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Abstract

We present a new static system which reconstructs the types, regions and effects of expressions
in an implicitly typed functional language that supports imperative operations on reference
values. Just as types structurally abstract collections of concrete values, regions represent sets
of possibly aliased reference values and effects represent approximations of the imperative
behaviour on regions.

We introduce a static semantics for inferring types, regions and effects, and prove that it is
consistent with respect to the dynamic semantics of the language. We present a reconstruction
algorithm that computes the types and effects of expressions, and assigns regions to reference
values. We prove the correctness of the reconstruction algorithm with respect to the static
semantics. Finally, we discuss potential applications of our system to automatic stack
allocation and parallel code generation.

Capsule review

Type systems have long been used to catch programming errors and improve efficiency. The
type of an expression delimits the set of values that the expression can have. With type inference
it is not even necessary to put any types explicitly in a program; the inference mechanism is able
to deduce the type of every expression in a program. Polymorphic type inference is especially
powerful, since it allows a function to be used on arguments with different types when this is
safe.

This paper describes a notion akin to types, called effects. In the same way that a type
delimits the values an expression can have, an effect delimits the side-effects that an expression
can have. A region specifies the scope of an effect: effects in one region cannot interfere with
those in another region.

The setting used is a simple strict functional language (the core of ML) extended with
references (just as ML is). A reference is a 'pointer' to a cell: it can be created, inspected, and
updated. It is the updating that gives rise to the side effects. For this language, an extension of
Milner's classic type inference algorithm is presented that infers effects and regions as well as
types. The paper gives a type system (static semantics) for this language, and also proves
soundness and completeness of the inference algorithm, i.e. the algorithm gives correct and
maximal information with respect to this type system.

Effect and region information, just as type information, can be used to improve the runtime
behaviour of programs. It would, for instance, allow stack instead of heap allocation of certain
references.
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1 Introduction

Type and effect reconstruction is the process that automatically determines the types
and effects of expressions in a program. Types specify the structure of values denoted
by expressions. Milner-style polymorphic type reconstruction (Milner, 1978) is a
typical example for functional programming languages. It is the subject of much
theoretical investigation and practical developments, in particular to extend it to
imperative language constructs and module systems (Tofte, 1987; Harper et ai, 1988;
Sheldon and Gifford, 1990). Effect systems (Lucassen, 1987) are such an extension.
Similar to types, effects describe how expressions affect the store in a functional
language extended with imperative constructs. Types and effects can be statically
computed by algebraic reconstruction (Jouvelot and Gifford, 1991).

Types provide useful information for both the programmer, who can describe the
intended specification of its programs, and the compiler, which can use types to
generate more efficient code by avoiding type tags. Effects, as generic abstractions of
expression behaviours over sets of possibly aliased references (represented by
regions), can be used to generate parallel code while preserving the sequential
semantics of programs (Lucassen 1987; Hammel and Gifford, 1988). They can also
be used in code optimizations for standard architectures, e.g. for stack allocation of
temporary data structures.

This paper builds upon both the ideas of algebraic reconstruction of effects and the
ML-style discipline to statically compute the store effects of expressions over inferred
regions of references. Our algorithm obtains for each expression its maximal type
with respect to type substitutions, the lower bound of its effect, and assigns regions
to reference values in a way that minimizes spurious aliasing among references.

The structure of the report is as follows. Section 2 presents the related work. We
describe the syntax, the dynamic semantics (section 3) and the static semantics
(section 4) of the language. In section 5 we state and prove that the static and dynamic
semantics of the language are consistent. Section 6 presents our type, region and effect
reconstruction algorithm, the correctness of which is proved in section 7. Before
concluding in section 9, we show how our algorithm works on a few examples
(section 8).

2 Related work

Our language is equivalent to Core-ML (Mitchell and Harper, 1988) extended to
allow references. The classical way of dealing with non referentially transparent
constructs is described in Gordon and Milner (1979), where some ad hoc rules are
introduced to avoid creating inconsistencies within the type system. Tofte (1987)
introduces a nicer imperative type discipline within which types are categorized
between applicative and imperative types; only applicative types can be generalized
in let bindings. An extension of this approach, based on so-called weak type variables,
is used inside the implementation of Standard ML done at Bell Labs (Appel and
MacQueen, 1990). Another extension is proposed by Leroy and Weis (1991), in which
function types are labelled with sets of types that are used by reference values. The
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notions of regions and effects provide more intuitive information about programs,
and are presented here as a natural extension of the Hindley-Milner type discipline.
Our static semantics thus gives a more straightforward abstraction of the dynamic
semantics than Leroy and Weis's system. However, since the problem of polymorphic
type generalization escapes the scope of this paper, our systems falls short of allowing
some type-safe programs that are correctly seen as such by other systems.

Abstract interpretation (Cousot and Cousot, 1977) is the usual framework to
obtain a computable representation of the properties of program executions such as
value aliasing and side-effects (Neirynck et ai, 1989). This approach usually requires
complex representations of abstract states which consist of environment and store
approximations via graphs. To deal with functional languages (Larus and Hilfinger,
1988; Harrison, 1989; Deutsch, 1990), this approach is usually coupled with an
interprocedural data flow analysis; this incurs a heavy computational cost (Rosen,
1979).

Gifford et al. (1987) propose a static semantics that includes a polymorphic type,
region and effect checking system. However, the need to specify types, regions and
effects are burdensome in real-life programs. Jouvelot and Gifford (1991) show that
effect reconstruction can be seen as a constraint satisfaction problem, in the vein of
Morris (1968), who used this approach for type reconstruction. However, the
matching of effects required by the static semantics, together with the use of explicit
polymorphism, imply the non-existence of syntactic principal types. Effect matching
also somewhat limits the kind of accepted programs; the following example is not
type correct in Jouvelot and Gifford's system, but is in ours:

{if true {lambda {x)x) {lambda {x) {get {new x)))).

Our system reconstructs the type and effect of such programs by the addition of
subeffecting. Subeffecting is tantamount to subtyping in the domain of effects. It is
required here since the latent effects of both arms of the conditional are different, but
can be coerced to a common effect upper bound.

3 Dynamic semantics

We present the syntax and dynamic semantics of our language.

3.1 Syntax

The syntax of expressions eeExp in the language is described below. It uses enclosing
parentheses in the reminiscence of Scheme (Rees and Clinger, 1988), and shares its
dynamic semantics with the Core-ML language in the usual call-by-value fashion. We
implement operations on references as special forms since they are of particular
interest in the static semantics.

