BULL. AUSTRAL. MATH. SOC. VOL. 9 (1973). 227-237.

On a random solution of a nonlinear perturbed stochastic integral equation of the Volterra type

J. Susan Milton and Chris P. Tsokos

The object of this present paper is to study a nonlinear perturbed stochastic integral equation of the form

$$x(t; \omega) = h(t, x(t; \omega)) + \int_0^t k(\tau, x(\tau; \omega); \omega) d\tau , \quad t \ge 0 ,$$

where $\omega \in \Omega$, the supporting set of the complete probability measure space (Ω, A, μ) . We are concerned with the existence and uniqueness of a random solution to the above equation. A random solution, $x(t; \omega)$, of the above equation is defined to be a vector random variable which satisfies the equation μ almost everywhere.

1. Introduction

Stochastic integral equations play a major role in characterizing some very important problems in life sciences and engineering [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15]. The object of the present study is concerned with a theoretical investigation of a class of nonlinear perturbed stochastic integral equations. More specifically, we consider a stochastic vector integral equation of the form

(1.1)
$$x(t; \omega) = h(t, x(t; \omega)) + \int_0^t k(\tau, x(\tau; \omega); \omega) d\tau, t \ge 0,$$

Received 30 April 1973.

227

where

- (i) ω ∈ Ω, the supporting set of the complete probability measure space (Ω, A, μ);
- (ii) $x(t; \omega)$ is the unknown *m*-dimensional vector valued random function defined on R_+ , the non-negative real numbers;
- (iii) under appropriate conditions the stochastic kernel $k(\tau, x(\tau; \omega); \omega)$ is an *m*-dimensional vector valued random function on R_{\perp} ;
 - (iv) for each $t \in R_+$ and each *m*-dimensional vector valued random function $x(t; \omega)$, $h(t, x(t; \omega))$ is an *m*-dimensional vector valued random variable.

We shall be concerned with the existence and uniqueness of a random solution, a second order stochastic process, to random integral equation (1.1). The above equation is very important in the formulation of stochastic chemical kinetics models. The random equation (1.1) is a generalization of the recent study of Anderson [1] and Tsokos [12] in that both the stochastic kernel and the stochastic free term are functions of the unknown *m*-dimensional valued random function $x(t; \omega)$.

2. Preliminary concepts

We shall now define several spaces of functions and state lemmas which are essential in fulfilling the objectives of the present study.

DEFINITION 2.1. The random vectors

$$x(\omega) = (x_1(\omega), x_2(\omega), \ldots, x_m(\omega))$$

and

$$y(\omega) = (y_1(\omega), y_2(\omega), \ldots, y_m(\omega))$$

are said to be equal if and only if

 $x_i(\omega) \equiv y_i(\omega) \quad \mu \text{ almost everywhere for each } i = 1, 2, \ldots, m$.

DEFINITION 2.2. Let $\Psi(\Omega, A, \mu)$ be the set of all random vectors of

https://doi.org/10.1017/S0004972700043124 Published online by Cambridge University Press

the form

$$z(\omega) = (z_1(\omega), z_2(\omega), \ldots, z_m(\omega))$$

where for each i = 1, 2, ..., m, $z_i(\omega)$ is an element of $L_{\infty}(\Omega, A, \mu)$.

LEMMA 2.1. $\Psi(\Omega, A, \mu)$ is a complete normed linear space over the reals with the usual definition of component-wise addition and scalar multiplication where the norm in $\Psi(\Omega, A, \mu)$ is given by

$$\|z(\omega)\|_{\Psi(\Omega,A,\mu)} = \|z(\omega)\|_{\Psi} = \max_{i} \|z_{i}(\omega)\|$$

DEFINITION 2.3. Let $C_{\Psi} = C_{\Psi}(R_+, \Psi(\Omega, A, \mu))$ be the set of all continuous functions from R_+ into $\Psi(\Omega, A, \mu)$.

Note that for each $t \in R_+$ we get an associated random vector $x(t; \omega) = (x_1(t; \omega), x_2(t; \omega), \ldots, x_m(t; \omega))$. We shall be tacitly assuming that for each i the sample function $x_i(t; \omega)$ is continuous in t for each ω . Since we are dealing with a finite measure space, for each t and each i, $E|x_i(t; \omega)| < \infty$. The main purpose for defining the norm in $\Psi(\Omega, A, \mu)$ as it was done was to enable us to obtain a relatively simple norm defined in terms of the components of the vector involved.

