THE HOMOTOPY SET OF THE AXES OF PAIRINGS

NOBUYUKI ODA

Introduction. Varadarajan [13] named a map $f: A \rightarrow X$ a cyclic map when there exists a map $F: X \times A \rightarrow X$ such that

$$
F \mid X \vee A \simeq \nabla_{X} \circ\left(1_{X} \vee f\right)
$$

for the folding map $\nabla_{X}: X \vee X \rightarrow X$. He defined the generalized Gottlieb set $G(A, X)$ of the homotopy classes of the cyclic maps $f: A \rightarrow X$ and studied the fundamental properties of $G(A, X)$. If A is a co-Hopf space, then the Varadarajan set $G(A, X)$ has a group structure [13]. The group $G(A, X)$ is a generalization of $G(X)$ and $G_{n}(X)$ of Gottlieb $[2,3]$. Some authors studied the properties of the Varadarajan set, its dual and related topics $[4,5,6,7,12,15,16,17]$.
Let us write $f \perp g$ when there exists a continuous map $\mu: X \times Y \rightarrow Z$ (called a pairing [11]) with axes $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ (Definition 1.1).
Let $v: X \rightarrow Z$ be a fixed map. We define the set of the homotopy classes of the axes by

$$
v^{\perp}(Y, Z)=\{[g]: Y \rightarrow Z \mid v \perp g\} .
$$

This set depends only on the homotopy types of the spaces X, Y and Z and the homotopy class of v. If $X=Z$ and $v \simeq 1_{X}$, then $\left(1_{X}\right)^{\perp}(Y, X)$ is exactly the Varadarajan set $G(Y, X)[13]$.
The purpose of this paper is to generalize some of the results on the Varadarajan set in $[\mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{1 3}, \mathbf{1 5}]$ to the set of the homotopy classes of the axes of pairings.

Let G be a topological group. In this paper, a topological space with a G-action is called a G-space. We work in the category of G-spaces with base point $*$ which is fixed under the G-action through $\S \S 1-3$. The symbol $*$ also denotes the constant map.
In § 1 we study some properties of the axes of pairings and obtain some formulas for $f \perp g$. We prove the following theorem, which is a generalization of the result of Varadarajan which says that the set $G(A, X)$ has a group structure when A is a co-Hopf space [13].

Theorem 1.10. Let $f: X \rightarrow Z, v: V \rightarrow Z, g: Y \rightarrow V$ and $w: W \rightarrow V$ be maps. Suppose that $f \perp v$ and $g \perp w$. Then the following results hold:
(1) $\{\nabla z \circ(f \vee v \circ g)\} \perp(v \circ w)$.
(2) If $\theta: A \rightarrow X \vee Y$ is a copairing, then $(f \dot{+} v \circ g) \perp(v \circ w)$.

In $\S 2$ we prove the fundamental properties of $v^{\perp}(Y, Z)$. In particular, we show that given a copairing $\theta: Y \rightarrow Y_{1} \vee Y_{2}$, we can define an induced pairing

$$
\dot{+}: v^{\perp}\left(Y_{1}, Z\right) \oplus v^{\perp}\left(Y_{2}, Z\right) \rightarrow v^{\perp}(Y, Z)
$$

In $\S 3$ we define the set $u^{\top}(A, C)$ of the homotopy classes of the coaxes of copairings, which is the dual concept of $v^{\perp}(Y, Z)$. We study the dual results of the previous sections.

In $\S 4$ we assume that $G=\{e\}$, the trivial group, and work in the category of CW complexes. We generalize the results in $\S \S 2$ and 3 of [13]. We firstly study the operation of the fundamental group $\pi_{1}(X)$ on $v^{\perp}(Y, X)$; one of the results of this section is the following theorem.

THEOREM 4.2. Let $v: X \rightarrow Z$ be a map.
(1) The subgroup $v_{*} \pi_{1}(X)$ operates trivially on $v^{\perp}(Y, Z)$.
(2) Let σ be an element of $v^{\perp}\left(S^{\perp}, Z\right)$. Then σ operates trivially on $\operatorname{Im}\left(v_{*}:[A, X]\right.$ $\rightarrow[A, Z]$) for any space A.
We also study some relations between the axes of pairings and the generalized Whitehead product [1]. Hoo [4] and Lim [6] studied similar results for cyclic maps. Varadarajan [13] defined a group $P(\Sigma Y, Z)$. We define related groups $v^{P}(\Sigma Y, Z)$; also we introduce $v^{W}(\Sigma Y, Z)$ and $v^{C}(Y, Z)$, which are generalizations of the groups $W(\Sigma A, X)$ and $C(A, X)$ of $\operatorname{Lim}[6]$.
We denote by $f: X \rightarrow Y$ a G-map. We call a G-map $f: X \rightarrow Y$ simply a map $f: X \rightarrow Y$. The symbol $f \simeq g$ means that f is G-homotopic to g and $[f\rceil: X \rightarrow Y$ the G-homotopy class of $f: X \rightarrow Y$.