Language syntax:

e-— x | value identifier

{e e') | application
10-2

https://doi.org/10.1017/S0956796800000393 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000393


248 J.-P. Talpin and P. Jouvelot

{lambda (x) e) | abstraction

(rec (fx) e) | recursive function definition

(let (x e) e') | lexical binding

(new e) \ (get e) | (set e e') initialization, dereference and

assignment.

3.2 Domains

The dynamic semantics is defined by a set of operational rules (Plotkin, 1981) which
specify the evaluation of expressions.

Computable values are either the command value u, reference values / or closures.
A closure c is composed of the syntactic value identifier of the argument, a body
expression and the lexical environment E where it is defined. A store s is a finite map
from references to values. A trace/is a set of labelled reference values that indicate
initialized, read and written locations; a trace is the dynamic counterpart of a static
side-effect (described in section 4).

Computable values:

v e Value = {u} + Ref+ Closure

leRef

c e Closure = Idx Exp x Env

EeEnv = Id^ Value

se Store = Ref-> Value

values

locations

closures

environments

stores

fe Trace = 0>(init(Ref) + read(Ref) + write(Ref)) traces.

3.3 Dynamic semantics

Given a store s and an environment E, the dynamic semantics associates an
expression e with the value v it computes, the trace / of the side-effects it performs
during its evaluation and the possibly updated store s'. This is noted s,E\-e^-v,f,s'.

For any map m we note Dom(m) the domain of m, mx the map m with x unbound,
{x^+v} the map from x to v, and m U { ^ » } the extension of m to x.

Dynamic semantics:

(var):
xeDom(E)

(abs):

{ }'

s,E\-(lambda(x)e)^(x,e,Ex},0,s

so,E\-e^<x,e",E'},f,s
s,E\—e'-+ v',/', s'

s',E'U{x»v'}\-e"^v",f",s"
s,E\- (rec(fx)e)->c,0,s K PP)' so, EV- (ee') - v",f()f' Of",s"

so,E\-(let(xe)e')-+v',f[)f',s'
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s0, E I— e -»• v,f, s l$Dom(s)
(new):

s0, E h- (new e) -+ /,/U {init(l)}, s[){l»v}

so,E\-e-+l,f,s
fee°: sa, E \- (get e) -> s(l)JU {read(I)}, s

^ ' s0, E \- (set e e') -> u,f[)f U {write(l)}, s'tU{l^ v}

4 Static semantics

We present the static semantics of our language. We begin by defining the algebra of
types and effects, and specify the static semantics. There are three static domains:
regions, effects and types:

r e RegConst

yeRegVar

p e Region = RegConst + Reg Var

a e Effect a-= 0 1 init(p) \ read(p) \ write(p) \ a U a | q

a

xeType x-=unit\a\refp(x)\x^x.

The domain of regions p is the disjoint union of a countable set of constants and
variables y. Every data structure corresponds to a given region in the static semantics;
this region abstracts the memory locations in which it will be allocated at run time.
Two values are in the same region if they may share some memory locations.

Basic effects a can either be the constant 0 that represents the absence of effects,
effect variables q, or store effects init(p), read(p) or write(p) that approximate memory
side-effects on their region argument p. init(p) denotes the allocation and initialization
of a mutable reference value in the region p. The effect read(p) describes accesses to
references in the region p, while write(p) represents assignments of values to
references in the region p.

Effects can be gathered together with the infix operator u , which denotes the union
of effects; effects define a set algebra. The equality on effects is thus defined modulo
associativity, commutativity and idempotence with 0 as the neutral element. We
define the set-inclusive relation 3 of subsumption on effects: a 3 a' if and only if
there exists an effect o" such that a = a' U a".

The domain of types x is composed of the constant unit describing the type of
commands, type variables a, reference types refp(x) in region p to values of type x,
function types x->x' from x to x' with a latent effect a. The latent effect of a function
is the effect incurred when the function is applied: it encapsulates the side-effects of
its body.

4.1 Type and effect rules

The inference rules of the static semantics associate a type environment $ and an
expression e with its possible types T and effects a, noted S\- e: x, a.
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Generic types can be created for variables that are bound in let forms to
referentially transparent expressions. One way to statically enforce that such
expressions are pure would be to require their effects to be 0 . We did not adopt this
policy here, since it would have required a non-deterministic backtrack-based
inference algorithm which would have departed too much from existing syntax-
directed type reconstruction algorithms. Among various syntactic type generalization
policies (Tofte, 1987; Harper et al., 1988), we chose the simplest one, based on the
expansiveness property of expressions; a non-expansive expression is syntactically
guaranteed to never allocate references.

Variables and lambda-abstractions are non-expansive expressions (Tofte, 1987). By
extension, a let expression is non-expansive if and only if both its binding expression
and its body are non-expansive. We define the boolean function expansive for
expansive expressions by induction:

expansive\e\ — case e of

(rec (fx) e)\x\ (lambda(x)e') =>false

(new e') \ (get e') \ (set e' e") \ (e' e") => true

(let (xe') e") => expansive\e'\ V expansive\e"\.

Non-expansive let expressions, which can be generalized over, are handled by
syntactic substitution of the binding for the variable in the body. This avoids the
complication of introducing sophisticated type schemes inside the static semantics
that would mimic the algebraic type schemes used in the algorithm. Indeed, this
simple technique provides an equivalent way of expressing the property that non
expansive expressions may admit multiple types. Even though the static semantics of
let expressions uses explicit syntactic substitution, the reconstruction algorithm works
very much like an ordinary Hindley-Milner type inferencer does when it handles let.
Type environments S are finite maps from identifiers to types.

We write e\e/x\ for the textual substitution of e for x in e' with bound variables
renamed as usual. Subeffecting is introduced by the (does) rule. Note that this rule can
be used whenever a type or effect mismatch exists in the application rule (app) and the
assignment rule (set).

Static semantics:

(rcc) •

. . . gx\){x^x}\e:x,a . , g\e:x-+x',a S\-e':x,o'
( a b s ) : i ( a p p )

S \- (lambda (x) e): x ->• x , 0

-^expansive\e\ expansive\e\

£\~(let(xe)e'):x',o' v ''S\-(let (xe)e'):x',oUo'
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(does): , , , (new):
g\-e:x,& v J'g\-(newe):refp(x),u\}init(p)

< * > = •'g\-(gete):x,a[Jread(p) J'g\-(setee'):unit,a\) o' U

5 Consistency of dynamic and static semantics

We use the proof method introduced in Tofte (1987) to show that the static and
dynamic semantics are consistent with respect to a structural relation between values
and types, denned as the maximal fixed point of a monotonic property.

