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Abstract

The first purpose of this paper is to give a tensor product formula of the characteristic invariant and
modular invariant for a tensor product action of a discrete group G on AFD factors. The second purpose
is to describe a characteristic invariant and modular invariant of the extended action to a crossed product
in terms of the original invariants.

2000 Mathematics subject classification: primary 46L40.

1. Introduction

The cocycle conjugacy class of an action a of a countable discrete amenable group G
on an approximately finite dimensional (abbreviated AFD) factor J% was completed
in the recent article [11]. This was done by means of the associated characteristic
invariant x(°0 € A(G, a~'(Cnt(^)), Hl

e(^(^))) and the modular invariant va e
HomG(a~'(Cnt(^)), Hl

e(J?(^D) which is the canonical pullback of the intrinsic
invariant of the AFD factor, which is the underlying algebra of the action. These
results, due to many mathematicians [9, 10, 12, 13, 14, 17, 19, 20], started from the
work of Connes [3, 6]. A comprehensive account of the subject is presented in the
joint work of Katayama, Sutherland and Takesaki cited above. In this article we are
concerned with the problem of determining these invariants for tensor product actions
and actions on crossed product from those associated with the original action.

In the case that both carrier algebras M\ of ax and Jtx of a2 are of type IIi, the
invariants of the tensor product action or, ® a2, say or, on M = Jt\ ® Jii are almost
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358 Yukako Miwa and Yoshikazu Katayama [2]

just products of the original ones. So it does not pose any particular difficulty. But
in the case that jtf\ and jfti are not semi-finite, it poses an interesting challenge.
For example, the tensor product a, <g> a2 of a € C n t ( ^ ) and a2 € Cnt(^>) is not
necessarily in CntG/^i <g> M2) which means that (c*i <g> a2)~'(Cnt(^i <g> ^ 2 ) ) 7̂
a,- ' (Cnt(^,)) n a2-'(Cnt(^2)). Thus, the basic ingredient a- ' (Cnt(^)) of the
characteristic invariant x(a) n a s t o be determined based on more data (x(«i)> vat]
and (x(a2), vaj not just W, = a,-'(Cnt(.^r,)) and N2 = a2~

l (Cnt(^2)) (See The-
orem 2.1). Every Ill-factor is a crossed product of Iloo-von Neumann algebra «/f by
dual action 0 of modular automorphism group [21] and the centre tf of jY with an
action 0 is called the smooth flow of weight for an AFD III factor. The AFD III
factors are classified up to isomorphism by [5,4,7,15]. In the case of an AFD factor,
it is well known that every centrally trivial automorphism is an extended modular
automorphism up to inner automorphism and the canonical extension on J/ is also
inner [2, 8, 13]. Therefore in the proof of Theorem 2.1, we deal with automorphisms
on </f. To show that the tensor product formula is computable, we give a standard
form of characteristic invariant and modular invariant in the case of IIIX (0 < X < 1)
factors and we propose the tensor product formula of them exactly in this case.

The second purpose is to describe the characteristic invariant and modular invariant
of the action, which is extended to a crossed product, in terms of the original invariants.
Sekine [ 18] already gave the smooth flow of weight of the crossed product by making
use of the original smooth flow of weight and the invariants of an action. We utilize
his frame to define the characteristic invariant of the extended action. Here our
problem is also how to define the normal subgroup of G which is a centrally trivial
part of the extended action. We characterize this normal subgroup with a cocycle
(See Theorem 3.2). Once we characterize it successfully, the computations of the
invariants for the extended action are relatively easy. It is shown in Proposition 3.3
that its invariants are computed explicitly in the case of the crossed product of IIIA

(0 < A ^ 1) factors by discrete abelian group.
The first author would like to express her sincere gratitude to Professor Hisashi

Choda for his helpful suggestions and constant encouragement.

2. Characteristic invariant for the tensor product of actions

First we give a brief review of the properties of characteristic invariants (see for
example [20]).

Let G be a separable locally compact group with a normal subgroup N and a be
an action of G on an abelian von Neumann algebra s/.

The set Za(G, N, %(£/)) consists of pairs (X, /i) such that

X : N x G-> <& (JZ/) and \i : N x N -
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are Borel maps satisfying the following conditions:

(1) n(m,n)fi(mn,l) =am(fj.(n,l))ix(m,nl), m,n,leN;

(2) ag(k(g-lng,h))k(n,g)=k(n,gh), meN,g,h€G;

(3) \(m,m) = (J.(m,m~lnm)ix(n,m)*, m,n€N;

(4) k{m, g)am(Hn, g))k(mn, g)*

= ag(n(g-lng, g~lmg))fi(n, m)*, m, n e N, g € G;

(5) /i(m,/i) = l and k(n, g) = 1

if and only if m, /z 6 N, g € G is the identity.