LEMMA 2.2. C_{ψ} is a linear space over the reals with the usual definitions of addition and scalar multiplication for continuous functions.

LEMMA 2.3. Let

$$F = \{ \|x(t; \omega)\|_{n} : \|x(t; \omega)\|_{n} \} = \sup_{0 \le t \le n} \{ \|x(t; \omega)\|_{\psi} \},\$$

n = 1, 2, 3, \ldots . F is a family of semi-norms defined on C_{ψ} .

LEMMA 2.4. The space C_{ψ} can be topologized by the family F of semi-norms defined in Lemma 2.3 and the topology obtained is locally convex and hausdorff.

LEMMA 2.5. The topology τ on C_{ψ} induced by the family F of semi-norms defined in Lemma 2.3 is metrizable where the metric ρ is

defined by

$$\rho(x(t; \omega), y(t; \omega)) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\|x(t; \omega) - y(t; \omega)\|_n}{1 + \|x(t; \omega) - y(t; \omega)\|_n}$$

The following lemma is important in that it characterizes the topology τ defined on ${\cal C}_{\psi}$ in a convenient manner.

LEMMA 2.6. The topology τ on C_{ψ} induced by the family F of semi-norms (and hence also by ρ) is the topology of uniform convergence. That is, $x^{m}(t; \omega) \xrightarrow{\tau} x(t; \omega)$ if and only if $\lim_{m \to \infty} ||x^{m}(t; \omega) - x(t; \omega)|| = 0$ uniformly on every interval $[0, M] \leq R_{+}$.

Throughout the paper T will represent a linear operator from $C_{\Psi}(R_+, \Psi(\Omega, A, \mu)) \rightarrow C_{\Psi}(R_+, \Psi(\Omega, A, \mu))$ and B and D will represent Banach spaces contained in $C_{\Psi}(R_+, \Psi(\Omega, A, \mu))$.

DEFINITION 2.4. The Banach space B is said to be stronger than the space C_{ψ} if every sequence which converges in B with respect to its norm also converges in C_{ψ} but the converse need not be true.

DEFINITION 2.5. The pair of spaces (B, D) will be called admissible with respect to the operator T if and only if $TB \subseteq D$.

LEMMA 2.7. Let T be a continuous linear operator from $C_{\psi} \neq C_{\psi}$. If the pair of Banach spaces B and D are stronger than C_{ψ} and if (B, D) is admissible with respect to T then T is continuous from B to D.

Note that since T is a continuous operator from B to D it is bounded and hence there exists a constant Q such that

$$\|(Tx)(t; \omega)\|_{D} \leq \mathcal{Q}\|x(t; \omega)\|_{B}$$

Thus we can define a norm on T by

$$M = \||T\||_{0} = \sup \left\{ \frac{\|(Tx)(t;\omega)\|_{D}}{\|x(t;\omega)\|_{B}} : x(t;\omega) \in B, \|x(t;\omega)\|_{B} \neq 0 \right\}.$$

DEFINITION 2.6. By a random solution of equation 1.1 we shall mean

the following: the random vector valued function $x(t; \omega)$ on R_{+} is a random solution of equation 1.1 if for each fixed $t \ge 0$, $x(t; \omega)$ is a vector random variable and satisfies equation 1.1 μ almost everywhere.

LEMMA 2.8. The operator T defined on \textit{C}_{ψ} by

$$(Tx)(t; \omega) = \int_0^t x(\tau; \omega) d\tau$$

is a continuous linear operator from C_{ψ} into C_{ψ} .

DEFINITION 2.7. Let $C'_g = C'_g(R_+, \Psi(\Omega, A, \mu))$ be the collection of all continuous functions $x(t; \omega)$ from R_+ into $\Psi(\Omega, A, \mu)$ such that for g a positive valued continuous function on R_+ we have

$$\|x(t; \omega)\|_{\Psi} \leq Ag(t)$$

for some positive constant A .

