VARIETIES AND D.G. NEAR-RINGS

by J. D. P. MELDRUM (Received 5th June 1970)

In this note we show that the variety of near-rings generated by d.g. nearrings is the class of all near-rings R satisfying

$$0x = x0 = 0 \text{ for all } x \in R.$$
(1)

This extends a result of J. J. Malone (3) on the embedding of near-rings.

A near-ring R is a set with two binary operations, addition and multiplication such that R is a group with respect to addition, a semi-group with respect to multiplication and x(y+z) = xy+xz for all x, y, $z \in R$. If $x \in R$ satisfies (y+z)x = yx+zx for all y, $z \in R$, we say that x is distributive. A distributively generated (d.g.) near-ring is one which is generated as an additive group by its distributive elements.

A variety of near-rings is the class of all near-rings satisfying a given set of laws. Let X be a class of near-rings. Then let vX be the smallest variety containing X, sX the class of all sub near-rings of X near-rings, QX the class of all homomorphic images of X near-rings and RX the class of all residually Xnear-rings. For further explanation of these ideas see P. M. Cohn (1).

Let G be a group written additively (G is not necessarily abelian). Then we can define T(G), the near-ring of all mappings from G to G where addition in T(G) is given by g(x+y) = gx+gy, $g \in G$, $x, y \in T(G)$, and multiplication in T(G) is the usual product of maps. T(G) contains the following sub near-rings, each containing the next:

 $T_0(G)$, the set of all mappings preserving the identity of G;

E(G) the d.g. near-ring generated by all the endomorphisms of G;

I(G) the d.g. near-ring generated by all the inner automorphisms of G.

Denote by O the variety of near-rings satisfying (1) and let

$$T = \{R; R \cong T_0(G) \text{ for some group } G\},\$$
$$I = \{R; R \cong I(G) \text{ for some group } G\},\$$
$$F = \{R; |R| < \aleph_0\}.$$

We will show that O = vI, by showing that $O \leq sQRI$, from which we can deduce that O = sQRI = vI, using results from P. M. Cohn (1). In (3) J. J. Malone proved that $O \cap F = s(I \cap F)$.

Lemma 1. O = sT.

J. D. P. MELDRUM

Proof. $sT \leq O$ is immediate. $O \leq sT$ follows immediately from Theorem 1 of J. J. Malone and H. E. Heatherly (4), which states that if $R \in O$, then R can be embedded in $T_0(G)$ for any group G such that G contains properly the additive group of R.

By using this result, we can restrict our attention to $T_0(G)$ where G belongs to a class of groups such that any group can be embedded in a group of this class. By Theorem 11.5.4 of W. R. Scott (5), such a class is that of the simple (non-abelian) groups. So let G be a simple non-abelian group. Let $\{\delta_{\lambda}; \lambda \in \Lambda\}$ be the set of all finite subsets of G, $R = T_0(G)$, S = I(G). Then A. Fröhlich (2) has established

Lemma 2. Let $r \in R$ and let δ_{λ} be a finite subset of G. Then there is an element $s_{\lambda} \in S$ such that $gr = gs_{\lambda}$ for all $g \in \delta_{\lambda}$.

This is essentially result 5.2 of (2). If G is finite, this shows that R = S. For every $\lambda \in \Lambda$, let $S_{\lambda} \cong S$. Denote by T the direct product $\prod S_{\lambda}$.

Then we will show that R is isomorphic to the homomorphic image of a sub near-ring U of T, whose projection into each factor is onto. U is then a subdirect product of the S_{λ} and hence lies in RI since $S_{\lambda} \in I$ (see P. Cohn (1) for a proof that $R \in \mathbb{R}X$ if and only if R is a subdirect product of X near-rings).

We define a partial ordering on Λ by $\lambda \leq \mu$ if and only if $\delta_{\lambda} \leq \delta_{\mu}$. Then given λ_1, λ_2 , there is a μ satisfying $\mu \geq \lambda_i$, i = 1, 2. Just take $\delta_{\mu} = \delta_{\lambda_1} \cup \delta_{\lambda_2}$. Let $t \in T$. Call t eventually constant if given $g \in G$, $\lambda \in \Lambda$, there is a $\mu \geq \lambda$ such that for all $\eta \geq \mu$, $gt(\eta) = h$ is independent of η . We are here considering $t(\eta)$ as lying in S for all η . Let $U = \{t; t \in T \text{ and } t \text{ is eventually constant}\}$.