The map $1_{X}: X \rightarrow X$ is the identity map defined by $1_{X}(x)=x$ for any element x of X. The map $\triangle_{X}: X \rightarrow X \times X$ denotes the diagonal map defined by $\triangle_{X}(x)=$ (x, x) for any element x of X and $\nabla_{X}: X \vee X \rightarrow X$ the folding map defined by $\nabla_{X}(x, *)=x=\nabla_{X}(*, x)$ for any element of x of X. The map $T: X \times Y \rightarrow Y \times X$ is the switching map defined by $T(x, y)=(y, x)$ for any elements x of X and y of Y.
Let $f_{1}: X_{1} \rightarrow Y_{1}$ and $f_{2}: X_{2} \rightarrow Y_{2}$ be maps. We define the product map

$$
f_{1} \times f_{2}: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}
$$

by $\left(f_{1} \times f_{2}\right)\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ for any elements x_{1} of X_{1} and x_{2} of X_{2}. The wedge map is defined by

$$
f_{1} \vee f_{2}=f_{1} \times f_{2} \mid X_{1} \vee X_{2}: X_{1} \vee X_{2} \rightarrow Y_{1} \vee Y_{2} .
$$

1. Axes of pairings of topological spaces. We first recall the definition of a pairing [11].

Definition 1.I. We call a map $\mu: X \times Y \rightarrow Z$ a pairing with the axes $f: X \rightarrow Z$ and $g: Y \longrightarrow Z$, when it satisfies

$$
\mu \mid X \vee Y \simeq \nabla_{Z} \circ(f \vee g): X \vee Y \rightarrow Z
$$

We write $f \perp g$ when there exists a pairing $\mu: X \times Y \rightarrow Z$ with the axes $f: X \rightarrow Z$ and $g: Y \longrightarrow Z$.

Given a pairing $\mu: X \times Y \rightarrow Z$, we define a map $\alpha+\beta: B \rightarrow Z$ for any maps $\alpha: B \rightarrow X$ and $\beta: B \rightarrow Y$ by

$$
\alpha+\beta=\mu \circ(\alpha \times \beta) \circ \triangle_{B}
$$

This defines a pairing $+:[B, X] \times[B, Y] \rightarrow[B, Z]$.
Example 1.2. (1) A map $f: Y \rightarrow X$ is cyclic if and only if $1_{X} \perp f$ [13].
(2) A G-space X is a Hopf G-space if and only if $1_{X} \perp 1_{X}$.

Proposition 1.3. (l) Let $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ be maps. Then $f \perp g$ if and only if $g \perp f$.
(2) Let $f_{0}, f_{1}: X \rightarrow Z$ and $g_{0}, g_{1}: Y \rightarrow Z$ be maps. Suppose that $f_{0} \simeq f_{1}$ and $g_{0} \simeq g_{1}$. Then $f_{0} \perp g_{0}$ if and only if $f_{1} \perp g_{1}$.

Proof. These results are direct consequences of Definition 1.1.
THEOREM 1.4. Let $f_{1}: X_{1} \rightarrow Z, f_{2}: X_{2} \rightarrow X_{1}, g_{1}: Y_{1} \rightarrow Z$ and $g_{2}: Y_{2} \rightarrow Y_{1}$ be maps. Then $f_{1} \perp g_{1}$ implies $\left(f_{1} \circ f_{2}\right) \perp\left(g_{1} \circ g_{2}\right)$.

Proof. Let $\mu: X_{1} \times Y_{1} \rightarrow Z$ be a pairing for $f_{1} \perp g_{1}$. Then the composite map $\mu \circ\left(f_{2} \times g_{2}\right): X_{2} \times Y_{2} \rightarrow Z$ is the required pairing for $\left(f_{1} \circ f_{2}\right) \perp\left(g_{1} \circ g_{2}\right)$.

THEOREM 1.5. Let $f: X \rightarrow Z, g: Y \rightarrow Z$ and $w: Z \rightarrow W$ be maps. Then $f \perp g$ implies $(w \circ f) \perp(w \circ g)$.

Proof. Let $\mu: X \times Y \rightarrow Z$ be a pairing with the axes f and g. Then $w \circ \mu: X \times Y \rightarrow$ W is a pairing with the axes $w \circ f$ and $w \circ g$.

COROLLARY 1.6. (1) If $f: A \rightarrow X$ is a cyclic map, then $f \circ g: B \rightarrow X$ is a cyclic map for any map $g: B \rightarrow A[13]$.
(2) Let $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ be maps. Iff $\perp 1_{Z}$ or if $1_{Z} \perp g$, then $f \perp g$.
(3) If $r: X \rightarrow Y$ is a map with a right homotopy inverse and $f: A \rightarrow X$ a cyclic map, then $r \circ f: A \rightarrow Y$ is a cyclic map $[13,5]$.

Proof. (1) Suppose that $1_{X} \perp f$. Then we have $1_{X} \perp(f \circ g)$ by Theorem 1.4.
(2) If $f \perp 1_{Z}$ or if $1_{Z} \perp g$, then we have $f \perp\left(1_{Z} \circ g\right)$ or $\left(1_{Z} \circ f\right) \perp g$ by Theorem 1.4, and hence $f \perp g$.
(3) Suppose that $1_{X} \perp f$. Then we have $\left(r \circ 1_{X} \circ h\right) \perp(r \circ f)$ by Theorems 1.4 and 1.5, where $h: Y \rightarrow X$ is the right homotopy inverse map of $r: X \rightarrow Y$. Since $r \circ h \simeq 1_{Y}$, we have $1_{Y} \perp(r \circ f)$ by Proposition 1.3(2).
The following result is a generalization of Proposition 4.6 of Lim [5].

PROPOSITION 1.7. Let $f_{1}: X_{1} \rightarrow Z_{1}, f_{2}: X_{2} \rightarrow Z_{2}, g_{1}: Y_{1} \rightarrow Z_{1}, g_{2}: Y_{2} \rightarrow Z_{2}$ be maps. If $f_{1} \perp g_{1}$ and $f_{2} \perp g_{2}$, then $\left(f_{1} \times f_{2}\right) \perp\left(g_{1} \times g_{2}\right)$.

