ON THE REPRESENTATION OF MAPPINGS OF
COMPACT METRIZABLE SPACES AS RESTRICTIONS
OF LINEAR TRANSFORMATIONS

MICHAEL EDELSTEIN

1. Introduction. Let f: X — X be a continuous mapping of the compact
metrizable space X into itself with N7 f*[X] a singleton. In [3] Janos proved
that for any A, 0 < X\ < 1, a metric p compatible with the topology of X
exists such that p(f(x), f(¥)) = Mo(x,y) for all x,y € X. More recently,
Janos [4] has shown that if, in addition, f is one-to-one, then a Hilbert space H
and a homeomorphism u: X — H exist such that ufu=! is the restriction to
w[X] of the transformation sending y € H into A\y. Our aim in this note is to
show that in both cases a homeomorphism % of X into /. exists such that
hfh~1 is the restriction of a linear transformation. (Apart from replacing, in
the second case, an ad hoc constructed space H in [4] by s, our method of
proof seems to be considerably simpler and shorter.)

Related results for the case when N7 f*[X] is a finite set are also treated.

2. The case where N7 f"[X]is a singleton.
THEOREM 1. Let f be a continuous mapping of the compact metrizable space X
into dtself with N7 f*[X] a singleton and P: l; — l; the (linear) transformation

defined by P(y) = (o, Y4y« -« sVouy--.) Jor ¥y = (Y1, ¥2 .oy Yny...) € L
Given N\, 0 < X\ < 1, there is a homeomorphism h of X into ly such that hfh=" is
the restriction of NP to h[X].

Proof. If X is a singleton, the result is obvious. Assuming then that
0 = X ~ N7 fX], let Z be a countable base for the topology of this subset
such that & = Ut #,, where &, is a base for X ~ f*[X]. It is easily seen
that an enumeration {(U,, V,):n =1,2,...} of all members of & X &
with V, C U, exists such that U, € &,. Thusforz = 1,2, ..., a continuous
mapping ¢an,—1: X — [0, \?"] exists with

§02n_1[X ~ Un] =0 and §02n—1[17n] = A\,
Recursively, define gom(s,—1y: X — [0, A2*™] by setting

1
©2m(2p—1) (x) = X Qo2m—1(2p—1) (f(x))

Hence a family {¢x: 2 = 1, 2, ...} of functions is obtained satisfying
e (f(x)) = Moz (x) x€X;k=1,2,...).
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Since U, C X ~ f*[X] implies ¢as,—1[f*[X]] = 0, it follows that gsm(g—1 = 0
whenever m = n. Thus,

; (<pk(x))2 - ZO i (‘P27n(2n_1)(x))2 = i ()\—2"" ni::m >‘4n> < o,

n=m m=0

and v = (e1(x), @2(x), ..., ¢u(x),...) € I, for all x € X. We now define %
by setting A(x) = y. It is a straightforward matter to verify that % is con-
tinuous and one-to-one, and hence by compactness of X, a homeomorphism
onto k[X]. Finally, if y = h(x), we have

(hfh=1 () = (R(f()))r = ex(f(x)) = Aoz (x)
= Nh(x))e = Ny = NP H)),
completing the proof of the theorem.
CoROLLARY. Since
h(f(x")) — h(f(x"”")) = AP (h(x")) — NP (h(x")) = NP (h(x') — h(x""))
and ||P|| = 1, we have
(IB(f(")) = R(f&")I] = Mlh(") — R(x")]].

Setting, then, p(x’, x”") = ||h(x’) — k(x"')||, we obtain a metric p on X
satisfying the conclusion of the main theorem of [3].

THEOREM 2. Let X, f, and \ be as in Theorem 1 and let, in addition, f be
one-to-one; then a homeomorphism h of X into Iy exists such that hfh=' is the
restriction of g: ls — I defined by g(y) = Ny for all y € I,.