ThesetBa(G, N, &(£/)) consists of pairs (did, d2d), where the map d : N
is Borel and

Udid)(n,g)=ag(d(g-lng))d(nr;

\(d2d)(m, n) = d(m)am(d(n))d(mnY.

The quotient group Aa(G, N, %'(&/)) is as follows

AO(G, N, Vis/)) = Za(G, N, (U(*/))/Ba(G, N,

and it is called a characteristic invariant for the action a. The action a is extended
to an action of G x U. (denoted by the same a) and N acts trivially on jzf, and K acts
ergodically on &/.

By [20, Theorem 2.2], we have a natural exact sequence

Aa(G x R, W, <2r(*O) -»• An(G, N

For x = [^-.M] ^ Aa(G x R, N, <&(&/)), a restricted characteristic invariant
WNXG> M] on G is an element of Aa(G, N, 9/(stf))* and the map c : n e N -+

k\Nxn(n,-) = c(n)(-) induces a map v : n € N -> [c(n)] € Hl
a(R, W(*/))

which is a G-equivariant homomorphism. This is called a modular invariant. For
X = [k, n] 6 Aa(G, N, <&(£/))*, we define

\jl(t, n, g) = a,(/j.)n*(m, n), ( r e l , m , n 6 N, and g e G),

and

: x 6 AB(G, ^ , ^ ( ^ ) ) R -> Sdx) = Ik. U] € H^(K, Ba(G, N,

:v& Homc (N, H^(K,

2c] € Hj
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where the map c : n € N -»• c(n) € Z^(R, <&(&/)) is a Borel map lifting v. For
(X, v) 6 Aa(G, N, &(£/))* x Homc(W, Hj(Dt, flr(.sO)), we define

We remark that by [20, Lemma 2.1], for t € R, g e G,

fa, (*)A.*(/i, *) = a^Ms"1**, f))M«, 0*;(2 1) f
{ ( ) * ( » i , w) = k(m, t)am(k(n, t))k(mn, t)*

for keZa(GxR,N, &(*/)). x
From now on, we assume that the group G is discrete. We consider a tensor

product of two actions of G on AFD factors of type III. Our aim is to show that the
characteristic invariant and the modular invariant for the tensor product of two actions
can be expressed by (2.4) and (2.5). We give an example in which its invariants can
be computed explicitly.

Let M be approximately finite dimensional (AFD) factor of type III and a be an
action of G on jft'. We may suppose that the action a admits an invariant dominant
weight <p on jft. A dual action 8, of the modular automorphism a* associated with <p
is defined on a crossed product ^V = M xCT* R by

where x € Ji and t,s € R and the set [nv(x), \v{s) : x e ^ # , j e i ) generates JV.
Thanks to Connes' Radon-Nikodym cocycle [1], the isomorphic class of the crossed
product jtf y\a* R is independent of the choice of weights. For an automorphism
Y € A u t ( ^ ) , we can extend canonically an automorphism J/ e

f Y(n<p(x)) *V(Y(X)) forx e J(\

j ( M ) ) ( ( D l • D(p)s)Xv(s) for s e R,

where (D<PY~1 '• D<p)s is Connes' cocycle [7, 8]. The centre If of «/f is isomorphic
to a smooth flow of weight for ^# and the restricted action 6, on ^ is called a flow.
Let c* be an action of G on jft. The restricted action ag on if is just mod ag which
is called the module. We sometimes denote the above restricted actions by the same
symbol 0, and ag.

The definition of characteristic invariant and modular invariant for the action a on
flow of type III are found in [20] or [13]. Here we give definitions which are equivalent
to the original ones in [20]. Let N = Na be a normal subgroup of G defined by

Na = [n € G : an = Ad u(a)n for some u(a)n e
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and the unitary un = u(a)n yields a characteristic invariant A(a) = [k, /JL]
AO(G, N, &(<#)) and a modular invariant va = [c(n)] e HomG(N, H^IR,
for the action a as follows:

(2.3) wmKn = fj,(m,n)umn;

dt(un) = c(n)(t)un,

where n,m e N,g e G and r e IR.
Let M\ and ^ 2 be AFD factors of type III and a and p be actions of G on M\

and Mi respectively. With notation as above for each J%\ and M2, we define crossed
products J/\ = jtfx y\ai, K and ^ = ^ 2 *I<T* K for invariant dominant weights <p
and i/r. The action a and /3 can be extended to action ag and fig on ^K and ^ .
Moreover ag and y3x commute with each dual action 8) and 6?, which are denoted
by a, and fi, respectively. We denote a product action as#,' of G x IR on J/\ by
a(g,,) without any confusion. Similarly, we define /5(s,,) = J3gd?. It is easy to check
that the crossed product ^ = {M\ ® J%i) y\a*®* K is isomorphic to a subalgebra
(JCX ® ^ 2 ) x^8.a* {(', t) : t e K} of ( ^ , >JffV IR) <g> ( ^ 2 xiff* K). By the Galois
correspondence [21, Theorem 7.2], the von Neumann algebra jV3 is isomorphic to
the fixed point algebra [y e J/x <g> J/-i : a, ® P-t{y) = y], which is identified
with c/*3. The smooth flow of weight % = Z{jV^) for Mx ® ^2 is isomorphic to
({y e^®^2:a,® 0_,(y) = y,te. R}, a, ® 1), where % = Z{JK).