Proof. Let $\mu_{1}: X_{1} \times Y_{1} \rightarrow Z_{1}$ and $\mu_{2}: X_{2} \times Y_{2} \rightarrow Z_{2}$ be pairings for $f_{1} \perp g_{1}$ and $f_{2} \perp g_{2}$ respectively. Then the composite map $\left(\mu_{1} \times \mu_{2}\right) \circ\left(1_{X_{1}} \times T \times 1_{Y_{2}}\right): X_{1} \times X_{2} \times$ $Y_{1} \times Y_{2} \rightarrow X_{1} \times Y_{1} \times X_{2} \times Y_{2} \rightarrow Z_{1} \times Z_{2}$ is the required pairing for $\left(f_{1} \times f_{2}\right) \perp\left(g_{1} \times g_{2}\right)$.

Definition 1.8. ([11]) We call a map $\theta: A \rightarrow B \vee C$ a copairing with the coaxes $h: A \rightarrow B$ and $r: A \rightarrow C$ if it satisfies the condition that

$$
j \circ \theta \simeq(h \times r) \circ \triangle_{A}: A \rightarrow B \times C
$$

for the inclusion map $j: B \vee C \rightarrow B \times C$.
Given a copairing $\theta: A \rightarrow B \vee C$, we define a map $\alpha+\beta: A \rightarrow X$ for any maps $\alpha: B \rightarrow X$ and $\beta: C \rightarrow X$ by

$$
\alpha \dot{+} \beta=\nabla_{X} \circ(\alpha \vee \beta) \circ \theta
$$

This defines a pairing $\dot{+}:[B, X] \times[C, X] \rightarrow[A, X]$.
Concerning the pairings $\dot{+}$ and + , we have the following results (Propositions 3.2 and 3.4 of [11]).

Proposition 1.9. (1) Let X be a Hopf G-space. If $\theta: A \rightarrow B \vee C$ is a copairing with coaxes $h: A \rightarrow B$ and $r: A \rightarrow C$, then

$$
\alpha \dot{+} \beta=h^{*}(\alpha)+r^{*}(\beta) \quad \text { and } \quad h^{*}(\alpha)+r^{*}(\beta)=r^{*}(\beta)+h^{*}(\alpha)
$$

in $[A, X]$ for any elements α of $[B, X]$ and β of $[C, X]$.
(2) Let A be a co-Hopf G-space. If $\mu: X \times Y \rightarrow Z$ is a pairing with axes $f: X \rightarrow Z$ and $g: Y \rightarrow Z$, then

$$
\alpha+\beta=f_{*}(\alpha) \dot{+} g_{*}(\beta) \quad \text { and } \quad f_{*}(\alpha) \dot{+} g_{*}(\beta)=g_{*}(\beta) \dot{+} f_{*}(\alpha)
$$

in $[A, Z]$ for any elements α of $[A, X]$ and β of $[A, Y]$.
Theorem 1.10. Let $f: X \rightarrow Z, v: V \rightarrow Z, g: Y \rightarrow V$ and $w: W \rightarrow V$ be maps. Suppose that $f \perp v$ and $g \perp w$. Then the following results hold.
(1) $\{\nabla z \circ(f \vee v \circ g)\} \perp(v \circ w)$.
(2) If $\theta: A \rightarrow X \vee Y$ is a copairing, then $(f \dot{+} v \circ g) \perp(v \circ w)$.

Proof. Let $\mu_{1}: X \times V \rightarrow Z$ be a pairing for $f \perp v$ and $\mu_{2}: Y \times W \rightarrow V$ be a pairing for $g \perp w$. We define a pairing $\mu:(X \vee Y) \times W \rightarrow Z$ by

$$
\begin{aligned}
\mu=\mu_{1} \circ\left(1_{X} \times \mu_{2}\right) \circ\left(j \times 1_{W}\right):(X \vee Y) \times W \rightarrow & X \times Y \times W \\
& \rightarrow X \times V \rightarrow Z,
\end{aligned}
$$

where $j: X \vee Y \rightarrow X \times Y$ is the inclusion map. Then μ is a pairing for $\left\{\nabla_{Z} \circ(f \vee\right.$ $v \circ g)\} \perp(v \circ w)$.
(2) By (1) and Theorem 1.4, we have $\{\nabla z \circ(f \vee v \circ g) \circ \theta\} \perp(v \circ w)$, namely, $(f \dot{+} v \circ g) \perp(v \circ w)$.

Let A be a co-group like G-space [14], that is, A is a homotopy associative coHopf G-space with a homotopy inverse $\nu: A \rightarrow A$, namely, $1_{A} \dot{+} \nu \simeq * \simeq \nu+1_{A}$. As an application of Theorem 1.10 we have the following result. Related results are Theorem 1.5 of Varadarajan [13], Theorem 2 of Hoo [4] and Proposition 4.13 of Lim [5].

Theorem 1.11. $([\mathbf{1 3}, \mathbf{5}, \mathbf{6}])$ If A is a co-group like G-space, then $G(A, X)$ is an abelian subgroup of $[A, X]$.

Proof. Set $v=w=1_{X}$ and $X=Y=A$ in Theorem 1.10 (2), then we see that $G(A, X)$ is closed under the operation $\dot{+}$. It also contains an inverse element $\alpha \circ \nu$ for any element α of $G(A, X)$ by Theorem 1.4. Moreover, we see that $G(A, X)$ is contained in the center of $[A, X]$ by Proposition 4.3 of Lim [6] or Proposition 1.9(2). (Set $f=1_{X}$ and $\beta=1_{Y}$.)
2. The homotopy sets of the axes.. Let $v: X \rightarrow Z$ be a map. We call a map $g: Y \rightarrow Z v$-cyclic if $v \perp g$. Then by the result of Proposition 1.3(2), we can define the following set of the homotopy classes of the v-cyclic maps $g: Y \rightarrow Z$;

