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THE HOMOTOPY SET OF 
THE AXES OF PAIRINGS 

NOBUYUKI ODA 

Introduction. Varadarajan [13] named a map/: A - ^ I a cyclic map when there 
exists a map F: X x A —• X such that 

F\XVA~Vxo(\xVf) 

for the folding map \/x'X V X —• X. He defined the generalized Gottlieb set 
G(A, X) of the homotopy classes of the cyclic maps/: A —» X and studied the fun
damental properties of G(A,X). If A is a co-Hopf space, then the Varadarajan set 
G(A,X) has a group structure [13]. The group G(A,X) is a generalization of G(X) 
and Gn(X) of Gottlieb [2,3]. Some authors studied the properties of the Varadara
jan set, its dual and related topics [4, 5, 6, 7,12,15,16,17]. 

Let us write fLg when there exists a continuous map /i:X x Y —> Z (called a 
pairing [11]) with axes/: X —+ Z and g: F —-> Z (Definition 1.1). 

Let v: X —> Z be a fixed map. We define the set of the homotopy classes of the 
axes by 

v\Y,Z) = {[g]:Y->Z\v±g}. 

This set depends only on the homotopy types of the spaces X, Y and Z and the ho
motopy class of v. If X = Z and v ̂  1 x , then (1^)1(F, X) is exactly the Varadarajan 
setG(F,X)[13]. 

The purpose of this paper is to generalize some of the results on the Varadarajan 
set in [4,5, 6, 7,13,15] to the set of the homotopy classes of the axes of pairings. 

Let G be a topological group. In this paper, a topological space with a G-action 
is called a G-space. We work in the category of G-spaces with base point * which 
is fixed under the G-action through § § 1-3. The symbol * also denotes the constant 
map. 

In § 1 we study some properties of the axes of pairings and obtain some formulas 
for/J_g. We prove the following theorem, which is a generalization of the result 
of Varadarajan which says that the set G(A,X) has a group structure when A is a 
co-Hopf space [13]. 
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THEOREM 1.10. Letf'.X —> Z, v:V —> Z, g:Y -* V and w:W —> V be maps. 
Suppose that fly and g-Lw. Then the following results hold: 

(l){Vz°(fV vog)}l(vow). 
(2) If6: A —• X V Y is a copairing, then if + v o g)_L(v o w). 

In §2 we prove the fundamental properties of vL(Y,Z). In particular, we show 
that given a copairing 6 : Y —> Y\ V Y2, we can define an induced pairing 

+: v-^y,, z) e v±(y2, z) -• vx(y, z>. 

In § 3 we define the set wT(A, C) of the homotopy classes of the coaxes of co-
pairings, which is the dual concept of vL(Y,Z). We study the dual results of the 
previous sections. 

In § 4 we assume that G = { e}, the trivial group, and work in the category of 
CW complexes. We generalize the results in §§2 and 3 of [13]. We firstly study 
the operation of the fundamental group ir\(X) on vL(Y,X); one of the results of 
this section is the following theorem. 

THEOREM 4.2. Let v:X—>Zbea map. 
(1) The subgroup v*7Ti(X) operates trivially on vL(Y,Z). 
(2) Let a be an element ofvL(Sx,Z). Then a operates trivially on Im(v*: [A,X] 
—• [A, Z\)for any space A. 

We also study some relations between the axes of pairings and the generalized 
Whitehead product [1]. Hoo [4] and Lim [6] studied similar results for cyclic maps. 
Varadarajan [13] defined a group P(LY,Z). We define related groups vp(Zy,Z); 
also we introduce vw(LY, Z) and vc(Y, Z), which are generalizations of the groups 
W(IA,X) and C(A,X) of Lim [6]. 

We denote by/ :X —> Y a G-map. We call a G-map f:X —> Y simply a map 
f:X—>Y. The symbol/ ^ g means that/ is G-homotopic to g and [/"]: X —-> y the 
G-homotopy class of/: X —• Y. 

The map lx'X —> X is the identity map defined by \x(x) = x for any element 
x of X. The map A*: X —> X x X denotes the diagonal map defined by Ax(x) = 
(x,x) for any element x of X and \7x'-X V X —> X the folding map defined by 
S7x(x, *) = x = Vx(*» x) for any element of x of X. The map r : X x y — > y x X i s 
the switching map defined by T(x, y) = (y, JC) for any elements x of X and y of y. 