We introduce store models Sf to tell which region p and type x correspond to a
reference value /

y e StoreModel = Ref^ Region x Type.

We note y c y j f and only if VleDom(Sf), Sf(l) = 9" (I).

Definition 1 (Effects consistency)
A dynamic trace of side effects/s Trace is consistent with the effect ue Effect for the
model y e StoreModel, noted Sf \=f: a, if and only if

V init(l) ef, ST{1) = (p, T) A init(p) e a

V reacHf) ef, Sf (/) = (p, T) A read(p) e a

V write(l) ef, £f(l) = (p, x) A write(p) e a.

Note that, if Sf £ SS" and ^\=f:u, then 7 l = / : o . Also, when ^ t = / : a and
y t=/': a', then Sf N /U/ ' : a U a'.

We define typed stores as models for describing the relation between values and
types.

s.yeTypedStore = Store x StoreModel.

Definition 2 (Consistent values and types)
Given a typed store s-.Sf, the value v is consistent with the type x, noted
if and only if v and x verify one of the following properties:

s:9> 1= /:refp(x)<*•?"(/) = (p,x) and s:Sf\= s(l):x

s: ¥ N <JC, e, E}: x <=> there exists S and s:¥^E:£ and <? t- (lambda (x) e): x, 0.

We note s: y t= E: S if and only if Dom(E) = Dom(S) and 5: ^ N £(JC) : ^"(J:) for every
xeDom(E).

As shown in Tofte (1987), this structural property between values and types does
not uniquely define a relation and must be regarded as a fixed point equation on the
domain M = TypedStore x Value x Type of the relation. We define a function $F on
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); its fixed points are the relations on 01 that verify the property defined
above

r(2) = {(s,sr,v,T)\

if v = u then x = unit

if v = / then there exist p and x' such that

x = «?/P(T') and ^ ( / ) = (p,x') and (s^,

if v = <x, £, £•> then there exists $ such that

s: ^ t= E: $ and <? h- {lambda (x) e): x, 0}.
In order to guarantee the existence of fixed points for SF, it is sufficient to show that

J5" is monotonic.

Lemma 1 (Monotony of !F')
If 3. £ JT then

Let us consider 2. and 2L' two subsets of 5? such that i g S ' . We assume that
and prove that qe^{2.'). Let # be (5,5", D,X):

• If D = M, then q€tF{2.') by definition.
• If veRef, then there exist p and x' such that x = refp(x'), £f{p) = (p, x') and

(5,^,5(y),x')e^. Since St S J ' , we have qe&{2L').
• Finally, if ye Closure, then v = (x.e,£) and there exists a type environment §

such that s:5f\= E:S, so that #e &{2L'\ D

Among the fixed points of J^, we choose the greatest fixed point gfp{^) as our
relation; gfpi.^) is defined by

gfp(^) = U {2. <= <%\J2 £ ^"(J)}.

A set 5 such that SL £ J27^) is called .^-consistent.
The relation between types and values is thus defined by

In order to use induction in the consistency proof we need to check that the relation
between a type and a value, whenever correct for some typed store s: S?, is preserved
when the store is properly expanded. We note

s: Sf E s': 9" o V £ Sf" and, for all v and x, s: Sf t= v: x => s': S/" N v: x.

Lemma 2 (Side effects)
Assume s:^\=v:x. If Sf(l) = (p,x), then s : ^ E i , U { M : ^ U { / ^ ( p , x ) } . Other-
wise, for every region p, s: S? £ s U {/•-»• v) : ¥ U {/H> (p, x)}.

Proof
We only consider here the first case to be non-trivial. The proof is by induction on
the structure of typings and values. Define / = sl U {l*->v} and 9" = yt U {/^(p,x)}.
We have to show that s-.Zf E/:S/", i.e. s':2"\=v':x' from the hypothesis
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We consider the typed store s: 9, and 2 £ 01 such that 2 = {(sr, 9', v',T')\S:9 \=
v': T'}. We show that 2 is J^-consistent, i.e. that 2 £ &{S). Let q be (sr, 9', v', x')
in 2:

• If v' = u, then qeS?(2).
• If i/ is a reference, by definition of s:9 \=v':x', there exist p' and x" such that T'

= re/p.(T"), 9(v') = (p',x") and j:yi=j(t) ' ) :f . Since s s j ' and 9 <= ^ ' then
«?"(i/) = (p',x") and s^Nj ' f i ) ' ) : ! ' , so that (s',.?",/(«'),T.")e.2 and qe&{2).

• Finally, if n' = <x, e, £>, then there exists a type environment (f such that s: ¥ 1=
£:^. This means that 5:^l=£:(x):<f(x) for every xeDom(E). Thus, by definition
of 2, we have (/, 9", E(x), <S(x)) e 2, so that q e ̂ ( J ) . •

Theorem 1 (Consistency of dynamic and static semantics)
Let E be an environment and & its type. Let s: if be a typed store such that s: ̂  1=
£: <?. Provided that & \- e: T, CT and j , £ I- e -> u,/, 5', there exists a store model 9" such
that 5 : y ^s':£/" with:

9"\=f:o and J ' : ^ "S=U:T .

The proof is by induction on the length of the dynamic evaluation, for each syntactic
category of expressions.

Non-expansive expressions in fef-bindings require a particular treatment. Assume
that -iexpansive[e] and s,E\-e^ v,f s holds. Then, s, Ex U {x H> V} \- e' ->•«',/', J' holds
if and only if there exists a proof of s,E\- e'[e/a]-+v',f',s'. Thus, without loss of
generality, we consider that non-expansive expressions in let bindings are explicitly
substituted in the body of let constructs.

Case of (var)
The hypotheses are

and s,E\-x->E(x),0,s and S\-x:S{x),0.

We must have xeDom(E) and xeDom($). From s:yt=E:$ and by taking
= 5", we conclude

• ^ 1 = 0 : 0 and 5:5" 1= £(x): $ (x)

Case of (abs)
The hypotheses are

i V- (lambda (x) e):xXx',0

s,E\- (lambda (x) e) -» <x, e, Ex), 0 , s.

By the definition of the relation gfp(JF), taking 9" = 9, it follows that

9"f=0:<Z and j : ^ t= <JC, C, £X> : x -I T'
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Case of (rec)
The hypotheses are

s,E\- {rec {fx)e)->c, 0,s

£\-{rec{fx)e):xlx',0.
This requires that

r.x',a and c = (x,e,Efx U •

Let S' = 411 {/^ t - i T'}, then S'x\]{x^x}\-e: x'', a. By definition of the rule {abs), we
have

S' V- {lambda {x)e):x^x',0.