$$
v^{\perp}(Y, Z)=\{[g]: Y \rightarrow Z \mid v \perp g\} \subset[Y, Z] .
$$

If $v \simeq 1_{X}: X \rightarrow X$, then $\left(1_{X}\right)^{\perp}(Y, X)$ is just the Varadarajan set $G(Y, X)$ in [13].
Proposition 2.1. (I) If $v \perp$ gfor maps $v: X \rightarrow Z$ and $g: Y \rightarrow Z$, then $\operatorname{Im}\left(g_{*}:[A, Y]\right.$ $\rightarrow[A, Z]) \subset v^{\perp}(A, Z)$.
(2) For any maps $v: X \rightarrow Z$ and $f: A \rightarrow X$, we have $v^{\perp}(Y, Z) \subset(v \circ f)^{\perp}(Y, Z)$. Especially, for any map $v: A \rightarrow X$, we have $G(Y, X) \subset v^{\perp}(Y, X)$.

Proof. (1) The relation $v \perp g$ implies $v \perp(g \circ h)$ for any map $h: A \rightarrow Y$ by Theorem 1.4.
(2) is proved similarly.

Proposition 2.2. Let $v: X \rightarrow Z$ be a map. If $w: Z \rightarrow W$ and $a: A \rightarrow Y$ are G-homotopy equivalences, then the following results hold.
(1) $w_{*}: v^{\perp}(Y, Z) \rightarrow(w \circ v)^{\perp}(Y, W)$ is an isomorphism.
(2) $\left(1_{X} \times a\right)^{*}: v^{\perp}(Y, Z) \rightarrow v^{\perp}(A, Z)$ is an isomorphism.

Proof. These results are immediate consequences of Theorems 1.4 and 1.5.
Remark 2.3. By Propositions 2.2 and 1.3(2), we know that the set $v^{\perp}(Y, Z)$ depends only on the homotopy types of Y and Z and the homotopy class of v.

Theorem 2.4. If Z is a Hopf G-space, then $v^{\perp}(Y, Z)=[Y, Z]$ for any map $v: X \rightarrow$ Z.

Proof. Since Z is a Hopf G-space, we have $1_{Z} \perp 1_{Z}$ and hence $v \perp g$ for any map $g: Y \rightarrow Z$ by Theorem 1.4.

Given a copairing $\theta: A \rightarrow B \vee C$, a map $\alpha \dot{+} \beta: A \rightarrow X$ is defined by $\alpha \dot{+} \beta=$ $\nabla_{X} \circ(\alpha \vee \beta) \circ \theta$ for any maps $\alpha: B \rightarrow X$ and $\beta: C \rightarrow X$ (Definition 1.8). Thus a copairing $\theta: A \rightarrow B \vee C$ in the topological spaces induces a pairing

$$
\dot{+}:[B, X] \times[C, X] \rightarrow[A, X]
$$

in the homotopy sets. We shall now study the induced pairings in $v^{\perp}(Y, Z)$.
In the rest of this section, we work in the category of $G-C W$ complexes $[9$, 10], because we use the G-homotopy extension property (G-HEP) in the proof of Theorem 2.5. The result holds in the category of G-ANR with some conditions. See Proposition 9.3 of [8]. The following theorem generalizes the results of Lemma 4.8 of [5] and Theorem 1.5 of [13].

Theorem 2.5. Let $f: X \rightarrow Z, g_{1}: Y_{1} \rightarrow Z$ and $g_{2}: Y_{2} \rightarrow Z$ be maps between G-CW complexes. Then the following results hold.
(1) $f \perp g_{1}$ and $f \perp g_{2}$ implies $f \perp\left\{\nabla z \circ\left(g_{1} \vee g_{2}\right)\right\}$.
(2) Let $\theta: Y \rightarrow Y_{1} \vee Y_{2}$ be a copairing. Then $f \perp g_{1}$ and $f \perp g_{2}$ implies $f \perp\left(g_{1}+\right.$ g_{2}).
Proof. (cf. proof of Theorem 1.5 of [13]) (1) Let $\mu_{1}: X \times Y_{1} \rightarrow Z$ be a pairing for $f \perp g_{1}$ and $\mu_{2}: X \times Y_{2} \rightarrow Z$ a pairing for $f \perp g_{2}$.

Let us define a map

$$
<\mu_{1}, \mu_{2}>: X \times\left(Y_{1} \vee Y_{2}\right) \rightarrow Z
$$

by the following way. We can assume that the maps μ_{1} and μ_{2} satisfy the following condition by G-HEP;

$$
\mu_{1}\left|X \times\{*\}=f=\mu_{2}\right| X \times\{*\}
$$

Then we define $<\mu_{1}, \mu_{2}>\mid X \times\left(Y_{1} \times\{*\}\right)=\mu_{1}$ and $<\mu_{1}, \mu_{2}>\mid X \times$ $\left(\{*\} \times Y_{1}\right)=\mu_{2}$. This map $<\mu_{1}, \mu_{2}>$ is well-defined since they are equal when restricted to $X \times(\{*\} \times\{*\})=X \times\{*\}$. The map $<\mu_{1}, \mu_{2}>$ is a pairing for $f \perp\left\{\nabla z \circ\left(g_{1} \vee g_{2}\right)\right\}$.
(2) Define $\mu: X \times Y \rightarrow Z$ by

$$
\mu=<\mu_{1}, \mu_{2}>\circ\left(1_{X} \times \theta\right): X \times Y \rightarrow X \times\left(Y_{1} \vee Y_{2}\right) \rightarrow Z
$$

Then we have

$$
\mu \mid\{*\} \times Y=\nabla_{z} \circ\left(g_{1} \vee g_{2}\right) \circ \theta=g_{1} \dot{+} g_{2} \text { and } \mu \mid X \times\{*\}=f
$$