Le t / :X\ —>Y\ and/2: X2 —> Y2 be maps. We define the product map 

fx x/2:Xi xX2^Y{ xY2 

by (f\ xfi)(x\,X2) = (/i(^i),/2fe)) for any elements x\ of Xj and X2 of X2. The 
wedge map is defined by 

/1 v/2 =/i x/2 |x, v x2:Xj v x2 -^ y, v y2. 
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1. Axes of pairings of topological spaces. We first recall the definition of a 

pairing [11]. 
Definition 1.1. We call a map /i: X x Y —• Z a pairing with the axes f\ X —• Z 

and g: F —> Z, when it satisfies 

/ i |XV Y~ V z o ( f V g) :XV K-^ Z. 

We write/_Lg when there exists a pairing /i: X x K —• Z with the axes / :X —> Z 

and g: Y -> Z. 

Given a pairing p:X x Y —• Z, we define a map a + /? : 5 —-> Z for any maps 

a:B-+Xmd/3:B-+Yby 

a+(3=[io(ax (5)o /\B. 

This defines a pairing +: [£,X] x [#, K] —• [B,Z\. 

Example 1.2. (1) A m a p / : F —•> X is cyclic if and only if lx-L/ [13]. 

(2) A G-space X is a Hopf G-space if and only if lx-Llx-

PROPOSITION 1.3. (1) Letf: X —> Z and g:Y —+Zbe maps. Thenf±g if and only 

(2) Letfo,f\ : X —> Z and go,g\ :Y —• Z be maps. Suppose thatfo — f\ and go — g\. 

Thenfo±g0 if and only iff\±.g\. 

Proof These results are direct consequences of Definition 1.1. 

THEOREM \A.Letf\X\ - • Z,f2:X2 —• X,, g]:Yx -> Zandg2:Y2 —> Yx be 
maps. Thenf±g\ implies (f\ of2)A.(g\ o g2). 

Proof Let ii\X\ x Y\ —> Z be a pairing for/i_Lgi. Then the composite map 

M ° (fz x gi)' X2 x Y2 —> Z is the required pairing for (/", o/2)_L(g, o g2). 

THEOREM 1.5. Let f:X —• Z, g.Y —> Z ara/ w:Z —> W /?<? m ^ . Then fLg 

implies (w o/)J_(w o g). 

Proo/ Let / i : X x K - > Z be a pairing with the axes / and g. Then w o /i : X x Y —> 

W is a pairing with the axes w 0 / and w o g. 

COROLLARY 1.6. ( 1 ) Iff: A —> X is a cyclic map, thenf o g: 5 —> X is a cyclic 

map for any map g: B —• A [13]. 

(2) L^/ / :X —• Z am/g: K —> Z /?£ raa/?s. ///_!_ l z or if\z-Lg, thenfLg. 

(3) If r.X —y Y is a map with a right homotopy inverse andf'.A —> X a cyclic 

map, then rof\A —• Y is a cyclic map [13, 5]. 

Proof (1) Suppose that lx-L/- Then we have lx-L(/ ° g) by Theorem 1.4. 

(2) If/_Llz or if lz-Lg, then we have/_L(l z o g) or ( l z of)_Lg by Theorem 1.4, 

and hence /_Lg. 

(3) Suppose that lx_L/. Then we have (r o \x o /i)_L(r o / ) by Theorems 1.4 and 

1.5, where /z: Y —• X is the right homotopy inverse map of r.X —> Y. Since 

r o h ~ 1 y, we have 1 y_L(r of) by Proposition 1.3(2). 

The following result is a generalization of Proposition 4.6 of Lim [5]. 
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PROPOSITION 1.7. Letf:X{ -* Zhf2:X2 —• Z2, g\:Yx —> Z b g2: F2 —• Z2 te 
ma/75. Iff\-Lgi andf2±-g2, then {fx xf2)Mg\ x gi\ 

Proof. Let /xpXi x Y\ —* Z\ and /x2:X2 x Y2 —> Z2 be pairings for/i_Lgi and 
f2l~g2 respectively. Then the composite map (/ii x /i2) o (lXl x T x ly2): Xi x X2 x 
Fi x Y2 —* Xj x ̂  xX2 x y2 —> Z\ xZ2 is the required pairing for (f{ xf2)±(g\ xg2). 

