 ; 2 ; k_{2}\right]} \\
& =\frac{(t-1)\left\{(2 t+1)\left[k_{1} ; k_{2}\right]-(t+1)\left(\left[k_{1}\right]+\left[k_{2}\right]\right)\right\}}{\left[2 ; 2 ; 2 ; k_{1} ; k_{2}\right]}
\end{aligned}
$$

Let $Q(t):=(2 t+1)\left[k_{1} ; k_{2}\right]-(t+1)\left(\left[k_{1}\right]+\left[k_{2}\right]\right)$. We can assume that $k_{1} \geq k_{2}$ without loss in generality.

If $k_{1}=k_{2}, Q(t)$ can be rewritten as,

$$
\begin{aligned}
Q(t) & =\left[k_{1}\right]\left\{(2 t+1)\left[k_{1}\right]-(2 t+2)\right\} \\
& =\left[k_{1}\right]\left(2 \sum_{i=0}^{k_{1}-1} t^{i+1}+\sum_{i=0}^{k_{1}-1} t^{i}-2 t-2\right) \\
& =\left[k_{1}\right]\left(2 t^{k_{1}}+3 t^{k_{1}-1}+3 t^{k_{1}-2}+\cdots+3 t^{2}+t-1\right) .
\end{aligned}
$$

If $k_{1}>k_{2}, Q(t)$ can be rewritten as

$$
\begin{aligned}
Q(t)= & (2 t+1)\left\{\left(t^{k_{1}-1}+\cdots+t^{k_{2}}\right)\left[k_{2}\right]+\left[k_{2}\right]^{2}\right\} \\
& -(t+1)\left\{\left(t^{k_{1}-1}+\cdots+t^{k_{2}}\right)+2\left[k_{2}\right]\right\} \\
= & (2 t+1)\left(t^{k_{1}-1}+\cdots+t^{k_{2}}\right)\left[k_{2}\right]-(t+1)\left(t^{k_{1}-1}+\cdots+t^{k_{2}}\right) \\
& +\left[k_{2}\right]\left\{(2 t+1)\left[k_{2}\right]-(2 t+2)\right\} \\
= & {\left[k_{1}\right]\left(2 t^{k_{2}}+3 t^{k_{2}-1}+\cdots+3 t^{2}+t\right)+t\left(t^{k_{1}-1}+\cdots+t^{k_{2}}\right)-\left[k_{2}\right] . }
\end{aligned}
$$

Figure 5

By the above calculation, the coefficients of $Q(t)$ except its constant term are nonnegative.

Therefore, we can apply Proposition 2.6 to conclude that the growth rate is a Perron number.

It remains to study the growth rates of non-compact Coxeter triangular prisms P (see Figure 4). Since P has at least one vertex at infinity, P has precisely one $\frac{\pi}{k}$-edge for $k \geq 7$. By contraction of this edge to a vertex of type ($2,2,2,2$) (see Theorem 3.2), P deforms into exactly one among the hyperbolic Coxeter pyramid \widehat{P} which have been entirely classified by Tumarkin [17]. In this way, we can deduce a precise configuration for P (see Figure 5) and prove the following result.

Proposition 3.7 Suppose that P is a Coxeter triangular prism and P does not satisfy the inequality (3.6). Then P has the dihedral angles as in Figure 5, and the growth rate of P is a Perron number.

Proof

Case (I): By means of Steinberg's formula, we can calculate the growth function $f_{S}(t)$ of P, and hence the growth function is written as

$$
\frac{1}{f_{S}(t)}=\frac{(t-1)\left(2 t^{k+2}+3 t^{k+1}+4 t^{k}+\cdots+4 t^{4}+3 t^{3}+t^{2}-1\right)}{[2 ; 2 ; 4 ; k]}
$$

Case (II): The growth function is calculated in the same manner:

$$
\frac{1}{f_{S}(t)}=\frac{R(t)}{[2 ; 2 ; 2 ; 3 ; 6 ; k]}
$$

where

$$
\begin{aligned}
R(t)=2 t^{k+8}+5 t^{k+7}+7 t^{k+6} & +7 t^{k+5}+6 t^{k+4}+5 t^{k+3}+3 t^{k+2}+t^{k+1} \\
& -t^{9}-4 t^{8}-7 t^{7}-8 t^{6}-7 t^{5}-6 t^{4}-4 t^{3}-t^{2}+t+1
\end{aligned}
$$

Therefore $f_{S}(t)$ can be rewritten as

$$
\begin{aligned}
& \frac{1}{f_{S}(t)}= \\
& \frac{(t-1)\left(2 t^{k+4}+3 t^{k+3}+4 t^{k+2}+5 t^{k+1}+6 t^{k}+\cdots+6 t^{6}+5 t^{5}+3 t^{4}+2 t^{3}+t^{2}-1\right)}{[2 ; 2 ; 6 ; k]}
\end{aligned}
$$

Hence, we can apply Proposition 2.6 to conclude that the growth rate is a Perron number.