This completes the proof.
Suppose we are given a copairing $\theta: Y \rightarrow Y_{1} \vee Y_{2}$. By Proposition 1.3(2) and Theorem 2.5(2), we can now define the induced pairing

$$
\dot{+}: v^{\perp}\left(Y_{1}, Z\right) \oplus v^{\perp}\left(Y_{2}, Z\right) \rightarrow v^{\perp}(Y, Z)
$$

by $f_{1}+f_{2}=\nabla z \circ\left(f_{1} \vee f_{2}\right) \circ \theta$.
If $\theta: Y \rightarrow Y \vee Y$ is a copairing, for example, co-Hopf structure, then θ defines a binary operation on $v^{\perp}(Y, Z)$. This is a generalization of Theorem 1.5 of [13]; if $v=$ 1_{X} in the above pairing, then we see that the Varadarajan set $G(Y, X)=\left(1_{X}\right)^{\perp}(Y, X)$ has a binary operation. See Corollary 4.9 of Lim [5] and Theorem 1.11.

Proposition 2.6. Let the spaces be G-CW complexes. Suppose that Y and B are co-Hopf G-spaces. Then the following results hold.
(1) $w_{*}: v^{\perp}(Y, Z) \rightarrow(w \circ v)^{\perp}(Y, W)$ is a homomorphism for any map $w: Z \rightarrow W$.
(2) $\left(a \times 1_{Y}\right)^{*}: v^{\perp}(Y, Z) \rightarrow(v \circ a)^{\perp}(Y, Z)$ is a homomorphism for any map $a: A \rightarrow$ X.
(3) $\left(1_{X} \times b\right)^{*}: v^{\perp}(Y, Z) \rightarrow v^{\perp}(B, Z)$ is a homomorphism for any co-Hopf map $b: B \rightarrow Y$.
3. The Dual Concepts. In this section we study the duals of the results in the previous sections. We omit most of the proofs of the results in this section, since they are given by dualizing the corresponding results.

We write $h \top r$ if there exists a copairing $\theta: A \rightarrow B \vee C$ with the coaxes $h: A \rightarrow B$ and $r: A \rightarrow C$ (Definition 1.8).

Example 3.1. (1) A G-map $r: A \rightarrow C$ is cocyclic if and only if $1_{A} \operatorname{Tr}[\mathbf{1 3}]$.
(2) A G-space A is a co-Hopf G-space if and only if $1_{A} \top 1_{A}$.

Proposition 3.2. (1) Let $h: A \rightarrow B$ and $r: A \rightarrow C$ be maps. Then $h \top r$ if and only if r Th.
(2) Let $h_{0}, h_{1}: A \rightarrow B$ and $r_{0}, r_{1}: A \rightarrow C$ be maps. Suppose that $h_{0} \simeq h_{1}$ and $r_{0} \simeq r_{1}$. Then $h_{0} \top r_{0}$ if and only if $h_{1} T r_{1}$.

THEOREM 3.3. Let $h_{1}: A \rightarrow B_{1}, h_{2}: B_{1} \rightarrow B_{2}, r_{1}: A \rightarrow C_{1}, r_{2}: C_{1} \rightarrow C_{2}$ be maps. Then $h_{1} T r_{1}$ implies $\left(h_{2} \circ h_{1}\right) \top\left(r_{2} \circ r_{1}\right)$.

Theorem 3.4. Let $h: A \rightarrow B, r: A \rightarrow C$ and $d: D \rightarrow A$ be maps. Then $h \top r$ implies $(h \circ d) \top(r \circ d)$.

Let $u: A \rightarrow B$ be a fixed map. We call a map $r: A \rightarrow C u$-cocyclic if $u \top r$. We can now define the following set of the homotopy classes of the u-cocyclic maps $r: A \rightarrow C$;

$$
u^{\top}(A, C)=\{[r]: A \rightarrow C \mid u \top r\} .
$$

If $u \simeq 1_{A}$, then $\left(1_{A}\right)^{\top}(A, C)$ is just Varadarajan's $D G(A, C)$ [13].
By Theorems 3.3 and 3.4, we have the following two propositions.
Proposition 3.5. If $u \operatorname{Tr}$ for maps $u: A \rightarrow B$ and $r: A \rightarrow C$ then $\operatorname{Im}\left(r^{*}:[C, X] \rightarrow\right.$ $[A, X]) \subset u^{\top}(A, X)$.
Proposition 3.6. Let $u: A \rightarrow B$ be a map. If $a: V \rightarrow A$ and $d: C \rightarrow D$ are G-homotopy equivalences, then the following results hold.
(1) $a^{*}: u^{\top}(A, C) \rightarrow(u \circ a)^{\top}(V, C)$ is an isomorphism.
(2) $\left(1_{B} \vee d\right)_{*}: u^{\top}(A, C) \rightarrow u^{\top}(A, D)$ is an isomorphism.

The following result is a generalization of Lemma 3.4 of Lim [7].
PRoposition 3.7. Let $h_{1}: A_{1} \rightarrow B_{1}, h_{2}: A_{2} \rightarrow B_{2}, r_{1}: A_{1} \rightarrow C_{1}, r_{2}: A_{2} \rightarrow C_{2}$ be maps. If $h_{1} \top r_{1}$ and $h_{2} \top r_{2}$, then $\left(h_{1} \vee h_{2}\right) \top\left(r_{1} \vee r_{2}\right)$.