LEMMA 2.9. C'_{g} is a complete normed linear subspace of C_{Ψ} where the norm in C'_{g} , denoted $||x(t; \omega)||_{C'_{s}}$, is given by

$$\|x(t; \omega)\|_{C_g^{\prime}} = \sup_{0 \le t} \left\{ \frac{\|x(t; \omega)\|_{\psi}}{g(t)} \right\} .$$

DEFINITION 2.8. Let $C' = C'(R_+, \Psi(\Omega, A, \mu))$ be the collection of all continuous and bounded functions $x(t; \omega)$ from R_+ into $\Psi(\Omega, A, \mu)$.

LEMMA 2.10. C' is a complete normed linear subspace of C_{ψ} where the norm in C', denoted $\|x(t; \omega)\|_{C}$, is given by

$$||x(t; \omega)||_{C'} = \sup_{0 \le t} \{ ||x(t; \omega)||_{\psi} \}.$$

LEMMA 2.11. The Banach spaces C_g' and C' are stronger than C_{ψ} .

DEFINITION 2.9. Let *E* be an arbitrary metric space with metric ρ . A mapping *Z* of $E \rightarrow E$ is called a contraction if there exists a real number *r*, $0 \leq r < 1$ such that $\rho(Z(x), Z(y)) \leq r\rho(x, y)$ for all *x*, *y* in *E*.

THEOREM 2.1 (Banach's Fixed Point Theorem). If a contraction operator Z is defined on a complete metric space E, then there exists a unique point $x^* \in E$ such that $2x^* = x^*$.

3. Existence of a random solution

With respect to the aims of the present study, we state and prove the following theorems.

THEOREM 3.1. Assume that equation (1.1) satisfies the following conditions:

(i) B, $D \subseteq C_{\Psi}$ are Banach spaces stronger than C_{Ψ} and the pair (B, D) is admissible with respect to the operator

T given by
$$(Tx)(t; \omega) = \int_0^t x(\tau; \omega) d\tau$$
;

(ii)
$$k(t, x(t; \omega); \omega)$$
 is a mapping from the set

$$W = \{x(t; \omega) : x(t; \omega) \in D, ||x(t; \omega)||_{D} \leq \rho\}$$

into the space B for some $\rho \ge 0$ such that

$$\|k(t, x(t; \omega); \omega) - k(t, y(t; \omega); \omega)\|_{B} \leq \lambda \|x(t; \omega) - y(t; \omega)\|_{D}$$

- for $x(t; \omega), y(t; \omega) \in W$ and a constant $\lambda \ge 0$;
- (iii) $x(t; \omega) + h(t, x(t; \omega))$ is a mapping from W into D such that

$$\|h\{t, x(t; \omega)\}-h\{t, y(t; \omega)\}\|_{D} \leq \gamma \|x(t; \omega)-y(t; \omega)\|_{D}$$

for some
$$\gamma \ge 0$$

Then there exists a unique random solution of equation (1.1), an element of W, provided that $\gamma + \lambda M < 1$, where $M = ||T||_0$ and

$$\|h(t, x(t; \omega))\|_{D} + M\|k(t, x(t; \omega); \omega)\|_{B} \leq \rho.$$

Proof. Note that by Lemmas 2.7 and 2.8 the operator $(Tx)(t; \omega) = \int_0^t x(\tau; \omega) d\tau \text{ is continuous from } B \text{ to } D \text{ . Define the}$ operator U from W into D by

$$(Ux)(t; \omega) = h(t, x(t; \omega)) + \int_0^t k(\tau, x(\tau; \omega); \omega) d\tau .$$

We must show that $UW \subseteq W$ and that for some $r \in [0, 1)$,

$$\|(Ux)(t; \omega)-(Uy)(t; \omega)\|_{D} \leq r\|x(t; \omega)-y(t; \omega)\|_{D}.$$