Lemma 3. U is a subdirect product of the S_{λ} , $\lambda \in \Lambda$. That is, $U \in \mathbb{R}I$.

Proof. We only need to show that U is a sub near-ring, since the constant elements $t \in T$ satisfying $t(\lambda) = t(\mu)$ for all λ , μ in Λ lie in U and so the projection of U into each factor will be onto. Let $u, v \in U$, and let $g \in G$, $\lambda \in \Lambda$ be given. Then we have $\mu_1 \geq \lambda$, $\mu_2 \geq \lambda$ such that if $\eta \geq \mu_1$, $gu(\eta) = h$, h independent of η , if $\eta \geq \mu_2$, $gv(\eta) = k$, k independent of η . Let $\mu \geq \mu_i$, i = 1, 2. Then for $\eta \geq \mu$, $gu(\eta) = h$, $gv(\eta) = k$ and so $g(u+v)(\eta) = h+k$. Hence $u+v \in U$. Also we have $\mu_3 \geq \lambda$ such that if $\eta \geq \mu_3$, $hv(\eta) = l$, l independent of η . Let $\mu' \geq \mu_i$, i = 1, 3. Then for $\eta \geq \mu'$, $g(uv)(\eta) = (gu(\eta))v(\eta) = hv(\eta) = l$, l independent of η . Hence $uv \in U$. Finally it is obvious that $u \in U$ gives $-u \in U$ and that the additive and multiplicative identities are in U.

We are interested in what happens "eventually". So we define an equivalence relationship on the elements of U as follows. Let $u, v \in U$. Then $u \sim v$ if given $g \in G$, $\lambda \in \Lambda$, there is a $\mu \geq \lambda$ such that for all $\eta \geq \mu$, $gu(\eta) = gv(\eta)$. The fact that \sim is symmetric and reflexive is immediate. If $u \sim v, v \sim w$, then given $g \in G$, $\lambda \in \Lambda$, there is a $\mu_1 \geq \lambda$ such that for all $\eta \geq \mu_1$, $gu(\eta) = gv(\eta)$, and a $\mu_2 \geq \lambda$ such that for all $\eta \geq \mu_2$, $gv(\eta) = gw(\eta)$. So if $\mu \geq \mu_i$, i = 1, 2, then for all $\eta \geq \mu$, $gu(\eta) = gv(\eta) = gw(\eta)$. Hence $u \sim w$. We have

272

Lemma 4. \sim is an equivalence relationship on U. We next show that \sim is compatible with multiplication and addition in U.

Lemma 5. Let 0 be the additive identity in U, and let

$$N = \{u; u \in U, u \sim 0\}.$$

Then N is an ideal in U and \sim is compatible with multiplication and addition in U.

Proof. Let $v, w \in U$, $u \in N$. Let $g \in G$, $\lambda \in \Lambda$. Then as in the proof of Lemma 3, there is a $\mu \ge \lambda$ such that $gw(\eta)$, $gv(\eta)$ and $gu(\eta)$ are constant and $gu(\eta) = 0$ for all $\eta \ge \mu$. So $g(-v+u+v)(\eta) = -gv(\eta)+gu(\eta)+gv(\eta) = 0$, i.e. $-v+u+v \in N$. We now need to show that $uw \sim 0$ and $(w+u)v-wv \sim 0$. If $\eta \ge \mu$, then $guw(\eta) = gu(\eta)w(\eta) = 0w(\eta) = 0$. So $uw \sim 0$. If $gw(\eta) = k$ for $\eta \ge \mu$, there is a $\mu_1 \ge \lambda$ such that $kv(\eta)$ is constant for $\eta \ge \mu_1$. Then if $\mu_2 \ge \mu_1$, $\mu_2 \ge \mu$, we have

$$g(w+u)v(\eta) = (gw(\eta)+gu(\eta))v(\eta) = kv(\eta) = gwv(\eta) \text{ as } gu(\eta) = 0,$$

for $\eta \ge \mu_2$. So $(w+u)v - wv \sim 0$ and N is an ideal in U. Finally if $u \sim v$, then by the definition of \sim it is immediate that $u-v \sim 0$. Hence \sim is compatible with multiplication and addition in U.

We can now prove our result.

Theorem 6. O = SQRI.