Proof. Let $\theta_{1}: A_{1} \rightarrow B_{1} \vee C_{1}$ be a copairing for $h_{1} T r_{1}$ and $\theta_{2}: A_{2} \rightarrow B_{2} \vee C_{2}$ for $h_{2} \uparrow r_{2}$. Define $\theta: A_{1} \vee A_{2} \rightarrow\left(B_{1} \vee B_{2}\right) \vee\left(C_{1} \vee C_{2}\right)$ by

$$
\begin{aligned}
\theta= & \left(1_{B_{1}} \vee T \vee 1_{C_{2}}\right) \circ\left(\theta_{1} \vee \theta_{2}\right): \\
& A_{1} \vee A_{2} \rightarrow\left(B_{1} \vee C_{1}\right) \vee\left(B_{2} \vee C_{2}\right) \rightarrow\left(B_{1} \vee B_{2}\right) \vee\left(C_{1} \vee C_{2}\right) .
\end{aligned}
$$

Then θ is a copairing for $\left(h_{1} \vee h_{2}\right) \top\left(r_{1} \vee r_{2}\right)$.
THEOREM 3.8. If A is a co-Hopf G-space, then $u^{\top}(A, C)=[A, C]$ for any map $u: A \rightarrow B$.

Theorem 3.9. Let $h: A \rightarrow B, r: A \rightarrow C, u: B \rightarrow U, d: B \rightarrow D$ be maps. Suppose that $u \top d$ and $h \top r$. Then the following results hold.
(l) $(u \circ h) \top\left\{(d \circ h \times r) \circ \triangle_{A}\right\}$.
(2) If $\mu: D \times C \rightarrow Z$ is a pairing, then $(u \circ h) \top(d \circ h+r)$.

Proof. (1) Let $\theta_{1}: A \rightarrow B \vee C$ be a copairing for $h \top r$ and $\theta_{2}: B \rightarrow U \vee D$ a copairing for $u T d$. We define a copairing $\theta: A \rightarrow U \vee(D \times C)$ by

$$
\theta=\left(1_{U} \vee j\right) \circ\left(\theta_{2} \vee 1_{C}\right) \circ \theta_{1}: A \rightarrow B \vee C \rightarrow U \vee D \vee C \rightarrow U \vee(D \times C),
$$

where $j: D \vee C \rightarrow D \times C$ is the inclusion map. Then θ is a copairing for $(u \circ$ h) $\top\left\{(d \circ h \times r) \circ \triangle_{A}\right\}$.
(2) By (1) and Theorem 3.3, we have $(u \circ h) \top\left\{\mu \circ(d \circ h \times r) \circ \triangle_{A}\right\}$, namely, $(u \circ h) \top(d \circ h+r)$.

Let Z be a group like G-space [14], that is, Z is a homotopy associative Hopf G-space with a homotopy inverse $\nu: Z \rightarrow Z$, namely, $1_{Z}+\nu \simeq * \simeq \nu+1_{Z}$. Then as an application of Theorem 3.9, we have the following result of Theorem 4.2 of Lim [7].

Theorem 3.10. ([7]) Let Z be a group like G-space. Then $D G(A, Z)$ is an abelian subgroup of $[A, Z]$.

Proof. Set $u=h=1_{A}$ in Theorem 3.9, then we see that $\operatorname{DG}(A, Z)$ is closed under the operation + . The inverse element $\nu \circ \alpha$ is contained in $D G(A, Z)$ for any element α of $D G(A, Z)$ by Theorem 3.3. Moreover, $D G(A, Z)$ is contained in the center of $[A, Z]$ by Proposition 1.9(1) (Set $h=1_{A}$ and $\beta=1_{Z}$). (cf. Corollary 3.10 of [7].)
4. Operations and Whitehead Products. Throughout this section we assume that $G=\{e\}$, the group of the identity alone. We assume furthermore that the spaces are $C W$ complexes so that we can use the homotopy extension property. Then the fundamental group $\pi_{1}(X)$ operates on the homotopy set $[A, X]$. We find the definition of the operation in $[\mathbf{1 3}, \mathbf{1 4}]$. If σ is an element of $\pi_{1}(X)$, then we have an isomorphism

$$
\sigma_{\#}:[A, X] \rightarrow[A, X],
$$

which is induced by the operation of σ on the homotopy set $[A, X]$.
Theorem 4.1. Let $\theta: A \rightarrow B \vee C$ be a copairing. Let β be an element of $[B, X]$ and γ of $[C, X]$. Then

$$
\sigma_{\#}(\beta \dot{+} \gamma)=\sigma_{\#}(\beta) \dot{+} \sigma_{\#}(\gamma)
$$

for any σ of $\pi_{1}(X)$.
Proof. Let f, g and s be maps representing β, γ and σ. We can choose homotopies $F: B \times I \rightarrow X$ and $G: C \times I \rightarrow X$ so that

$$
F|B \times\{0\}=f, G| C \times\{0\}=g \text { and } F|\{*\} \times I=s=G|\{*\} \times I .
$$

We see that $F \mid B \times\{1\}=\sigma_{\#}(\beta)$ and $G \mid C \times\{1\}=\sigma_{\#}(\gamma)$ by the definition of the operation of σ. We define $K:(B \vee C) \times I \rightarrow X$ by

$$
K \mid(B \times\{*\}) \times I=F \text { and } K \mid(\{*\} \times C) \times I=G .
$$

K is well-defined by the properties of F and G. Define a homotopy $H: A \times I \rightarrow X$ by a composition

$$
H=K \circ\left(\theta \times 1_{I}\right): A \times I \rightarrow(B \vee C) \times I \rightarrow X
$$

Then

$$
H \mid A \times\{0\}=\nabla_{X} \circ(f \vee g) \circ \theta=\beta \dot{+} \gamma \text { and } H \mid A \times\{1\}=\sigma_{\#}(\beta \dot{+} \gamma)
$$

Here we see that $H \mid A \times\{1\}=\sigma_{\#}(\beta)+\sigma_{\#}(\gamma)$ by the definition of H, and hence we have $\sigma_{\#}(\beta \dot{+} \gamma)=\sigma_{\#}(\beta) \dot{+} \sigma_{\#}(\gamma)$.