Let $x(t; \omega), y(t; \omega) \in W$. Since $(Ux)(t; \omega)$ and $(Uy)(t; \omega) \in D$ and D is a Banach space, $(Ux)(t; \omega) - (Uy)(t; \omega) \in D$. Thus,

$$\| (Ux)(t; \omega) - (Uy)(t; \omega) \|_{D} = \| h(t, x(t; \omega)) + \int_{0}^{t} k(\tau, x(\tau; \omega); \omega) d\tau \\ - h(t, y(t; \omega)) - \int_{0}^{t} k(\tau, y(\tau; \omega); \omega) d\tau \|_{D} \\ = \| h(t, x(t; \omega)) - h(t, y(t; \omega)) \\ + \int_{0}^{t} [k(\tau, x(\tau; \omega); \omega) - k(\tau, y(\tau; \omega); \omega)] d\tau \|_{D} \\ \le \| h(t, x(t; \omega)) - h(t, y(t; \omega)) \|_{D} \\ + \| \int_{0}^{t} [k(\tau, x(\tau; \omega); \omega) - k(\tau, y(\tau; \omega); \omega)] d\tau \|_{D} \\ \le \gamma \| x(t; \omega) - y(t; \omega) \|_{D} \\ + M \| k(t, x(t; \omega); \omega) - k(t, y(t; \omega); \omega) \|_{D}$$

where the last inequality is due to the Lipschitz condition and the fact that T is continuous from B to D and therefore bounded. However, $\gamma \|x(t; \omega) - y(t; \omega)\|_D + M \|k[t, x(t; \omega); \omega) - k[t, y(t; \omega); \omega)\|_B$ $\leq \gamma \|x(t; \omega) - y(t; \omega)\|_D + M \lambda \|x(t; \omega) - y(t; \omega)\|_D$ $= (\gamma + M \lambda) \|x(t; \omega) - y(t; \omega)\|_D$.

Since γ + $M\lambda$ < 1 , one condition of the definition of contraction map is satisfied.

We must now show inclusion. Let $x(t; \omega) \in W$. We have

$$\begin{aligned} \|(Ux)(t; \omega)\|_{D} &= \left\|h\{t, x(t; \omega)\} + \int_{0}^{t} k\{\tau, x(\tau; \omega); \omega\}d\tau\right\|_{D} \\ &\leq \|h\{t, x(t; \omega)\}\|_{D} + \left\|\int_{0}^{t} k\{\tau, x(\tau; \omega); \omega\}d\tau\right\|_{D} \\ &\leq \|h\{t, x(t; \omega)\}\|_{D} + M\|k\{t, x(t; \omega); \omega\}\|_{B} \\ &\leq \rho . \end{aligned}$$

Hence, $(Ux)(t; \omega) \in W$ implying $UW \subseteq W$. Thus by Banach's fixed point theorem there exists a unique point $x(t; \omega) \in W$ such that

$$(Ux)(t; \omega) = h(t, x(t; \omega)) + \int_0^t k(\tau, x(\tau; \omega); \omega) d\tau = x(t; \omega)$$

and the proof is complete.

The following theorem is a special case of Theorem 3.1 which is useful in various applications.

THEOREM 3.2. Assume that equation (1.1) satisfies the following conditions:

(i)
$$k(t, x(t; \omega); \omega)$$
 is a mapping from the set

$$W = \{x(t; \omega) : x(t; \omega) \in C', ||x(t; \omega)||_{C'} \leq \rho\}$$
into the space C'_{g} for some $\rho \geq 0$;

$$||k(t, x(t; \omega); \omega) - k(t, y(t; \omega); \omega)||_{C'_{g}} \leq \lambda ||x(t; \omega) - y(t; \omega)||_{C'_{g}}$$
for $x(t; \omega), y(t; \omega) \in W$, $\lambda \geq 0$ a constant; g is
also integrable on R_{+} ;
(ii) $x(t; \omega) \neq h(t, x(t; \omega))$ is a mapping from W into C'
such that

$$||h(t, x(t; \omega)) - h(t, y(t, \omega))||_{C'_{g}} \leq \gamma ||x(t; \omega) - y(t; \omega)||_{C'_{g}}$$
for some $\gamma \geq 0$.