Let Xi — [Xi, ju-i] and xi — [̂ -2-/̂ 2] be characteristic invariants in h.a(G,N\,
fy&x)) and Afi(G, N2, ^ ( ^ 2 ) ) associated with the actions a and £ and cKnXO,
(/ = 1, 2) be their modular invariants. We identify ^ 3 with {_y e ^ ® ^2 : 01, ®
yS_,(y) = ) , t e K}. We define a normal subgroup Ni of G and A3(n, g), /J-3(m, n) e
% by

(2.4)

We also define, for n G Af3, / G ! ,

(2.5) c3(n, /) - (a, <g> ( ) (4 )< (c , (n , r) ® 1),

where c,(n, /) ® c2(n, - r ) = rfn(of, ® P-,)(d*). Using

(a, ® i)(d*n) = (1 ® A ) « ) ( c i ( « , 0 ® j

= {« e Ni n N2 : c,(n, 0 ® c2(n, - r ) = </„(«, ® / ? _ , ) « ) ,

for some Jn e ^ ( ^ , ® ^ 2 ) } ;

n, «) = A.,(n, g) ® A.2(n, g)(fi, ® pt){ds-iag)d*H, g G G;

,n) = d*mndmdniix(m, n) ® fi2(m, n), m,n e /V3.
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it is easy to check that c3(n, t) = (i <g> p,)(dn)d*(l <8> c2(n, t)).
It was shown in [16], by an algebraic method, that the tensor product of invariants

is well defined and it satisfies the conditions (l)-(5) of characteristic invariant and
modular invariant with 5([A3, /z3], [c3]) = 0. The proof is valid even when the real
field K is replaced by another locally compact group. Here we shall prove the tensor
product formula of invariants in the operator algebraic way.

THEOREM 2.1 (Tensor product formula). With notation as above, the characteristic
invariant and modular invariant for the product action a <g> ft of G on J{\ <g> ^ 2

is[X.3,n3] e Aa00(G, N3, &(%))* and [c3(n, •)] € Homc(yV3, H^,(K, %{%))),
where A.3, /z3 and c3 are derived in (2.4) and (2.5) ffvm the invariants (A,, fit) and
vt = [Ci(n)], (i — 1, 2) for the actions a and P on M\ and jftt respectively.

PROOF. By (2.2) we have that a <8> P on JA is the restriction of a <g> ^ on J^ c
Jr\ <8> Jfi- For n e Nam, take Un e JA, such that (an ® p~n)(x) = Ad Un(x) for
x € JA,. By [3, 5, 13], the element n is contained in Na n Np. Therefore, we have

= Ad«(a)n ® u(0)n(x)

for x € ^V\ ® <ŷ2 and

Ad £/„(*) = Ad «(<*)„ <8>K08)n(x)

for J: G ^y^. It follows from JA, D M\ <S) ^ 2 and [11, Lemma 1.1] that there exists
dn € ^ ( ^ , ® ^ 2 ) such that Un = dn{u{a)n <g> u(P)n). Since (a, (8> P-,){Un) = Un for
r € K, we have, by (2.3),

dn(u(a)n ® u(P)n) = (a, (81 ^_,)(dn)a,(«(a)n) ® p

= (a, (8) P^)(dn)Ci(n, t)u{a)n ® c2(n, -t)u(P)n,

which implies that rfna, (8) P-,(d*) = C\{n, t) <8> c2(n, —t).
Conversely, suppose that for n e Na !~) Np, there is some dn € ^ ( ^ 1 <8> ^2) such

that Jn(ar <8> / 3_ , )« ) = c,(n, /) ® c2(n, - / ) • We set Un by rfn(M(a)n <8> M(y3)J. Then

Ad Un(x) = Addn(6tn <8> pn)(x) = («„ ® pn)(x)

for J: € c/K <8> ^V2. Moreover, since we compute

(a, <g> p.,)(Un) = (a, <8> P-,)(d)c{(n, t)u(a)n ® c2(n, - r

the unitary £/„ is in ^ . We have shown that

Na9fi = {n£NanNfi: dn(a, (8> /?_,)«) =c,(«, 0 ® c2(n, -t)

for some rfn €
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Using (2.3) we obtain

= («, <8> Pg)(dg->ng)(ag(u(a))g-,ng) ® Pg(u(P)g-lng

= (a, ® pg)(dg-int)d^kdn, g) ® M « . *) ;

i3(m,n) = UmUnU*mn = d*mndndm(fj.i(m, n) ® ix2(m, n));

c3(«, 0 = (a, ® *)(£/„)£/; = («r ® 0(4,)<(c,(n, f) ® 1).