Proof. We may clearly assume that @ = X ~ f[X]. Let then & be a count-
able base for this set and {(U,, V,):# = 1,2,...} the collection of all
members of & X % such that V, C U,. Let ¢s,—1: X — [0, 1] be continuous
and such that

o1 X ~ U,] =0 and ¢2n—1[Vn] =1 (n=12...).
Further, let,
P fIX]U V, — [0, 1]

be identically 1 on V, and coincide with ¢,_1f~! on f[X]. Then the Tietze
extension theorem applies to the effect that a continuous mapping

©®2(2n—1)+ X — [0! 1]
exists which extends @3,—1. Thus
P21 (f (%)) = @an1(x) m=1,2...;06 € X)

and
e[ Vo] = 1 (n=12...).
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Proceeding by induction we obtain a family
{or@n-n:m =0,1,...;n=1,2,...}

of mappings with the following properties:

1) e (fx)) = pem1p(x)  (mym=1,2,...;x € X),
(2) eam—1(f(x)) =0 n=12...;2 € X),
3) o[ Va] = 1 m=0,1,...;n=1,2,...).

Next, we define ¥,: X — [0, (1 — \)~!] by setting

4) Yalx) = mi—_:o >\m¢2m(2n—1) (x).
Thus, by (1) and (2),

) () = 2 Nomann (@) = A 2 Nemann®) = Wal).

To define 7 we set

o (WO b w Y

n

Clearly, k(x) € I, for all x € X and %#: X — [, is continuous. To conclude the
proof, it suffices to show that % is one-to-one. Let then » and v be distinct
points of X. We may clearly assume that {u, v} C X ~ N f*[X] so that non-
negative integers m, n exist with {f~™(u), f @)} C X ~ fIX]. If f™(u) =
f"(), then » and v are (distinct) iterates of the same point and, from (5),
h(v) = Neh(u) 5% h(u). Suppose that this is not the case and m =< n. Then
there is a positive integer j such that f="(u) € V; and f™(v) € X ~ U,.
It follows from (5) that
Y(u) = 1>\_)\ = lé—)\ > ;).

Remark. The construction of % in the above proof is a refinement of a similar
procedure used in [1; 2].

3. The case where N7 f*[X] is a finite set.

THEOREM 3. Let f: X — X be a continuous mapping of the compact metrizable
space X into itself with Nf*[X] = {&1, &2, ..., &} and let N and P be as in
Theorem 1. Let p denote the permutation of (1,2, ..., k) with the property that
p (@) = jif and only if f(£;) = &, Then a homeomorphism h of X into E* X I,
where E* is the Euclidean k-dimensional space, exists such that hfh=1 is the
restriction to h[X] of the transformation which assigns to ((x1, X2, ..., %), ¥)
the element ((Xp1)s Xpe2)y - - + » Koy )y AP (D).
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Proof. We first show that a cover of X, consisting of k disjoint closed and
open sets {X1, Xo, ..., X}, exists such that f(¢;) = &; implies f[X,;] C X ;.
This being the case with X = Xy, for k = 1, assume the truth of the statement
for k. =1—1 and let NT[X] = {&, &, ..., &}. If two non-empty closed
and open disjoint sets ¥; and YV, exist such that X = ¥, U V, and
fIlY.JC Y, < =1,2, then both NTf*[V:] and NTf*[Y:] are of cardinality
smaller than / and the statement easily follows from the inductive assumption.
Otherwise, let X ; be the set of all x € X with the property that

{ffix):n=1,2,...}

converges to £;; it is readily seen that {Xy, X,, ..., X} is a cover of X, as
desired. We now define «;: X — [0, 1] by setting «,[X ;] = 1 and x;[X ~ X;]=0.
Clearly then, «; are continuous and «;(f(x)) = x;(x) whenever f(¢;) = &;.
Define now % by setting

]’L(.’X?) = ((Kl(x)’ K2(x)y sty Kk(x))y ((pl(QC), L] (pn(OC), . ))v

where the ¢,: X — [0, 1] are defined with respect to members of a base for
X ~ N7 f*X], as in the proof of Theorem 1. It is a straightforward matter
to verify that % is as desired.

The proof of the following theorem in which the «;s together with the ¢ s
of the proof of Theorem 2 are combined to yield the desired mapping should
now be obvious and is therefore omitted.

THEOREM 4. Let f, X, \, and p be as in Theorem 3 and suppose, in addition,
that f is one-to-one. Then a homeomorphism h of X into E¥ X [, exists such that
hfh—1 is the restriction to h[X] of the tramsformation which assigns to
(1, X2y« « vy Xx), ) the element ((Xpy, Xp@)y -« + » Xp))s AY)-
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