Then there exists a unique random solution of equation (1.1) $\in W$ provided that $\gamma + \lambda M < 1$, where $M = ||T||_0$ (T as defined in Theorem 3.1 (i)) and

$$\|h(t, x(t; \omega))\|_{C'} + M\|k(t, x(t; \omega); \omega)\|_{C'} \leq \rho.$$

The proof consists of showing that under the assumption g is admissible with respect to the operator T given by

$$(Tx)(t; \omega) = \int_0^t x(\tau; \omega) d\tau$$

Let $x(t; \omega) \in C'_g$. Consider

$$|\{Tx_{i}\}(t; \omega)| = \left|\int_{0}^{t} x_{i}(\tau; \omega)d\tau\right|$$

$$\leq \int_{0}^{t} ||x_{i}(\tau; \omega)||d\tau$$

$$\leq \int_{0}^{t} |||x_{i}(\tau; \omega)|||d\tau, \quad \mu \text{ almost everywhere}$$

$$\leq \int_{0}^{t} \frac{|||x_{i}(\tau; \omega)||}{g(\tau)} g(\tau)d\tau$$

$$\leq \int_{0}^{t} \frac{||x(\tau; \omega)||}{g(\tau)} g(\tau)d\tau$$

$$\leq \int_{0}^{\infty} \frac{||x(\tau; \omega)||}{g(\tau)} g(\tau)d\tau$$

$$\leq ||x(\tau; \omega)||_{C_{g}} \int_{0}^{\infty} g(\tau)d\tau$$

$$\equiv \beta.$$

By definition of the norm in $L_{\infty}(\Omega, A, \mu)$, we can conclude that $||| (Tx_i)(t, \omega) ||| \leq \beta$ for each i. This in turn implies that

$$\|(T_x)(t; \omega)\|_{\Psi} = \max_i \{\|\|(T_x_i)(t; \omega)\|\|\} < \beta$$

which is the condition needed for $(Tx)(t; \omega)$ to be an element of C'. Since the remaining conditions are identical to those of Theorem 3.1 the proof is complete.

References

- [1] Marshall W. Anderson, "A stochastic integral equation", SIAM J. Appl. Math. 18 (1970), 526-532.
- [2] A.T. Bharucha-Reid, "On random solutions of Fredholm integral equations", Bull. Amer. Math. Soc. 66 (1960), 104-109.
- [3] Albert T. Bharucha-Reid, "Sur les équations intégrales aléatoires de Fredholm à noyaux séparables", C.R. Acad. Sci. Paris 250 (1960), 454-456.
- [4] Albert T. Bharucha-Reid, "Sur les équations intégrales aléatoires de Fredholm à noyaux séparables", C.R. Acad. Sci. Paris 250 (1960), 657-658.
- [5] A.T. Bharucha-Reid, "On the theory of random equations", Proc. Sympos. Appl. Math., 16, 40-69 (Amer. Math. Soc., Providence, Rhode Island, 1964).
- [6] A.T. Bharucha-Reid, Random integral equations (Academic Press, New York, 1972).
- [7] W.J. Padgett and C.P. Tsokos, "On a semi-stochastic model arising in a biological system", Math. Biosci. 9 (1970), 105-117.
- [8] W.J. Padgett and C.P. Tsokos, "Existence of a solution of a stochastic integral equation in turbulence theory", J. Mathematical Phys. 12 (1971), 210-212.
- [9] W.J. Padgett and C.P. Tsokos, "On a stochastic integral equation of the Volterra type in telephone traffic theory", J. Appl. Probability 8 (1971), 269-275.
- [10] W.J. Padgett and C.P. Tsokos, "A random Fredholm integral equation", Proc. Amer. Math. Soc. 33 (1972), 534-542.
- [11] W.J. Padgett and C.P. Tsokos, "A stochastic discrete Volterra equation with application to stochastic systems", Proceedings Fifth Annual Princeton Conference on Information Science and Systems, Princeton University, 25-26 March, 1971

- [12] Chris P. Tsokos, "On a stochastic integral equation of the Volterra type", Math. Systems Theory 3 (1969), 222-231.
- [13] C.P. Tsokos, "On some nonlinear differential system with random parameters", IEEE Proceedings, Third Annual Princeton Conference on Information Science and Systems, 1969, 228-234.
- [14] Chris P. Tsokos, "The method of V.M. Popov for differential systems with random parameters", J. Appl. Probability 8 (1971), 298-310.
- [15] Chris P. Tsokos, W.J. Padgett, Random integral equations with applications to stochastic systems (Lecture Notes in Mathematics, 233. Springer-Verlag, Berlin, Heidelberg, New York, 1971).

Radford College, Radford, Virginia, USA; Department of Mathematics, University of South Florida, Tampa, Florida, USA.