In the case of III0-factors, the tensor product formula of characteristic invariant
and modular invariant depends heavily on the flow of weights and we cannot give its
formula explicitly. We give a standard form of characteristic invariant and modular
invariant in the case of III^-factors (0 < X < 1) and we show the tensor product
formula of them exactly.

Let M be a factor of type IIIX (0 < A. ^ 1). It is well known that the flow of weight
G ^ W ) , F-*) = (<«f, d,) is regarded as (L°°([0, - log A)), translation by -t) and the
cohomology group Hg(R, WCtf)) is as follows

where r = -27r/log^. We may choose the modular invariant [c(n)] e H ^
to be of the form c(n)(t) = eilv(n), where v(n) € [0, T). We identify the real number
v(n) with the modular invariant v(n) — [c(n)] e Hg(K, ^i^)). The following lemma
was proved in [20], we include here a brief proof.

LEMMA 2.2. Let a be an action of G on AFD factor JK of type IIL. (0 < X < 1).
The characteristic invariant [X, /J.] of a is of the form (up to cohomology)

I X(n, g)(w) is a constant function;

fi(m, n)(w) = JZ(m, i M ) ( ) M )

for w € [0, —log A.) and]Z(m, n) is J-valued function satisfying

I J(, ) / ( , ) = Ji(n, l)JZ(m,I
X(m, g)X(n, g)X(mn, g) =

where modag(f )(w)=f (w-v(g)),forf eL°°([0, - log X)), where t(g)e[0, - log X).

PROOF. We may assume c(n)(t) = e'lv(n). By (2.1) and v(g~lng) = v(n), we have

a,(W(n, g) = ag(c(g-lng, t))c(n, t)* = e " ' ^ - ' ^ - " " " = 1.
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Since a, is ergodic, the unitary k(n, g) must be constant. By the Fourier expansion
of/i, (J-(m, n)(w) - J2kake

iwk(2"/]osk), where ak € C. By (2.1), we have

m, n) = c(m, t)c(n, t)c(mn, t)* = g"(v(«>+»oo-i'e»»».

By comparison of the Fourier coefficients, we get

a e-ilk2n/logk _ eit(v(m)+v(n)-v(mn))a

for k el. Then there exists a unique k(2n/ log A.) = v(mn) — v{m) — v(n) such that
ak £ 0. Therefore, /i(m, n) is of the form 7J(m, n)e™wmn)-V(m)-vw)^ w h e r e -^^ n )

is scalar. The statement (2.7) follows from condition^ (1) and (4). •

Let JKX, and JKi be AFD factors of type IIIX, and IIIX2 (0 < A.,, k2 ^ 1), and a
and ft be actions of the group G on J(\ and Mi respectively. We remark that the
following lemma is related to [13, Lemma 1.7].

LEMMA 2.3. Let vt be the modular invariants for a and fl, where v,(n) e [0, 7])
and Ti = —27r/logX, respectively (i — 1, 2).

(1) lf^ft\ and^iCireoftypeWl^ and\\\),2 withO < X.lt X2 < 1, there is an operator
d e L°°([0, -logX,) x [0, -\ogk2)) such that

(2.8) a, ® p,{<T)d = c, (n)(t) ® c2(n)(-t) = <*"<•""•>-""•»

if and only if there exists (Ar,(«), k2(n)) e I? such that

(2.9) vi{n) + kdn)Tt = v2(n) + k2(n)T2.

Moreover, the operator d can be chosen to be of the form

(2.10) d(wi,w2) = e-
i{u"k'{n)T'+wMn)T:i)

for(wuw2) 6 [0, -logA.,) x [0, -logA.2).

(2) If M\ is of type III^ with 0 < A.i < 1 and M2 is of type III|, we may replace the
condition (2.9) and the operator d in (2.10) by

(2.9')

(2.10') d{wx) = e-
iu"kl{n)T'.

PROOF. (1) The operator d is expressed by the Fourier expansion

d(wx, w2) =
k,m
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We compute

Characteristic invariant

a,
x e-'lW2+l)mT2

k,m

e-iw2mT2.

k,m

e-it(v,(n)-V2(n))^ _ V"* e-it(v,(n)-v2(n)) Q e-i

k,m

By (2.8), there exists (k^n), Ic2(n)) e I2 such that

365

wi(«) - v2(n) = -ki(n)Tt + k2(n)T2.