Let E' = Efx U {/>->-c}. If we take ,9" = Sf, proving that / : 9" 1= c: T -5- x' is equivalent
to showing that {s, 3f,c,T 4- i')egfp{^). To this end, we define

and show that 2. is J^-consistent.
So, take qel. If qegfp{^) then, since gfp{^)^2. and J^ is monotonic,

qe3^{2). Otherwise, 9 = (i,y,c,TiT'). Since S'\-{lambda{x)e):xXx',0, and
(5,5^,E{y),S{y))e3. for every yeDom{E), and {s,Sf,c,xXx')e£, we get

for every y e Dom{E), {s, 9, E'{y) S'{y)) e 2.

and have proved that J is J^-consistent. As a result

and

Case of (app)
The hypotheses are

By the definition of rule {app), there exist x, a, a' and a" such that <r0 = a U a' U cr"
with

g\-{ee'):x',a0

^x ' , a and ,

By definition of the rule {app) in the dynamic semantics, we have

s, E (- e -> <x, <?", £">,/, 5X

51; £ h- e' ->• y,/', J2

52, £" U {x i-̂ -t;} I— e" -+v',f", s'.

By induction on e, there exists a store model yx such that s:y <=, sx\Sfx verifying

s1:yil=(x,e",E'y:x?>x' and 5^1=/: a.

https://doi.org/10.1017/S0956796800000393 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000393


Polymorphic type, region and effect inference 255

By the side-effects lemma, this implies that s1: 9'1 N E: S. By induction on e', there
exists a store model 92 such that s1: 5^ ^ i2: 5"2 verifying

s2:y2t=j;:T and 5^ 1=/': a'.

a"

We have s2: 9'2\=(x, e", F > : I - > T ' by the side-effects lemma. By definition of the
t= relation, there exists a type environment §' such that s2: ^1= E': <?'. By the side-
effects lemma

i2:921= £" U {.x>->i>}: S' U {
By induction hypothesis on e", there exists a model 5^' such that s2: «5̂ 2 E 5': y"

which verifies the theorem. Thus

a" and j ' : ^ ' N u ' : x ' .

By transitivity of E, this allows us to conclude that 9" verifies s\£f^s':S/" with

s ' : r t=D' :x ' and 5^'N/U/' U/":CT U a' U a".

The hypotheses are

§ V- (new e): refp{-z), a U init(p)

s,E\- (newe) -> /,/U {init(l)}, s' U

By definition of the semantics, this requires that

s, E \- e -> v,f, s' and S h- e: 1, CT.

By induction on e, there exists a store model yx such that s-.Sf^s':^ verifying

and s':9'1\=v:i.

By definition, we have {/i->(p,T)}t= {init(l)} :init(p). Since l$Dom(s'), we define
y = yx u {/HJ-(P,T)}; we have

J'I^EJ'U^II}:^.

By transitivity of E, we conclude that J : 5^ E / U {/>-> u}: 9" with

y 1=/ U {init(l)}: a U w//(p) and s'\}{lv+v}:Srt=l: refp(x).

Case of (get)
The hypotheses are

s:9)=E:S

S b- (get e): x, a U read(p)

s,E\-(gete)-»/(/),/U {reod(/)},/.
This requires that s,E\-e^-l,f, s' and <S \-e:refp(x), a. By induction hypothesis on

e, there exists 9" such that s:^ ^s':9" verifying

9"\=f.a and j ' ^ ' N I : ^ ) .

By definition {l^(p,x)}\={read(l)}:read(p). Since {/H-(p,t))cy, we conclude
that

9"\=f[){read(l)}:ouread(p) and / :9" \=s'(l) :x.
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Case of (set)
The hypotheses are

S \- (set e e'): unit, a U a ' U write(p)

s,E\- (sete e') -> u,f\jf U {write(l)}, s" U {/>-> v}.

In the dynamic semantics, this requires that

s,E\-e^l,fs and s',E\-e'^-v,f',s".

In the static semantics, we must have

efp(z),cy and

By induction hypothesis on e, there exists a model ^ such that
verifying

Sfx (=/: CT and s': ̂  N /: re/p(x).

Similarly, there exists 5*" such that 5': Sfx e J" : ^ " with

Sr\=f':& and S":^"I=I ; :T .

Since 5^ S 5^', we have {/^ (p, x)} s ST. Thus

We conclude that s-.^ ^ s" U{l^v}:&" with

•5 '̂ t=/U/ ' U {ivn(e(/)}: CT U CT' U wn7e(p) and 5" U {/H> y}: 5^' t= M :

of (ilet)
The hypotheses are

expansive{e\

S \- (let (x e) e'):x',CT U a'

By definition of the dynamic semantics, we have

s, E \- e -> v,f s1 and s1,Ex\J{xt^v}\-e'-+v',f',s'.

In the static semantics, we must have

g\-e:x,<3 and Sx\J{x^i)\-e':x',o'.

By induction on e, there exists a store model S^x such that s:^ ^=,sx:Sfx verifying

«^l=/:a and sx:Sf^=v\\.

Moreover sr: 5^ N £: <f implies that ^ : 5^ t= ̂  U {x*->• v}: Sx U {̂ f-> x}. By induction
hypothesis on e\ there exists 9" such that s1:5^ E / : 5 " ' verifying

':& and s ' : y > » ' : T ' .
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We conclude that s:if^s':9" with

y t= /U/ ' : aUff ' and s':Sr\=v':z'. D

6 Type, region and effect reconstruction

We now present the algorithm for reconstructing the types, regions and effects of
expressions. We discuss the central ideas of our approach, describe the unification
process, give the reconstruction algorithm, and discuss its properties.

6.1 Presentation

Given a type environment and an expression, the reconstruction algorithm determines
a type and an effect consistent with all type and effect assignments of the static
semantics. The reconstructed solution, if one exists, satisfies the criteria of maximality
of the type with respect to substitution on variables, and minimality of the effect with
respect to the subsumption on effects.

We view the reconstruction of types and effects of expressions as a constraint
satisfaction problem. The algorithm computes equalities between types and regions,
and inequalities between effects. For an expression to admit a type and an effect in
the static semantics, this set of inequations must have at least one solution.

An important invariant of our method is that latent effects of functions are always
represented by effect variables in the algorithm. The algorithm only deals with region
variables; region constants only appear in the static semantics. This makes the
problem of solving equations tractable by a simple extension to a unification
algorithm on free algebras (Robinson, 1965) used on types, region variables and effect
variables.

