
J. Functional Programming 3 (1): 117-122, January 1993 © 1993 Cambridge University Press 117

FUNCTIONAL PEARLS

The last tail

R. S. BIRD
Programming Research Group, Oxford University, 11 Keble Rd, Oxford OX1 3QD

1 Introduction

Suppose the tail segments of a given list are sorted into dictionary order. What
segment comes last? For example, the last tail of 'testing' is 'ting' and the last tail of
'redared' is 'redared' itself since 'red' precedes 'redared' in dictionary order.

The function It for returning the last tail is specified by

It = U/ • tails, (1)

where tails returns the set of tail segments of a list and u/ distributes u over a set.
The binary operator u returns the larger of its arguments under the lexical ordering
C (denned later). Given a suitable implementation of C, equation (1) can be used to
compute It but the result is a quadratic time algorithm even with lazy evaluation.
Our purpose is to derive a linear time functional algorithm. Given such a simply
stated problem, this turns out to be surprisingly difficult.

2 First steps

Our strategy is to head for an inductive characterisation of It. Since tails [] = {[]},
we get It [] = []. For the general case we can try to express either It ([a] -H- x) or
It (x -H- [a]) in terms of a and It x. But since, for example, the largest tail of 'zebra'
(namely, 'zebra' itself) cannot be expressed in terms of 'z' and the largest tail of
'ebra' (namely, 'ra'), it is apparent that the first method cannot work. So we will
look for an © such that

lt(x-H-[a]) = ltx@a. (2)

To this end, let It x = y and It (x -H- [a]) = z -H- [a]. For (2) to be satisfied we need
z e tails y. We reason

ltx = y A It (x -H- [a]) = z -H- [a]

=> {(1), since y and z are both tails of x}

z Qy A y-H-[a] C z -ff [a].

To proceed we need the definition of the lexical ordering C:

z C. y = z e inits y V z < y

z<y = (3fc : 0 ^ f c < m i n { # z , # y } :z\k = y\kf\z\k< ylk).

https://doi.org/10.1017/S0956796800000630 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000630

118 R.S. Bird

Here, x t k is the initial segment of x of length k and x\k is the element of x at
position k (counting from 0). The function inits returns the set of initial segments of
a list. The following two properties of C are easily proved from the definition and
we omit details:

z € inits y A zfy => (a ^ hd (y — z) = z -H- [a] C y -H- [a]) (3)

z g inits y A z l z y =*• z -H- [a] C .y -H- [a]. (4)

Here, _y —- z (pronounced y 'drop' z) is what remains when initial segment z of y is
removed from y, and hd x returns the first element of the nonempty sequence x. In
(4) the strict lexical order c is defined b y z l Z y = z r Z y A z ^ y. The conclusion
of (4) can be strengthened to read: z -H- u C y -H- v for all u and v.

Now we can continue:

z Q y A y -H- [a] C z -H- [a]

=> {contrapositive of (4)}

z Q y A (y E z V z £ inits y)

=> {since z C y A y C z = > z = j > }

z G inits y

=> {since one of y and z is a tail of the other}

z € tai/s y.

Hence we get the desired result. In fact we have that z € {y} U rims y, where we
define

rims y = (inits y D tai/s y) — {y}.

To determine ©, suppose It x = y ^ [] and let rims y = [zo,zi,...,zn] be arranged
in order of decreasing length. We have rimsz, = [z,+i , . . . ,zn] for 0 < i < n. In
particular, if we define rim w to be the longest element of rims w, then z,-+i = rim z,-
for 0 5? i < n.

We now claim that if y = /t x, then

0 ^ i < j ^ n => W 0> - - z,) ^ Aid (y -r Zj). (5)

To prove (5), observe that both z, and zj are initial segments of y,so y = z, 4f [a] -H-«
and y = zj -[]- [b] -H-1) for some u and u, where a = hd (y —? zt) and b = hd (y —r zj).
Since Zi and z7 are also both tails of y, and zj is shorter than z,, we have that
Zj is a tail of z,. Hence zy -H- [a] -H- u is a tail of y. But since y is a largest tail,
Zj-W-[a]-W-u\zy = Zj -H- [b] -H-1>, and so a < b by definition of C.

We can exploit (5) in conjunction with (3) to get, in the case y =£ [],

a ^ hd (y —r rim y) A z € rims y => z -H- [a] E y 4f [a],

Hence we have

([a], i f y = []
/t (x 4f [a]) = ^ y 4f [a], if a ^ hd (y - - rim y)

[/t (rim >> -H- [a]), if a > /id (y —> rim y)

https://doi.org/10.1017/S0956796800000630 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000630

Functional Pearls: The last tail 119

Thus we can define an 0 satisfying (2) by taking [] © a = [a] and for y ^ []

fy-H-[a], \fa^hd(y-rz)
y®a = < It (z -H- [a]), otherwise (6)

^ where z = rimy

There is an important optimisation we can make in the case a > hd (y —* z) of (6).
Suppose y = z -H- w (so w is a tail of y and y —>• z = w). We claim that

w ^ # z => It (z -H- [a]) = It (tail w -H- [a]),

where tai/ ([£>] -H- w) = w. For the proof, note that #w ^ #z implies w e tails z since
both z and w are tails of y. By assumption lid w < a, so u -H- w -If [a] C u -H- [a] for
any u and, in particular, for any u such that u 4f w € tai/s z. Hence /t (z -H- [a]) is no
longer than tail w -ft-[a].