Conversely, take a function d{wx, w2) as follows d(wu w2)
then by the condition (2.9), we conclude

a <8> 8 (d*)d = g'«

(2) If jft-i is of type HI x, the smooth flow of weight ̂ 2 is trivial. Therefore the operator
d is a function on [0, — log A,). The statements in (2) can be shown by repeating the
argument of (1). •

If the invariants (A.,, M.) are of the form (2.6) for i = 1,2, then we compute
c3, A.3 and/u,3 using the definition, with the function dn = d in (2.10)

(2.11) c3(n, t) = (a, <8> i)(dn)d*n(Cl(n, t) ® 1)

(2.12)

(2.13) = d*mndmdn{n,x{m, n)

^ UTirn n)Hr(m n\g
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is of type III], we can take dn as in (2.W). Then

t) = e"("i('|)+*i(n)7")-

,t) = Xt(n,g)X2(n,g)eix'ls)ki(g''n8)T'e-iu"(k'ls''ns)-

n) = JTdm, nWi(m, n)
x eiwl(v,(mn)-vl(m)-vl(n))eiw,(k1imn)-kl(m)-kl(,n))Tl

[10]

If log X2/ log A! is rational with logA.2/logA., = 12/U simple fraction (/2,/i 6 N),
then we '
We set
then we set X3 = X^'1 = X1/'1, and the tensor product factor M\ <8> -^2 is of type

(2.15) v3(«) = (*,(/i)r, + vi(n)) - + to, r3),
where T3 = —litI log X3 and [ • ] is the Gauss symbol. If log X2/ log Xt is irrational or
A2 = 1, then M\ <8> -^ 2 is of type III 1. Hence we set

(2.16)

PROPOSITION 2.4. (1) / / log A.2/ log A.) is rational, then the characteristic invari-
ant (X3, /z3)/or r/i^ product action a ® fi of G on jft\ ® M2 is cohomologous to

X\(n, g)X2(n, g)e'ar'<g)+T

forw e [0, -logA3).
(2) //log X2/ log Xi is irrational or Ji2 is of type III,, then the invariant (A.3)

a <g> ft is cohomologous to

X\(n, g)X2(n, g)e'iiT'l/i)+T2(g))V:ifg~'ng)~r'

PROOF. (1) By identifying L°°([0, -logA.3) x {0}) = L°°([0, - logX3)) with

{/ G L°°((0, — logA-i) x [0, — logA.2)) '• f (w\ — t,w2 + t) = f (w\, w2)},

we may regard X3 and /x3 in (2.12)—(2.13) as

A3li, gj — k\\n, g)K2\n,g)e

(2.17)

, n) = /Z7(m, n)
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forw e [0, - log A.3). Since *:,(n)ri + v1(n)-v3(/j) e T^I, we can consider a function
/(n)on[0,- logX3)

We perturb A.3 and/x3 by/(n) . Then we have, by v^g^ng) = v1(n)andu3(g~'ng) =

(n, g)(ag <g> pg)(f (g-[ng))f (n)*
_ 1 (n> «\ei(«'-ri(«)-T

since v,(n) + *i(n)r, = v2{n) + k2(n)T2 and (2.17),

= k\(n s)X2(n p)e'(<ri<g)

and

H3(m,n)f(m)f(n)f(mny

(2) Since v(mn) = v(m) -f v(«), /:(^"'ng) = A:(n) and k{mn) = k(m) + k(n), we
have, by (2.15),

(n, g) = A.,(

n, g) = /ZT(m, n)JZ2~(m, n).

It is easy to show (use (2.9)) that

Thus we obtain the conclusion o( (2). •

3. Characteristic invariant for discrete crossed product

Here we deal with characteristic invariant and modular invariant of the action
induced up to a discrete crossed product and we give an example in which its invariants
are computed explicitly.

Let G and H be discrete groups and a and fi be actions of G and H on an AFD
factor <4% with as/JA = phag forgeG and h € H. The action fi is supposed to be an
outer action of an amenable group H in order that a crossed product M x^ H is an
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AFD factor. The action a of G on Jt can be extended to an action (which is denoted
by a) on the discrete crossed product jft ~Ap H satisfying

(3.1) €?,(*•,(*)) = *,(«,(*)), ag(kp(h)) =

where Jt »p H is generated by {7ip(x), X^(/i) : x e Jl', h e H). In this section
we compute the characteristic invariant and modular invariant for the action a. By
perturbing an action a x p{g h) = agph by a cocycle, we may assume that it admits
an a x ^-invariant dominant weight <p on M [20, Proposition 1.1]. We extend the
actions or and £ to actions a and ^ on Jf = J( xaf K. Since (J( •*$ H) xa* K is
canonically isomorphic to Jf x^ H, where ^ a duat weight of (̂  [18], we may regard
the action a as

f
\ag(lfi(h)) =

where {^(JC), Xp(h) : x e jV, h e H] generates jV xî  / / . The action a is denoted
by the same symbol a. Let Np be a normal subgroup of H defined by fi~x

 (\M{JV))

and (A, /A) and c(n, /) be the characteristic invariant and modular invariant of a x p.
A twisted crossed product ^ x id4l/l Np of the centred = Z{,JY) by trivial action plays
a crucial role in the description of invariants for a ([18]), where fifi is a restriction of
fi on Np. The invariants X and c(n, t) give actions y of H and F of K on ^ x>,d M̂  ^
for an element £/€/V/I /̂Z/ 6 ^ xiw,^ ^ as follows