Substitutions and constraint sets:

QeSubst = (Ty Var^ Type) + (Reg Var-^ Region)+ (EfVar-> Effect)

Ke Constraint = ^{EfVar x Effect)

Vt>!.. n . (T, K) £ TyScheme

Se TyEnv = Id^- TyScheme.

Constraints K consist of sets of inequalities between effect variables and effect sets.
The inequality q 3 a in K enforces a lower bound a for the inferred effect variable q,
consistent with the static semantics. It is built during the processing of lambda and rec
expressions, which is the place where effects are introduced into types. By
construction, constraint sets always admit at least one solution (see below).

In order to avoid recomputing the type of non-expansive binding expressions in let
constructs as would a naive implementation of the syntactic substitution in the {let)
rule, we use algebraic type schemes to generically represent their types and associated
constraints. Algebraic type schemes Vî  n. (T, K) are composed of a type x and a set of
inequalities K universally quantified over type, effect and region variables vx „.
Algebraic type schemes are used to implement the textual substitution specified in the
(let) binding rule for non-expansive expressions e. The type and constraint set
associated with e only depend on the free variables of e and, thereby, on the type
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environment S. An algebraic type scheme caches the effect constraint that would have
to be recomputed each time e appeared in the substituted body. Constrained type
environments S map value identifiers to algebraic type schemes.

Equations on types, effect variables and regions are solved by a Robinson-like
unification algorithm (Robinson, 1965) operating on the free algebra of types handled
by the reconstruction algorithm. It returns a substitution 9 which is the most general
unifier of two type terms. Substitutions 0 are defined on variables and extended on
types and environments in the obvious way. We note Id the identity substitution.

6.2 The reconstruction algorithm

Given a type environment $ and an expression e, the reconstruction algorithm J
computes a substitution 0 ranging over the free type, effect and region variables of the
type environment S, a type x, an effect a, and an inequality system K containing the
inequalities that need to be satisfied by effect variables in order to preserve the static
semantics. The reconstruction algorithm is shown in Fig. 1.

ifx^\fvln.(z,K)eS' then
let {v\ n} new

in (Id, 0x, 0, 0K>

else fail

let <9,x,a,K> =J{S,e) in
if->expansive{e\ then

<0',T',O-',K'> =

in <0'0,T',a',K'>
else l e t S ' = Q x { }

<0',T',O-',K'> = ./(<?', O
in <e/e,T/,G'aUCT',e'KUK/>

J{g,{lambda{x)e))=>
let a, q new

<0, x, a, K> = S(£x U {x H* a}, e)

w<e,ea4.T,0,KUfe3a}>
f[g,(rec{fx)e))=>

let a, a', q new
S' = Ss n U 4

<9, T, a, K> =

J{S,{ee'))=>
let <0,X,CT,K> =J(S,e)

a, q new

a" = 9"(9'CT Uo'liq)
in <0"0'0,9"oc, a", 0"(0'K U K')>

/(^,(newc))=>
let y new

<9,X,CT,K> = ,

in <0, re/y(x), a U init(y), K>

J{g,(gete))=>

a, y new

in <0'9,9'a, a U read(Q'y), 9'K>

, e)
^ ( ^ , (sefe £'))=>

/e? <0, x, a, K> =

y new

, x) a" = 0"(9'CT U a' U wn7e(y))

in <9'9,0'0(a -^ a'), 0 , 9 ' ( K U {0? 3 a})> /« <9"9'9, unit, a", 0"(0'K U K')>

Fig. 1. Reconstruction algorithm.
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Note that a consequence of the unification of effect variables (induced by type
unification) c, and q' is that, in the constraint set, the inequalities {<; 3o,q' 3 a'} are
replaced by {q a a, q 3 a'}, which is equivalent to {q 3 a U a'}.

6.3 Unification

The algorithm "ll shown in Fig. 2 solves the equations on types, region and effect
variables that are built by the reconstruction algorithm. It returns a substitution 0 as
the most general unifier of two terms, or fails. Note that the reconstruction algorithm
only needs to unify region and effect expressions that are variables.

Lemma 3 (Correctness oftfl [Robinson, 1965])
Let x and x' be two type terms in the domain of <JU. If < (̂x, T') -> 0, then 0x = 9x' and,
whenever 0'x = 0V, there exists a substitution 0" such that 0' = 0"0.

Proof
°U unifies terms over a free algebra, and is thus complete following (Robinson,
1965). •

<%(x,x') = case(x,x') of
{unit, unit) => Id

(a, <x')=>{oci-»a'}
_ (a, x) | (x, a)=>ifa efv(x) then fail else {a i-> x}

(x, 4- x/ ; x\ - t x't) => let 0 = {q >-> q'} and 0' = <%(0x(, 0x(') in ^r(0'0x/, Q'Qx'f) 0'0

(refy(x), refy,(x')) => let 0 = {y M- y'} in W{§x, 0x') 0

Fig. 2. Unification algorithm.

6.4 Constraint satisfaction

An expression e is type and effect safe if and only if J applied to e does not fail and
returns a constraint set K that admits at least one solution.

Definition 3 (Effect model)
A substitution u from EfVar to Effect is a model of a constraint set K, noted U N K ,
if and only if, for each inequality q 3 a e K, m 3 uo\

Theorem 2 (Satisfaction)
Every constraint set K admits at least one model.

Proof
Let Kn = {qt a a,, / = 1..«} be a constraint system and consider, for all /, o\ =

U<n-i CTA U("-i Si- T h e n {?<"-O »s a model of Kn. Q

An important result is that the constraint systems of the reconstruction algorithm
always admit a unique minimal model with respect to the subsumption relation a on
effects. The relation 3 is straightforwardly extended to models.
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Theorem 3 (Minimality)
Any constraint set K admits a unique minimal model Min(K) such that, for any model
H of K, we have u 3 Min(K).

We assume here that the effect variables on the left hand sides of the inequations
are distinct, following upon our remark in Section 6.2

Min(0) => Id and Min({c, a u} U K') => let u = M/«(K') in {q i-> ucr\<;} u.

The algorithm Min recursively computes the minimal model of K by composing the
model u of the constraint subset K' with the substitution of q. Note that the solution
is independent of the order with which constraints are selected.

Proof
The proof is by induction on K. •

7 Correctness of the reconstruction algorithm
Lemma 4 (Substitution)
If S \- e:T, a then $$\-e: 0T,0a for every substitution 0.

Proof
The proof is straightforward by induction on the structure of expressions. •

Theorem 4 (Termination)
On all inputs ($, e), the algorithm J either fails or terminates.