Theorem 4.2. Let $v: X \rightarrow Z$ be a map.
(1) The subgroup $v_{*} \pi_{1}(X)$ operates trivially on $v^{\perp}(Y, Z)$.
(2) Let σ be an element of $v^{\perp}\left(S^{\perp}, Z\right)$. Then σ operates trivially on $\operatorname{Im}\left(v_{*}:[A, X]\right.$ $\rightarrow[A, Z])$ for any space A.
Proof. (1) Let [f] be an element of $v^{\perp}(Y, Z)$ and $\mu: X \times Y \rightarrow Z$ be a pairing for $v \perp f$. For any element $\sigma=[s]:(I,\{0,1\}) \rightarrow(X, *)$ of $\pi_{1}(X)$, we define a homotopy $H: Y \times I \rightarrow Z$ by

$$
H=\mu \circ\left(s \times 1_{Y}\right) \circ T: Y \times I \rightarrow I \times Y \rightarrow X \times Y \rightarrow Z
$$

Then $H|Y \times\{0\} \simeq f \simeq H| Y \times\{1\}$ and $H \mid\{*\} \times I \simeq v \circ s=v_{*}(s)$. Hence we have $v_{*}(\sigma)_{\#}(f)=H \mid Y \times\{1\} \simeq f$.
(2) Suppose that $\sigma=[s]$ and $\mu: X \times S^{1} \rightarrow Z$ is a pairing for $v \perp s$ and $[f]$ is an element of $[A, X]$. We define a homotopy $H: A \times I \rightarrow Z$ by

$$
H=\mu \circ(f \times p): A \times I \rightarrow X \times S^{1} \rightarrow Z,
$$

where $p:(I,\{0,1\}) \rightarrow\left(S^{1}, *\right)$ is the projection. Then we have

$$
H\left|A \times\{0\} \simeq v \circ f=v_{*}(f) \simeq H\right| A \times\{1\} \text { and } H \mid\{*\} \times I \simeq s \circ p
$$

It follows that $\sigma_{\#}\left(v_{*}(f)\right) \simeq H \mid A \times\{1\} \simeq v_{*}(f)$. This completes the proof.
We denote by ΣA the reduced suspension of a space A, and $A \wedge B$ the smash product $A \times B / A \vee B$ of A and B.

Arkowitz [1] defined the generalized Whitehead product

$$
[\alpha, \beta]: \Sigma(A \wedge B) \rightarrow X
$$

for any elements $\alpha: \Sigma A \rightarrow X$ and $\beta: \Sigma B \rightarrow X$.

THEOREM 4.3. Let $f: \Sigma X \rightarrow Z$ and $g: \Sigma Y \rightarrow Z$. Then $f \perp g$ if and only if $[f, g]=0$.
Proof. By Definition 1.1, we see that $f \perp g$ if and only if there exists a pairing $\mu: \Sigma X \times \Sigma Y \rightarrow Z$ such that $\mu \mid \Sigma X \vee \Sigma Y \simeq \nabla_{z} \circ(f \vee g)$. The latter condition is equivalent to $[f, g]=0$ by Proposition 5.1 of Arkowitz [1].

Proposition 4.4. Let $v: \Sigma X \rightarrow Z$ be a map. Then

$$
v^{\perp}(\Sigma Y, Z)=\{[f]: \Sigma Y \rightarrow Z \mid[v, f]=0\} .
$$

Proof. By Theorem 4.3, we have the result.
The following theorem is a generalization of Theorem 3.2 of [13].
Theorem 4.5. Let $v: X \rightarrow Z$ be a map and β an element of $v^{\perp}(\Sigma Y, Z)$. Then $\left[\nu_{*}(\alpha), \beta\right]=0$ for any element α of $[\Sigma A, X]$.

Proof. Suppose that $\alpha=[f]$ and $\beta=[g]$. Since $v \perp g$, we have $(v \circ f) \perp g$ for any map $f: \Sigma A \rightarrow X$ by Theorem 1.4. It follows that $\left[\nu_{*}(\alpha), \beta\right]=[\nu \circ f, g]=0$ by Theorem 4.3.

Varadarajan [13] defined the following subgroup of $[\Sigma Y, Z]$;

$$
\begin{aligned}
& P(\Sigma Y, Z)=\left\{\gamma \in[\Sigma Y, Z] \mid[\beta, \gamma]=0 \text { for all } \beta \in\left[\Sigma^{n} Y, Z\right]\right. \\
& \quad\text { and all } n \geq 1\} .
\end{aligned}
$$

Let $v: X \rightarrow Z$ be a map. We define

$$
\begin{aligned}
& v^{P}(\Sigma Y, Z)=\left\{\gamma \in[\Sigma Y, Z] \mid\left[v_{*}(\beta), \gamma\right]=0 \text { for all } \beta \in\left[\Sigma^{n} Y, X\right]\right. \\
&\text { and all } n \geq 1\} . \\
& v^{W}(\Sigma Y, Z)=\left\{\gamma \in[\Sigma Y, Z] \mid\left[v_{*}(\beta), \gamma\right]=0 \text { for all } \beta \in[\Sigma B, X]\right. \\
&\text { and all space } B\} . \\
& v^{C}(Y, Z)=\left\{[g] \in[Y, Z] \mid v_{*}(\alpha)+g_{*}(\beta)=g_{*}(\beta)+v_{*}(\alpha)\right. \\
&\text { for all } \alpha \in[\Sigma A, X] \text { and all } \beta \in[\Sigma A, Y] \text { and all space } A\} .
\end{aligned}
$$

The above definitions are generalizations of Definitions 4.1 and 4.5 of [6].
Theorem 4.6. Let $v: X \rightarrow Z$ be a map. Then the following results hold.
(1) $P(\Sigma Y, Z) \subset v^{W}(\Sigma Y, Z) \subset v^{P}(\Sigma Y, Z)$.
(2) $v^{\perp}(\Sigma Y, Z) \subset v^{W}(\Sigma Y, Z) \subset v^{P}(\Sigma Y, Z)$.
(3) $v^{\perp}(Y, Z) \subset v^{C}(Y, Z)$.