(3.3)

where rf; 6 ^ , Z/,Z;2 = M^('I. '2)Z/,/2 and 0, is the flow on ^'. Moreover, for g € G, we
define an action p of G by

We set a normal subgroup Naxp = (a~x~~fi) ' ( Int(^)) of G x H and anh(k) e
& Kid.*, Nt> '• f o r ("< h) G Na*p, a n d / : € / / ,

(3.5) an.h(k) =
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LEMMA 3.1. For (n, h) € Naxp, the an<h is y-cocycle in tf x^,,,, Ne. Namely,
<*n,h(k)Yk(an.h(l)) = an,h(kl). Moreover, anh and anj are cohomologous with

n, h), (e, h-ll))*Zh-'i,for (n, h), (n, I) e A ^ , namely

an,i(k) = (M((«, h), (e, /T1/))^-',) V*(*)n(M((", h), (e, /T

forks H.

PROOF. We set a'nh(k) = v'k(u{n, h)lp(h)*Ku(n, h)kp(h)*)\ where

and anfih = Adu(n, h).

Since AdM(n, h)k^{h)*\^ = an and fik commutes with a, the a'n h(k) is an element
of Jr" n {Jf >ip H). We compute, using kh~lk~lh e Np,

a'nh(k) = pk{u(n, h))kp{kh-lk-'h)u{n, h)*

= k({n, khk~l), k)u(n, khk'1)^^ (u(n, hT

= k((n, khk~l), k)u(n, khk~x)

x u{e, h-xkhk-l)*u(n, h)*u(e, h

= k((n, khk~x), k)u(n, khk~l)n((n, h), (e, h-lkhk'l))*u(n, khk~1)*

= k((n, khk~l), k)n((n, h), (e,

x u(e, h l l l

By the anti-isomorphism U in [18, Lemma 2.4], we have n(anh(k)) = a'nh(k). It
follows from the definition of a'n h(k) thata^, h(k) satisfies yk'(a'n h{l))a'n h(k) = a'n h(kl).
Therefore, anih(k) satisfies anh(k)Yk{anJt{l)) — an,h(kl). We choose another unitary
u(n, I) satisfying a x fi{nl) = Ad u(n, I) for (n, I) e Naxp. Then we have

Therefore, there is d € J/" n ( ^ x>̂  H) such that u(n, 1) = d • u(n, h)kp(h-[l) and
we have

d = u(n, h)*u(n, I)k0(h-ll)* = u(n, h)*u((n, h) • (e, h~ll))lfi(h~lI)*

= u(n, h)*n((n, h), (e, h~ll))*u(n, h)u(e, h~xl)kp{h~xI)

= n((n, h), (e, h-ll))*u(e, h-ll)kp(h-ll).

Therefore, i"IO((n, h), (e, h-ll)Yzh-u) = d. Since

a'nl(k) = yk(d)yk(u(n, h^k-11)1^1)^(1)1^1)^^, h)*d*
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we conclude

anJ{k) = (n((n, h), (e, r l 0 ) t Z H ) t f l , | i W y 1 ( ( M ( » , h), (e, A"1/))*?*-./). •

REMARK. If the group H is abelian, the y-cocycle anJl(k) is just k((n, h), k). It
follows from (2) in the definition for k that k((n, h), •) is y-cocycle. By making use
of the definition (l)-(4) for the characteristic invariant, we can prove Lemma 3.1 in
an algebraic way, but its proof is rather complicated.

Next we shall show that the characteristic invariant and modular invariant for a can
be expressed as the operators in <€ »id.^ Np by making use of the anti-isomorphism
n in [18, Lemma 2.4]. N

THEOREM 3.2. Let N& be a normal subgroup a"1 (Int(</K xi^ H)) of G and let
[an,h(n)] denote the class ofanMn){k) in Hl

y(H, tf x ^ , Np).

(1) The group N& is

( n e C : (n, h{n)) G Naxfi and [anMn)] = 0, for some h(n) e / / } .

(2) The characteristic invariants (A., fx) in & ~A id^f Np)Y for a are given by

~k(n,g) = \((n,h(g-{ng)),g)

(3.6) = k((n, h(myxh{n)h{m)), h(m)-])

x /x((m, h(m)), (n, h(m)~lh(n)h(m)))

x fx((mn, h(mn)), (e, h(mn)']lh(n)h(m)))*

X Zl,tn,n\-lh<n\h(n,)Vr,L(b\

for (n, h(n)), (m, h(m)) 6 Naxp, g e G.

The modular invariant c{n) is given by

(3.7) -c(n){t) = c(n, h(n))(t)F,{b(n))b(n)%

where aaMn)(k) = b(n)yk(b(n)*) for some b(n) e ^ x,</,M/, Nfi and p, y and F are
given in (3.3) and (3.4).