Proof. Let $\theta: R \to U/N$, which is a near-ring by Lemma 5, be given by $r\theta = u + N$ where $u(\lambda)$ is given by $gr = gu(\lambda)$ for all $g \in \delta_{\lambda}$. This is possible by Lemma 2. Given $g \in G$, $\lambda \in \Lambda$, let μ be such that $g \in \delta_{\mu}$ and $\mu \ge \lambda$, e.g. $\delta_{\mu} = \delta_{\lambda} \cup \{g\}$. Then if $\eta \ge \mu$, $gu(\eta) = gr$ is constant. So $u \in U$. But $u(\eta)$ is not uniquely defined. Suppose that $u'(\eta)$ also satisfies $gr = gu'(\eta)$ if $g \in \delta_{\eta}$. Then $g(u-u')(\eta) = 0$ if $g \in \delta_{\eta}$ and hence for all $\eta \ge \mu$ as defined above So u+N = u'+N and $r\theta$ is uniquely defined.

Let $r, s \in R$, $r\theta = u + N$, $s\theta = v + N$. Given $g \in G$, $\lambda \in \Lambda$, let $\delta_{\mu} = \delta_{\lambda} \cup \{g\}$. Then $gu(\eta) = gr$ and $gv(\eta) = gs$ for all $\eta \ge \mu$. So

$$g(u+v)(\eta) = gu(\eta) + gv(\eta) = gr + gs = g(r+s).$$

Hence if $(r+s)\theta = w$, then w+N = u+v+N.

Now let $g \in G$, gr = h, $\lambda \in \Lambda$. Define μ by $\delta_{\mu} = \delta_{\lambda} \cup \{g, h\}$. Then

 $gu(\eta) = gr, gv(\eta) = gs$ and $g(uv)(\eta) = (gu(\eta))v(\eta) = hv(\eta) = hs = grs$

for all $\eta \ge \mu$. So if $(rs)\theta = w$, then w+N = uv+N. This shows that θ is a homomorphism.

Suppose that $r\theta = N + u$ and $u \in N$. Then given $g \in G$, $\lambda \in \Lambda$, let μ_1 be defined by $\delta_{\mu_1} = \delta_{\lambda} \cup \{g\}$. We have $gu(\eta) = gr$ for all $\eta \ge \mu_1$. But $u \sim 0$. So given $g \in G$, $\mu_2 \in \Lambda$, there is a $\mu_2 \ge \mu_1$ such that $gu(\eta) = 0$ for all $\eta \ge \mu_2$. E.M.S.—S But $\eta \ge \mu_2$ gives us $gr = gu(\eta) = 0$. This is true for all $g \in G$. So r = 0, and θ is an isomorphism.

Finally if $u \in U$, given $g \in G$, $\lambda \in \Lambda$, there is a $\mu \ge \lambda$ such that $gu(\eta) = h$ is constant for $\eta \ge \mu$. In particular if μ_1 is defined by $\delta_{\mu_1} = \delta_{\mu} \cup \{g\}$, we have $gu(\eta) = h$ for $\eta \ge \mu_1$. Define $r \in R$ by gr = h, and let $v + N = r\theta$. Then for $\eta \ge \mu_1$, $gv(\eta) = gr = h = gu(\eta)$. So v + N = u + N. Hence θ is onto and $R \cong U/N$.

By Lemma 3, $U \in \mathbb{R}I$ and so $U/N \in \mathbb{QR}I$. Hence $R \in \mathbb{QR}I$ and by the remarks made after Lemma 1, $T \leq \mathbb{QR}I$. By the remarks made just before Lemma 1 and Lemma 1 itself, O = SQRI, thus finishing the proof of the theorem.

This extends J. J. Malone's result (3) that $O \cap F = s(I \cap F)$ in the sense that we remove the F, but have to replace I by QRI. It would be interesting to know if we can get rid of QR or replace it by something simpler.

I am grateful to Professor J. J. Malone for letting me have a copy of his paper (3) before publication.

REFERENCES

(1) P. M. COHN, Universal Algebra (Harper and Row, 1965).

(2) A. FRÖHLICH, The near-ring generated by the inner automorphisms of a finite simple group, J. London Math. Soc. 33 (1958), 95-107.

(3) J. J. MALONE, A near-ring analogue of a ring embedding theorem, J. Algebra 16 (1970), 237-238.

(4) J. J. MALONE and H. E. HEATHERLY, On some near-ring embeddings, Quart. J. Math. Oxford Ser. (2), 20 (1969), 81-85.

(5) W. R. SCOTT, Group Theory (Prentice Hall, 1964).

MATHEMATICAL INSTITUTE CHAMBERS STREET EDINBURGH 1