It follows that we can replace (6) by

(y -H- [a], if a sS hd (y — z)
y © a = < /t (u -H- [a]), otherwise (7)

^ where z = rim y and u = z n# tai/ (y —- z)

where n # returns the shorter of its two arguments.

3 An iterative algorithm

In order to time the program for It it is convenient to turn it into an iterative
algorithm. Define hi for x ^ [] by

It (x -+M) = hi (It x, t).

In particular, It ([a] -H-1) = Iti ([a],t). With It x = y we have

hi (y, [a] -H-1)

= {specification of hi}

It (x -tf [a] -H-1)

= {specification of hi}

= {given y = It x and specification of ©}

hi (y<Ba, t).

We now install the program (7) for ©. The interesting case is when a > hd (y —* z),
where z = rim y, when we get

hi (y®a,t)

= {case assumption}

/ti(/t(«-H-[fl]),t)

= {specification of hi}

It (u -H- [a] -H-1).

https://doi.org/10.1017/S0956796800000630 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000630

120 R.S. Bird

Hence we obtain the following program for It:

lti(y,tt) = y

{ l
It (u -H- [a] -H-1), otherwise
where z = rim y and u = z n# tail (y —>• z)

Ignoring the cost of computing 4f, ->-, rim and n # we can now show that this
program for computing It ([a] -H-1) is linear in #t. We claim that there are at most
2#t + 1 calls to hi during the computation. To prove the claim we show that the
value #>> + 2#t decreases by at least one at each call of hi. The only non-trivial
case is the last one. Suppose firstly that u = z so #z ̂ (#y — #z — 1). Then since
It (u -H- [a] -H- 0 rewrites to hi ([b], v), where u -H- [a] -tf t = [b] -H- v, we have

1 + 2(#(ti -H- [a] -H-1) - 1) = 1 + 2 # z + 2 # f < #y + 2 #(W * t).

On the other hand, if u = taif (j; —>• z), so #_y — #z — 1 ̂ #z, we have

1 + 2(#(u -H- [a] -H-1) - 1) = 1 + 2(#y - #z) + 2ft <#y + 2#([a] 4f t).

4 Computing rim

The function rims can also be computed inductively. We have rims [a] = {[]} and
f o r y ± []

rims (y-H-[a]) = { z - H - [a] \ z e r i m s y A h d (y - ? z) = a}L) {[]}.

The proof of this claim is straightforward and we omit details. Hence we obtain
rim [a] = [] and for y =fc []

{ z -H- [a], ifhd(y^z) = a

rim (z -H- [a]), otherwise
where z = rim y

Since rim y is needed only for y satisfying y = It y, we can appeal to (5) to optimise
the computation, obtaining

{ [], if a <hd(y^z)

z -H- [a], ita = hd{y-^ z)
rim(z«-[a]), if a >hd(y^z)
where z = rim y.

5 Combining computations
The computations of It and rim have turned out to be very similar, and the next
step is to combine them into one. We also take the opportunity to eliminate the
expensive operation hd (y —? z). For x ̂ [] define

lex = (It x,rim (It x),It x —r rim (It x)).

https://doi.org/10.1017/S0956796800000630 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000630

Functional Pearls: The last tail 121

In particular, le[a] = ([a], [], [a]). We omit details of the routine derivation that
establishes for x =fc []

te(x-H-[a]) = lex® a, (8)

where

(G'-H-M.n.J'-H-M). i fa<b
-H-[a],z-H-[a],w-H-[a]), ifa = b

/e((zn#w)-H-[a]), i f a > b
The value /£ x can be recovered as the first component of le x. In the same way as
we did for It we can rewrite the program for le as an iterative algorithm. Define Iti
for x ± [] by

It (x-M-t) = hi (le x, t)

It is routine to obtain the following program for It:

lt[] = []
/t(M-H-t) = lti([a],[],[a],t)

lti(y,z,w,[]) = y
(itHy-H- [a],[],y-ti- [a],t), if a < b

hi(y, z, [b] -H- w, [a] -H-1) = < Iti (y -H- [a], z 4f [a], w -H- [a], t), if a = fe

[/£((zn#w)-H-[a]4t-£), i f a > b

This program is linear for the same reason as before.

6 Final optimisations

The remaining tasks are to eliminate the operations 41- and n# since we cannot
suppose -H- takes constant time in a standard functional language. We can compute
n# in constant time by adding the lengths of the various arguments as additional
parameters (giving a total of no fewer than eight arguments!). To eliminate -H- define
Itj by the equation

lti(y,z,w,t) = ltj(y-Vrt,z-Vrt,w-W-t,t).

Using the program for hi we obtain

h[] = U

It ([a] -H-1) = Itj ([a] -H-1, t, [a] -H-1, t)

ltj(y,z,w,[]) = y

{ ltj(y,t,y,t), ifa<b
ltj(y,z,w,t), if a = b
lt{zn#w), ifa>b

Comments and acknowledgements

My derivation of the last tail problem has been under revision for a year or more.
One earlier version created a cyclic structure to achieve the required efficiency.

https://doi.org/10.1017/S0956796800000630 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000630

122 R.S. Bird

Comments and criticisms on earlier versions by Wim Feijen (who has derived
a similar algorithm for the problem of finding the lexically least rotation of a
sequence), Rob Hoogerwoord and Berry Schoenmakers have proved invaluable.
My only regret is that the final program has such an imperative flavour. A good
challenge is to find a decent functional program for the problem.

https://doi.org/10.1017/S0956796800000630 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000630