PROOF. (1) We note, firstly, that the cohomology class of an,h is independent of the
choice of h(n) by Lemma 3.1. Take n € Na and choose a unitary Un € Jf x^ H such
that dn = Ad Un on jY ~Ap H. Since Un is of the form

heH
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where vh € JV', it follows from Unx — an(x)Un, x € «/f x^ H that

f vhph(x)kf)(h) = an{x) 2_^ vhkfi{h), for x € J/.
heH heH

Hence we have vh-ix = anph(x)vh-i for heH. By [18, Lemma 2.3], if an/3h

is not inner, then vh must be zero. Hence there is h(n) e H such that anp~hM is
an inner automorphism of Jf. We choose unitary u(n, h(n)) e ^{^V) such that
<Xnfih(n) = Ad«(n, h(n)). We compute, for x e «/f,

Ad«(n, ^(n))^^^))*^) = aJHm)fc*n)(x) = «„(*) = Ad Un(x).

We set b'{n)* = u(n, hin^k^hin))* U* € JT' C\ {jV x^ / / ) . Since the extended
automorphism an satisfies an(k0(k~1)) = kpik'1) for k e H, we have

= b'(n)u(n, hinVipihWyipik-^ipihWMn, h(n)Yb'(n)*.

This implies that

Ykib'(ny)b'{n) = yk(u(n, h(n))if,(h(n)y)(u(n, /i(n))^(/i(n))*)* = a'nMn){k)

and we have

b(n)yk(b(nT) = U(b\n))yk(n(b'(ny)) = Y\(yk{b'(n)*)b'(n)) = anMn).

Conversely, suppose that there is b(n) € ^ ' x,-rfi/i/I ^ such that b(n)yk(b(n))* = an,/,(n)

for some (n, /i(n)) 6 A âx̂ . We set

(3.8) [/„ = b'(n)u(n, h(n))Xp(h(n)y,

where fc'(n) = FT1 (£(«))• Then we have for x e JV, k e H,

Ad Un(x) = Adb'(n)an(x) = an(x);

Ad Un(l0(k-1))

= b'(n)u(n, hinVipihWyipik-'fXpihWMn, h{n)yb'{n)*

= Hk-l)yk(b'(n))yk(u(n, X ( ^

Hence the automorphism an on c/f x^ // is inner with the unitary Un in Jf x^ // .
Thus we have proved the statement (1).
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(2) Let Un be as in (3.8). We compute

«,(!/,-.„) U*n = ag(b'(g-lng)u(g-lng, h(g-lng))kl>(h(g-lng)y)

xifi(h(n))u(n,h(n))*b\ny

= b\nYctg{b'{g-xng))k«n, ft(«~ V ) ) . g)u(n, ^

x lts{h(g'lng)-xh{n))u{n,h(n)y

= b'{nyas(b'{g-lng))k((n, h(g-'ng)), g)u(n,

x &(,-.„,-.*(,,,(«(«, h(n)y)ip(h(nylh(g-lng)y
= b'(nyag(b'(g-lng))mn, h(g^ng)), g)u(n, h(g-lng))

x u(e, h(n)-lh(g-lng)yU(n, h{n))*u(e, h(nyxh{g~lng))

x
= b'(nyas(b'(g-lng))k«n, h(g-]ng)), g)

x /i((n, h(n)), (e, h(nylh(g~lng)))*

x u(e, h(nrlh(g-lng))k,,(h(n)-lh(g-lng)y.

Then the characteristic invariant A. for a is of the form

k(n, g) = k((n, h(g-'ng)), g)n((n, h(n)), (e, h{nylh(g-lng)))*

We compute

U*U»K* = b'(m)u(m, h{m))kp{h(m)Yb'{n)u(n, h(n))kp(h(n)y

x (b\mn)u(mn,h(mn))kp(h(mn)yy

= b'(mnyb'(m)y-<m)(b'(n))u(m, A(m))I/,(A(/n))*M(fi, h(n))

x kp(h(n)ykp(h(mn))u(mn, h{mn))*
= b'{mnyb\m)Y'h^){b\n))u{m, h{m))k({n, h{m)-{h{n)h(m)), h{myx)

x u(n, h{my{h{n)h(m))kfi{h{myxh{ny]h{mn))u{mn, h{mn))*

= b'(mnyb'(m)y;-Jt)(b(n))k((n, h(mylh(n)h(m)), h{m)~l)

x M(WJ, h(m))u(n, h(m)'lh(n)h(m))u(e, h(mnylh(n)h(m)y

x u(mn, h(mn))*u(e, h(mn)~lh(n)h(m))kp(h(mnylh(n)h(m)y
= b'(mnyb'(m)y-l

m)(b'(n))k((n, h(mylh(n)h(m)),

x /x((m, h(m)), (n, h(m)~lh(n)h(m)))

x (i((mn, h(mn)), (e, h(mn)~]h{n)h(m))Y

x u(e, h(mn)-{h(n)h{m))kp(h(mnyxh{n)h(m)y.
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Then we obtain