Proof
J works by induction on the structure of expressions of finite height. •

Algebraic type schemes are used to implement the textual substitution specified in
the (let) binding rule for non-expansive expressions e. Without loss of generality, we
assume in the correctness proofs that in programs to be typechecked, non-expansive
let-bound expressions are explicitly substituted in the body; type environments thus
simply map identifiers to types.

Theorem 5 (Soundness)
Let S be the reconstruction environment and e an expression. If ./(<?, e) = <0, x, a, K>
and u 1= K for some model u, then n9<? I— e: UT, UCJ.

The soundness result states that the application of any model of the reconstructed
inequality system to the reconstructed type and effect is a solution of the static
semantics.

Proof
The proof is by induction on the structure of expressions.
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Case of (var)
In the case of identifiers, note that whenever J(S,x) = (Id,x, 0,0} then x^xeS.
By definition of the rule (var), we have

£\-x:x,0.

Case of (abs)
By hypothesis, we have J(S, (lambda (x)e)) = <0,0a4*T,0,K [}{q 3 CT}> and con-
sider any model u of K U {C, 3 a}.

By definition of the algorithm, we have J(SX U {x i-> a}, e) = <9, T, a, K>. Moreover,
u is a model of K, SO that by induction hypothesis on e we have

u0(<^ \j{x^a})\-e:\ix, uo.

Since u models {<; 3 CT}, we have \iq 3 us by definition. By the rule (does), this
requires that \sQ(Sx U {x H> a}) 1— e: ux, n<;. By definition of the rule (abs), we can
conclude that

u9<f 1- (lambda (x) e): u(0a X x), 0.

Case of (rec)
The assumption is that

J(S,(rec(fx)e)) = <9'9,9'9(otia'),0,e'(K U{9; 3 a})>.

Let us consider any model u of 9'(K U {9q 3 a}). By definition of our algorithm, we
have

) and

Note also that u9' is a model of K, SO that by induction hypothesis on e we get

|x0'0(4-iX U {/W a-I a'} U {x*-> a}) I- e: U9'T, U9'CT.

Since u9' models {Qq 3 a}, we have U0'0c; 3 U0'CT by definition. By the rule (does),
this requires that

uO'OO ,̂ U {/WaXa'} u {JCH>a}) h-e: U0'T, ^0'0(;.

By unification, U0'T = u0'0a'. By the definition of the rule (rec) we get

u0'0<f H (rec (fx) e): u0'0(a X a'), 0.

Case of (app)
In the case of the application construct, we assume that

,(ee')) = <0"0'0,0"a,0"(0'CJUo'U q),0"(0'KUK')>.
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We suppose that u is a model of 0"(9'K U K'). By the definition of our algorithm, we
must have 0" = <^(0'x, x' 4- a) for fresh variables a and q, and also

./(<£» = <0,T,CT,K> and J;(W,e') = <$',T',c'K'y.

Since u Is a model of 0"(0'K U K'), we also have |i0"0' 1= K and u0" 1= K', SO that by
induction hypothesis we get

u0"0'0<?l-e:u0"0'T,u0"e'cT and u0"0'0<? I-<>':U0"I:',U0"CT'.

We conclude
u0"9 W I- (e e'): u0"oc, u0"(0'a U a' U q).

Case of (ilet)
We assume that J(S, (let (x e) e')) = <0'0, T', 9'CT U CT', 0'K U K'> and suppose that u is
a model of 0'K U K'. By definition of the algorithm J we have

•/(<£» = <0,T,CF,K> and Jf(QSx\J{x^x},e') = <,Q',x',a',K').

Since \i is a model of 0'K U K', we have u9' 1= K, SO that by induction hypothesis on
e we get

Now, since We also have u (= K', we get by induction hypothesis on e'

U0'(0(fx U {x >-> T}) I- e': UT', ^CT'.

By the definition of rule (ilet) we conclude that

U0'0<f H (let (x e) e'): UT', \i(Q'a U a').

e of (new)
We suppose that J(S, (newe)) = <0,/-e/T(i),a U init(y),x) and that U N K . We must
have J(S,e) = <0,T,CT, K>. By induction hypothesis on e we get

' \— e:\ix, \i<5.

By the definition of the rule (new) we conclude that

U0(f (- (new e): u(re/y(T)), U(CT U in

Case of (get)
We suppose that J(S,(gete)) = <8'0,0'oc, a U read(Q'y), 0'K> and that UN0'K. For
some a we must have

, e) = <0, T, CT, K> and 0' = « ( T , re/T(a)).

By induction hypothesis on e, since u0' is a model of K, we get

By the rule (ge/), a n ^ since 0'T = Q'refy(a) by unification, we conclude that

: u0'a, u0'(a U read(y)).

https://doi.org/10.1017/S0956796800000393 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000393


Polymorphic type, region and effect inference 263

Case of (set)
Assume that J(S,{sete<?')) = <9"9'9,unit,9"(9'aUo'U write(y)),9"(9'K UK')> and
that u is a model of 9"(9'K U K')- By the definition of our algorithm, we must have

W = W(refy(x'),Q'x)

Since |i9"9' t= K and by induction hypothesis on e we have

Since u9" 1= K' and by induction hypothesis on e' we get

u9"9'9<f \~e:\&"x',\&"c'.

By unification, we have 0"9'x = Q"refy(x'). So, by the rule (set) we conclude that

u9"9'9<f I- (set e e'): unit, u9"(0'a u CT' U write(y)). D

The completeness theorem states that the reconstructed type x' and effect CT' are
maximal, with respect to any inferred type x and effect a, for some substitution 9" that
verifies the computed constraints K'.

Theorem 6 (Completeness)
If 9<?l— e:x,CT, then J(S,e) = <9',x',CT',K'> and there exists a substitution 9"
modelling K' such that

QS = ty'Q'g and x = 0'Y and CT a 9 'V.

Proof
The proof is by induction on the structure of expressions.

Case of (var)
We assume that 9<?l— x:x,a. By the definition of the rule (var), this requires that
Qd?hx:x,0. As a consequence, there exists x' such that x = 9T' and $(x) = x'. By
definition of the algorithm

The theorem is satisfied with 9" = 9.

Case of (abs)

Assume that 9<f I— (lambda (x) e): x -> x", 0 . By the definition of the rule (abs) we have

This is equivalent to (9 U{OCI->T})(<^ U {x^a})\-e:x",a for some type variable a.
By induction hypothesis on e we have

) , e) = <9', x', CT', K'>
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and there exists a substitution Gj modelling K' and verifying

(eu{aw-T})(^xU{xh»a}) = 0ie'(<?IU{xM.a}) and x" = %[x' and

By the definition of the algorithm, for some q, we have

J{S, {lambda (x) e)) = <0', 0'a 4- x', 0, K' U {q 3 a'}).