Proof of Theorem A Let P be a non-compact hyperbolic Coxeter polyhedron having at least one dihedral angle of the form $\frac{\pi}{k}$ for some integer $k \geq 7$ and let σ be the number of $\frac{\pi}{k}$-edges of P with $k \geq 7$. By Theorem 3.1, P satisfies the inequality $\sigma \leq F-3$. If the equality $\sigma=F-3$ holds for P, by combining with the observation in Section 3.1, the growth rate of P is a Perron number. If the inequality $\sigma \leq F-4$ holds for P, there are two cases that can be considered. First, the case where P satisfies inequality (3.6). In this case, by Theorem 3.3, the growth rate of P is a Perron number. Second, the case where P does not satisfy the inequality (3.6). In this case, P has to be of combinatorial type (ii), (iv), or (v) (see Figure 3). By Proposition 3.6 (resp. Proposition 3.7), if the combinatorial structure of P is (iv) or (v) (resp. (ii)), the growth rate of P is a Perron number.

Acknowledgment The author thanks Professor Yohei Komori for helpful comments when calculating the growth functions of non-compact Coxeter polyhedra with some dihedral angles $\frac{\pi}{k}$ for $k \geq 7$, and the referee for looking through this paper in detail and suggesting better terms and phrasing to make this paper more readable.

References

[1] E. M. Andreev, Convex polyhedra of finite volume in Lobachevskij space. Mat. Sb., Nov. Ser. 83(1970), 256-260; English translation in Math. USSR Sb. 12(1971), $255-259$.
[2] P. J. Federico, Polyhedra with 4 to 8 faces. Geometriae Dedicata 3(1975), 469-481. http://dx.doi.org/10.1007/BF00181378
[3] P. de la Harpe, Groupes de Coxeter infinis non affines. Exposition. Math. 5(1987), 91-96.
[4] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990. http://dx.doi.org/10.1017/CBO9780511623646
[5] R. Kellerhals, Cofinite hyperbolic Coxeter groups, minimal growth rate and Pisot numbers. Algebr. Geom. Topol. 13(2013), 1001-1025. http://dx.doi.org/10.2140/agt.2013.13.1001
[6] R. Kellerhals and A. Kolpakov, The minimal growth rate of cocompact Coxeter groups in hyperbolic 3-space. Canad. J. Math. 66(2014), 354-372. http://dx.doi.org/10.4153/CJM-2012-062-3
[7] R. Kellerhals and G. Perren, On the growth of cocompact hyperbolic Coxeter groups. European J. Combin. 32(2011), no. 8, 1299-1316. http://dx.doi.org/10.1016/j.ejc.2011.03.020
[8] A. Kolpakov, Deformation of finite-volume hyperbolic Coxeter polyhedra, limiting growth rates and Pisot numbers. European J. Combin. 33(2012), 1709-1724. http://dx.doi.org/10.1016/j.ejc.2012.04.003
[9] Y. Komori and Y. Umemoto, On the growth of hyperbolic 3-dimensional generalized simplex reflection groups. Proc. Japan Acad. Ser. A Math. Sci. 88(2012), no. 4, 62-65. http://dx.doi.org/10.3792/pjaa.88.62
[10] \qquad On 3-dimensional hyperbolic Coxeter pyramids. arxiv:1503.00583
[11] Y. Komori and T. Yukita, On the growth rate of ideal Coxeter groups in hyperbolic 3-space, Proc. Japan Acad. Ser. A Math. Sci. Volume 91, Number 10 (2015), 155-159. http://dx.doi.org/10.3792/pjaa.91.155
[12] J. Nonaka and R. Kellerhals, The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space. Tokyo J. Math., to appear.
[13] W. Parry, Growth series of Coxeter groups and Salem numbers. J. Algebra 154(1993), 406-415. http://dx.doi.org/10.1006/jabr.1993.1022
[14] R. K. W. Roeder, J. H. Hubbard, and W. D. Dunbar, Andreev's theorem on hyperbolic polyhedra. Ann. Inst. Fourier (Grenoble) 57(2007), 825-882. http://dx.doi.org/10.5802/aif.2279
[15] L. Solomon, The orders of the finite Chevalley groups. J. Algebra 3(1966), 376-393. http://dx.doi.org/10.1016/0021-8693(66)90007-X
[16] R. Steinberg, Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, 80, American Mathematical Society, Providence, RI, 1968.
[17] P. V. Tumarkin, Hyperbolic Coxeter n-polytopes with $n+2$ facets. (Russian) Mat. Zametki 75(2004), no.6, 909-916; translation in: Math. Notes 75(2004), no. 5-6, 848-854 http://dx.doi.org/10.1023/B:MATN.0000030993.74338.dd
[18] T. Yukita, On the growth rates of cofinite 3-dimensional hyperbolic Coxeter groups whose dihedral angles are of the form $\frac{\pi}{m}$ for $m=2,3,4,5,6$. RIMS Kôkyûroku Bessatsu, to appear. arxiv:1603.04592

Department of Mathematics, School of Education, Waseda University, Nishi-Waseda 1-6-1, Shinjuku, Tokyo 169-8050, Japan
e-mail: yshigetomo@suou.waseda.jp

[^0]: Received by the editors January 18, 2017; revised July 21, 2017.
 Published electronically December 5, 2017.
 AMS subject classification: 20F55, 20 F 65.
 Keywords: Coxeter group, growth function, growth rate, Perron number.