, m) = k((n, h{mTxh{n)h{m)), h(m)-l)n((m, h(m)), (n, h(mTx h(n)h(m))

x n((mn, h(mn)), (e,

Finally, we compute

d {n, h(n))(t)u(n, h(n))k0(h(n))%(h(n))u(n,

where 0, is a dual action on JV »^ H for the modular automorphism a15. Then we
obtain c(n, t) = c(n, h(n))(t)Ft(b(n))b(n)*. D

From now on, we assume that the group H is abelian and the factor J( is of type
IIIx (0 < k ^ 1). We shall give a form of b(n) in Theorem 3.2 and the invariants
X, p., c explicitly. If ^ is of type III^ (0 < A. < 1), we may assume that the invariants
(X, /x) and v for the action a x ft of G x // are as in Lemma 2.2. Since the y-
cocycle anJl{k) is k((n, h), k), it follows from (2) in the definition for X that a map
k e H -> A.((/z, fc), fc) e T is a character of // . Therefore, we define 4>(n, /i) e / / by

for ke H, where H is a dual group of H. For p 6 2, the map / e // - • g'r"»''r e T
is also a character of // , where T = — 2;r/ log A and we define *(p) 6 H by

for Z € H. Then the map * : p e Z -* *(p) e / / is a homomorphism. By (2.7), we
have

k((m, h), k)k«n, /), it) = H(mn, hi), k)0k(ii«m, h), (n, /)))/*((«, h), (n, /))*
= A((mn, W), jfc)e«W(»«ii.*)+»("./)-v(»i..*0)j

which implies that

(3.9) *(/«, A) + <t>(n, /) = O(mn, A/) + vj/(v(OT, A) + v(/i, /) - v(mn, hi)).

PROPOSITION 3.3. With notation as above, if JC is of type IIIX (0 < X < 1)
(respectively IIIi), we have the following statements.
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(1) The y-cocycle an<h>for in, h) € Naxp is coboundary with bin) e *£ xWiW Np,
namely an<hik) = bin)ykibin)*) if and only if there is I € Np such that

Vip) = <f>in, h) + <J>(e, /), irespectively <!>(«, h) + <t>ie, I) = e)

for some p £ 2. Moreover, we can choose hin) € H and pin) e 2 such that
in, hin)) € Naxp and^ipin)) = <t>(n, hin)) irespectively <I>(n, hin)) = e)andb{n)
can be chosen to be oftheform bin) = eiwp(n)T € 'tfXid.^Np, irespectively bin) = I),
where w € [0, — log A.).
(2) The invariants k, fi and c are as follows

kin, g) = k(in, hig-'ng)), g)^Hn, h{n))\e, hin)-lhig-{ng)))*

fiim, n) = n(im, him)), in, h(n)))k((n, h(n)), him)'1)

x fi(imn, h{mn)), (e, A(mn)
iw(p(m)+p(n)-p(mn))T -ir(h(m)-l)p(n)T.

respectively

>) = k(in, hig~lng)), g)iiiin, hin)), ie, h{n)~x hig~x ng)))

i, n) = ix{im, him)), in, /i(n)))x((n, hin)), him)~l)

x n(imn, himn)), ie, himn)"1 hin)him))*

\ L1

PROOF. (1) Suppose that there is bin) G ^ x,d,w Nfi with

(k,<t>in,h))=bin)ytibiny).

Since bin) = X!/e/v d/Zi for J/ G c£, we compute

(k, -<t>in, h))bin) = ]T(jfc, - * ( « , h))d,z,.
leN,

By the comparison of coefficients, we have
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for all / € Np. Since *€ is isomorphic to L°°([0, — log A)), we have

where d, = £ p e Z dtiPeiwpT (Fourier expansion of dt). Then we obtain, again by the

comparison of coefficients,

d,.pe-im"T = (k, - * ( / ! , h) - <i>(e, l))d,,p

for all p € 1. This implies that * ( p ) = 4>(n, h) + 4>(e, /) for some p e l and

I e Np. Conversely, we suppose that for n e Np, there arepel,leNp and h e H

with (n, /i) € Naxfi such that * ( p ) = <D(H, /I) + <D(e, /). We set

bin) = eiwpTz,

and compute

= {k, *(p) - <t(e, /)> = (*, *(«, h)) = k«n, h), k) - an,h(k).

By (3.9), we setp(n) e 2 and A(n) € N0

p(n) — p + v(n, ft/) - v(n, h) - v(e, I);

h(n) = Ih,

which satisfies *(p(n)) = 4>(n, /i(n)). Then we may take b(n) = e'
wp(n)T. Making

use of b{n), (3.6) and (3.7), we conclude that the statement (2) holds. Even when jfl

is of type IIIi, we can prove the statement using the same argument. •
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