Since q is fresh in algorithm «/, the substitution

is a model of both K' and {q a a'}. Thus, we can conclude that

0(f = 0"0'<f and T 4- x" = 0"(0'a 4- T ') .

Case of (rec)
We suppose that QS\-{rec {fx) e): T-S-T", 0 . By the rule {rec), this requires that

4 U {./W14 x"} u {*H> T}) h- e: T», a.

For fresh a, a' and q, this can be rewritten as

(0U {OC^T} U {OC'^T"} U {?I->O})(<^XU {ft^aXa'} U {x^a})\-e:x",o.

Now, let us note S' = <̂ -x U {/H-> a-i a'} U {J:H> a}. By induction hypothesis on e we
get

and there exists a model 0j of K' such that

(0 U{CXH>T}U {a'^H>T"}U{(;^CT})^' = &[$[<$' and T" = 0;'T' and CTSGICT'.

By unification, since x" = 0j 0i a' = 0j x', there exists 0g such that % = ^{Q[ a',x').
Thus, by the definition of the algorithm J, we get

J{£, {rec {fx) e)) = <0^ 9;, % 9i(o -I a'), 0, %{*' U {9; q 3 o})>.

Since unification is complete, there exists 0" such that 0j = 0"02. Since a = 0i'9i<;
and a 3 9;'a', then 0" N G ^ q 3 a'}. Moreover, since 9;' N K ' , then 0"N=9;K ' . We
conclude that 0" is a model of G^K'U{Q[q3 a'}) such that

QS = 0"9; 0; S and i -I i" = 0"0; 0;(a -I a').

We assume that QS \- (cx c2): x', o'. By definition of rule {app), there exist a, a1; and
a2 such that a ' = ax U CT2 U CT verifying

0(? h- e1: x 4- x', G1 and 0(? t- f2: x, a2.

By induction hypothesis on el we have
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and there exists a substitution W[ modelling K[ such that

Qg = Q"lQ'1g and T 4 - T ' = 0IT'J and a , 3 9io',.

Since 0<? = W[ Q[ $, then 0j 0j (£" I- e2: T, a2. So by induction hypothesis on e2 we have

There exists a substitution 02 modelling K2 such that

6j 0; ^ = 02 0'2 0; <? and T = 02 T2 and a2 3 02 a2.

First note that
r\tp A" A' jo A// n ' A / tf>
We = Wj Wj © = o 2 t)2 " 1 0 •

Take a and <; new. Let V be the set of the free variables of 02 0'x S, T2, a2, and K2,
and define 0g as follows:

(%o, veV

%', v = a

a, v = q
.01 v, otherwise.

By this definition we get

0e' = 0;/0'1^ and T4.T' = ej(T'24.o) and %Q'2 = %&v

Now, for every v in x[, a[ and K[, either v is in/t)(0x ^) or u is new, by definition of
. Then, for every such v mfv(Q[ S), since 63 02(0; S) = Q"2 &2(Q[ S) = 0;'(0; S\ we have

%%v = QZ%v = &;v.

Otherwise, v is new, and thus 0'2 v = v, so that we have

Q"3Q'2v = %v = Q'iv.

We get T4.-C' = 0 ; ' 0 2 T ; and 0;'CT; = 63 02ai and 8 ; ' 6 ; N K ; .

It follows that

Since % 02 ti = Bl(z'2 4- a), and by the correctness of unification, there exists a
substitution 93 such that 03 = %(Q'2i'1,x2Xa) verifying

By the definition of the algorithm we get

f{£, («, e2)) = <63 0; 0',, 03 a, 03(02 a; Uo'2U q), Q'3(% < U K2)>.

Now, since 03 is the most general unifier of %x't and T24-a, there exists a
substitution 0" such that

e; = 0"e3.
We have proved that 0" models 03(02 K'J U K2) and verifies

0(? = 0"03020/
1e' and t ' = 0"0;a and a' 3 0"03(02 o; U a'2 U ?).
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Case of (ilet)
We assume that 0<? I— (let (x ej e2): x2, a. By the rule (let), this requires that there exist

ax and CT2 such that a = a1 U a2 verifying

%S\-e1:xl,a1 and 0<fx

By induction hypothesis on ex we have

There exists a substitution 0̂  modelling Kj such that

0<r = e;'0;<f and x1 = e;/x; and a ^ e j ' a ; .

We also have %$x U {JC ̂  x j H e2: x2, o2, which is equivalent to

By induction hypothesis on e2 this implies that

S(Q[ £x\}{x» x[}, e2) = <92, T2> a2, < >

and that there exists 02 modelling K2 such that

9i(9i C U {A: H> X'J) = 02 e^G'i <£, U {* >-> xi}) and x2 = 02 x'2 and a2 3 02 u'2.

By the definition of the algorithm we get

Note that

As for application, let Fbe the set of the free variables of Q'2Q[ £", x2, a2, and K2, and
define 0" as follows:

r2v, v e V

3i v, otherwise.

Thus 0" is a model of 02 K'X U K2, and as for application, it satisfies

G<? = 0"02 0; S and x2 = 0"x; and a 3 0"(02 a; U cr2).

We suppose that 0<f I— (newe): refp(x), a U init(p). By the rule (new), this requires that
0c? I— e: x, a. By induction hypothesis on e we have

and there exists 0j modelling K' such that

QS = %'[%'S and x = 0;'x' and o 9 8;V.

By the definition of the algorithm, we get for some new y

J(S, (new e)) = <8', refy(x'), a' U init(y), K'>.

Considering 0" = Gj U {y •->- p}, we can conclude that

Qg = 0"0'^ and refp(x) = Q"refy(x') and a U init(p) 3 0"(a' U //H7(Y)).
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Case of (get)
We suppose that 9<f I— (gete): x, CT U read(p). By the rule (get), this requires that 0<? I—
e: refp(x), a. By induction hypothesis on e we have

and there exists a substitution Gj modelling K' such that

QS = Ql<d\S and refp(x) = W[x' and o s e j o ' .

Let 0;' = 9" U {yi-> P) U {OO^X} where y and a are new. We have Q'2(refy(a)) = 02x'.
Thus, refy(a) and x' unify. Let 02 be such that

By completeness of all, there exists 0" such that 92 = 9"02. By the definition of the
algorithm we then get

, (get e)) = <02 0;, refy(x'), a' U read(% y), 02 K>.