Proof. (1) is a direct consequence of the definitions.
(2) Let γ be an element of $v^{\perp}(\Sigma Y, Z)$. Then $\left[v_{*}(\beta), \gamma\right]=0$ for any element β of [$\Sigma B, X]$ by Theorem 4.5 and hence γ is an element of $v^{W}(\Sigma Y, Z)$.
(3) Choose an element $[g]$ of $v^{\perp}(Y, Z)$, Let $\mu: X \times Y \rightarrow Z$ be a pairing with the axes v and g. Then we have

$$
v_{*}(\alpha) \dot{+} g_{*}(\beta)=g_{*}(\beta) \dot{+} v_{*}(\alpha)
$$

for any elements α of $[\Sigma A, X], \beta$ of $[\Sigma A, Y]$ and any space A by Proposition 1.9(2). Hence we have the result.

Theorem 4.7. Let $v: X \rightarrow Z$ be a map. The homotopy sets $v^{W}(\Sigma Y, Z)$ and $v^{P}(\Sigma Y, Z)$ are subgroups of $[\Sigma Y, Z]$.

Proof. (a) Let $\beta=[f], \gamma=[g] \in[\Sigma Y, Z]$ be the elements of $v^{W}(\Sigma Y, Z)$. Then we have $\left[v_{*}(\alpha), \beta\right]=\left[v_{*}(\alpha), \gamma\right]=0$ for any element $\alpha=[h] \in[\Sigma B, X]$ and hence $v_{*}(h) \perp f$ and $v_{*}(h) \perp g$ by Theorem 4.3. Then we have $v_{*}(h) \perp(f+g)$ by Theorem 2.5(2). It follows that $\left[v_{*}(\alpha), \beta+\gamma\right]=0$ by Theorem 4.3 and hence $\beta+\gamma \in v^{W}(\Sigma Y, Z)$.
(b) Let $\gamma=[g]$ be an element of $v^{W}(\Sigma Y, Z)$. Then we have $\left[v_{*}(\alpha), \gamma\right]=0$ and hence $v_{*}(h) \perp g$ for any element $\alpha=[h] \in[\Sigma B, X]$ by Theorem 4.5. It follows that $v_{*}(h) \perp\left\{g \circ\left(-1_{\Sigma Y)}\right)\right.$ by Theorem 1.4 and hence $\left[v_{*}(\alpha),-\gamma\right]=0$ by Theorem 4.3, since $\gamma \circ\left(-1_{\Sigma Y}\right)=-\gamma$. Thus we have $-\gamma \in v^{W}(\Sigma Y, Z)$.

Moreover the set $v^{W}(\Sigma Y, Z)$ contains the zero element (the constant map). Thus we have proved that the set $v^{W}(\Sigma Y, Z)$ is a subgroup of $[\Sigma Y, Z]$.

Similarly we have the result for $v^{P}(\Sigma Y, Z)$.

References

1. M. Arkowitz The generalized Whitehead product Pacific J. Math. 12 (1962) 7-23.
2. D. H. Gottlieb A certain subgroup of the fundamental group Amer. J. Math. 87 (1965) 840-856.
3. D. H. Gottlieb Evaluation subgroups of homotopy groups Amer. J. Math. 91 (1969) 729-756.
4. C. S. Hoo Cyclic maps from suspensions to suspensions Canad. J. Math. 24 (1972) 789-791.
5. K. L. Lim On cyclic maps J. Austral. Math. Soc. Ser. A 32 (1982) 349-357.
6. K. L. Lim On evaluation subgroups of generalized homotopy groups Canad. Math. Bull. 27 (1984) 78-86.
7. K. L. Lim Cocyclic maps and coevaluation subgroups Canad. Math. Bull. 30 (1987) 63-71.
8. M. Murayama On G-ANR's and their G-homotopy types Osaka J. Math. 20 (1983) 479-512.
9. T. Matumoto Equivariant cohomology theories on G-CW complexes Osaka J. Math. 10 (1973) 5168.
10. T. Matumoto A complement to the theory of G-CW complexes Japan. J. Math. 10 (1984) 353-374.
11. N. Oda Pairings and copairings in the category of topological spaces preprint
12. J. Siegel G-spaces, H-spaces and W-spaces Pacific J. Math. 31 (1969) 209-214.
13. K. Varadarajan Generalized Gottlieb groups J. Indian Math. Soc. 33 (1969) 141-164.
14. G. W. Whitehead Elements of homotopy theory Graduate texts in Math. 61, SpringerVerlag (1978).
15. M. H. Woo and J. R. Kim Certain subgroups of homotopy groups J. Korean Math. Soc. 21 (1984) 109-120.
16. M. H. Woo and K. Y. Lee The relative evaluation subgroups of a CW-pair J. Korean Math. Soc. 25 (1988) 149-160.
17. M. H. Woo and K. Y. Lee Homology and generalized evaluation subgroups of homotopy groups J. Korean Math. Soc. 25 (1988) 333-342.

Department of Applied Mathematics Faculty of Science,
Fukuoka University,
8-19-1, Nanakuma, Jonanku, Fukuoka
814-01 Japan