So that 0", which models 0'2 K', satisfies the theorem

0(f = 0"02 0; S and x = 0"0'2 a and a U read(p) 3 0"(a' U read(W2 y)).

We suppose that 0<?l— (setee')-.unit,oUo'U wnte(p). By the rule (je/), this requires
that

%S\-e:refp(x),a and

By induction hypothesis on e we have

and there exists Gj modelling Kj such that

9^ = GiG;<? and re/p(T) = G 'T; and 0 3 9;'a;.

Since 9<f = 0;' 0'x S and QS\-e'\ x, a', we get

By induction hypothesis on e', and there exists 02 modelling K2 such that

0i0'1^ = 0'2020'1(f and T = 0 ; ' < and CT'3 0;'CT2.

Take y new. Let Kbe the set of the free variables of 02 0j S, x'2, a2, and K2, and define
03 as follows:

p, v = y

0i v, otherwise

As for application, there exists a substitution % = <%(refy(x2), 9'2 x[). By definition of
the algorithm we get

J(S, (set ee')) = <93 92 9',, unit, %(Q'2 o\ U a'2 U write(y)), 0g(02 K[ U K2)>.
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Since unification is complete, there exists 0" such that 03' = 0"03 which models
03(0'2 K'J U Kg) and satisfies

0<? = 0"e30;0'1^ and a{Ja'Uwrite(p)3Q"%(Q'iu'1\Jo'2[)write(y)). •

8 Examples

We consider two examples that demonstrate the effectiveness of our algorithm to infer
effects of programs, as well as to interpret and use effect information to perform code
optimizations. All of the additional language constructs we use in this section can be
easily integrated in the framework defined in this paper.

8.1 Program documentation

This first example illustrates the effectiveness of program documentation provided by
the use of our system. The expression below creates an integer reference value counter,
and initializes it to the value initial. The counter is then used in the gensym-like closure
returned by the expression

(lambda (initial)

(let (counter (new initial))

(lambda (inc)

(begin (set counter (+ (get counter) inc))

(get counter))))).

In the algorithm, the identifier counter is assigned the type rej^(integer). Then, the
type and effect of the body of the returned lambda expression

(begin (set counter ( + (get counter) inc)) (get counter))

are computed. We get integer as type and read(y) U write(y) as effect. As a
consequence, the whole expression is assigned the following type and related
constraint set:

integer -> (integer -*- integer), {q 3 init(y), q' 3 read(y) U write(y)}.

In the static semantics, this correspond to the type

iniHy) read(y) U writer)

integer -> (integer -> integer).

8.2 Parallel code generation

The second example illustrates the use of our type and effect system to perform
sophisticated code optimizations such as stack allocation and parallelization of global
operations on vectors, which have recently been implemented into a prototype of the
related FX compiler (Talpin and Jouvelot, 19916), generating *Lisp (*Lisp, 1987)
code, and targeted towards the Connection Machine architecture (Hillis, 1985).
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Contrary to other work related to the topic of compile-time garbage collection or
reference escape analysis (Hudak, 1986; Hughes, 1987; Neirynck et al., 1989), type
and effect inference effectively deals with higher-order functions, reference values, and
imperative constructs. The use of other methods such as abstract interpretation or
interprocedural analysis may give more precise information than regions, but they are
generally limited to simpler languages.

Regions denote abstractions of sets of memory locations. Effects are expressed in
terms of these regions, and approximate the observational imperative behaviour of
the evaluation of expressions. Nonetheless, if these effects are related to values that
are locally allocated, the effects do not need to be reported. This can be detected by
looking at the typing environment and the free variables of every expression (Gifford
et al., 1987). If a region appears in some effect but not in the type of the free variables
or the return type of the expression, then such an effect is not observable from the
outside. Any data structure allocated in such a region can be safely stack allocated,
thus avoiding a superfluous and costly heap allocation.

In the following program:

(let (v (identity 10))

(let (f (lambda (x) (*a( + b x))))

(vector-map fv)))

(identity 10) initializes a vector to the integers of 1 to 10, which is then bound to v.
We define an affine function/which is then mapped over every element of v. Provided
that we give to v and / the following types:

0
v: vector^(integer) and / : integer -» integer

the type and effect of this program are

vectorY(int), init(j) U read(y) U i

Note that the region y, in which the vector v was allocated, is absent both from the
context of the program and its value type. As a result, the vector v is isolated once
the execution of this program terminates, and it can thus be stack allocated.

As far as parallel code generation is concerned, we can easily detect that the
function / only handles basic data types (integer), and does not produce any side-
effect; its mapping on v can thus be performed in parallel

(*let ((v (*with-vp_set (vpset-ofsize 10) (enumerate!!))))

(labels ((f.! x!) (*!! (11 a) (+11 (!! b) x!)))

(*with-vpset(pvar_vpset v)

The *Lisp code that is generated for this example program can be analysed as
follows. The construct *let performs stack allocation of the vector v as a specific *Lisp
data structure: a pvar. Each element of v is distributed over the processing elements
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of the Connection Machine. We define a parallel version/7/of the function/; it is then
applied to the pvar v to perform the parallel mapping of/ on v.

9 Conclusion

We have presented a type, region and effect inference algorithm for an implicitly
typed functional language extended with imperative constructs. We have shown that
this algorithm is consistent with its static semantics. It computes the maximal type
and effect of expressions with respect to substitution on variables and the minimal
effect with respect to the rule of subsumption on effects.

A number of standard program optimizations can take advantage of the program
properties that type and effect inference computes. Stack allocation and parallel code
generation have been discussed in this paper. This framework provides the basis for
sophisticated program verification and transformation techniques in the presence of
side-effects and higher-order functions. In order to assess the practicality of our
approach, our inference algorithm has been implemented into a prototype of the FX
compiler targeted towards the Connection Machine architecture (Hillis, 1985) at the
Ecole des Mines de Paris (Talpin and Jouvelot, 1991ft).

Instead of resorting to a syntactic criterion for managing let polymorphism, we are
working on extending this framework to handle more gracefully type generalization
by using type schemes in a way reminiscent of Standard ML (Talpin and Jouvelot,
1991 a). Effects are used to control type generalization in the presence of imperative
constructs while regions delimit observable side-effects. The observable effects of an
expression range over the regions that are free in its type environment and its type;
effects related to local data structures can be discarded during type reconstruction.
The type of an expression can be generalized with respect to the type variables that
are not free in the type environment or in the observable effect.
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