Definition 1.8. ([11]) We call a map 0:A->fiV C a copairing with the coaxes 
h:A—>B and r: A —• C if it satisfies the condition that 

joQ ~(hxr)oAA:A-^BxC 

for the inclusion map j : BW C —> B x C. 
Given a copairing 9 : A —+ # V C, we define a map a 4- /? : A —-+ X for any maps 

a:B—>X<md(3:C-+Xby 

a +/3 = V x o ( a V/3)o0. 

This defines a pairing +: [B,X] x [C,X] -» [A,X]. 
Concerning the pairings -i- and +, we have the following results (Propositions 

3.2 and 3.4 of [11]). 

PROPOSITION 1.9. (1) Let Xbea HopfG-space. lf9:A—>B\/ Cis a copairing 
with coaxes h:A —> B and r.A —> C, then 

a + p = h*(a) + r*(J3) and h\a) + r*(/3) = r*(/?) + A*(or) 

w [A, X] /or any elements a of [B, X] and (3 of [C, X]. 
(2) Let A be a co-HopjG-space. If/i :XxY—>Zis a pairing with axesf: X —> Z 
and g\Y —• Z, then 

<x+/3=Ma) + g*(l3) and f*(a) + g*(J3) = g*(J3)+Ma) 

in [A,Z]for any elements a of[A,X] and (3 of [A, Y]. 

THEOREM 1.10. Letf'.X -+Z,v:V-+Z>g\Y-*Vandw:W-*Vbe maps. 
Suppose thatfJ-v and g-Lw. Then the following results hold. 

( i J { V z ° ( f V v o g)} _L(v o w). 
(2)lf6:A—>X\/ Y is a copairing, then (f + v o g)_L(v o w). 

Proof Let n\\Xx V —> Z be a pairing for/_Lv and p,2: Y x W —> V be a pairing 
for g-Lw. We define a pairing /x : (X V F ) x W->Zby 

\i = /ii o ( l x x / i 2 ) o ( / x 1W):(XV 7 ) x W ^ X x F x W 
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where): XV F —> X x F is the inclusion map. Then fi is a pairing for { V z ° if V 

v o g)} _L(v o vv). 

(2) By (1) and Theorem 1.4, we have { V z ° (/" V v o g) o # } _L(v o w), namely, 

(f + vo g)_L(v o vv). 

Let A be a co-group like G-space [14], that is, A is a homotopy associative co-

Hopf G-space with a homotopy inverse v\A—+ A, namely, I A + V — * — v 4- 1^. 

As an application of Theorem 1.10 we have the following result. Related results 

are Theorem 1.5 of Varadarajan [13], Theorem 2 of Hoo [4] and Proposition 4.13 

of Lim [5]. 

THEOREM 1.11. ([13, 5, 6]) If A is a co-group like G-space, then G(A,X) is an 

abelian subgroup of[A,X]. 

Proof Set v = vv = lx and X = Y = A in Theorem 1.10 (2), then we see 

that GiA,X) is closed under the operation +. It also contains an inverse element 

a ov for any element a of G(A, X) by Theorem 1.4. Moreover, we see that G(A, X) 

is contained in the center of [A,X] by Proposition 4.3 of Lim [6] or Proposition 

1.9(2). ( S e t / = l x a n d / 3 = l r . ) 

2. The homotopy sets of the axes.. Let v : I - > Z b e a map. We call a map 
g.Y —» Z v-cyclic if v_J_g. Then by the result of Proposition 1.3(2), we can define 
the following set of the homotopy classes of the v-cyclic maps g.Y —*Z\ 

v±(Y,Z) = {[g]:Y-^Z\v±g} C[Y,Z\. 

If v ~ lx: X —• X, then (1X)±(F,X) is just the Varadarajan set G(Y,X) in [13]. 

PROPOSITION 2.1.(1) If v±g for maps v: X —> Zandg: Y—>Z, then Im(g*: [A, K] 

- + [ A , Z ] ) C v^(A,Z). 

(2) For owj maps v: X —> Z andf'.A —> X, we /z«v^ vi-(F, Z) C (v o / ) 1 (K, Z). 

Especially, for any map v: A —> X, we /za ve G(F, X) C v±(}7, X). 

Proof (1) The relation vJLg implies v_L(g o h) for any map h\ A —> Y by Theo

rem 1.4. 

(2) is proved similarly. 

PROPOSITION 2.2. Let v:X -^ Z be a map. lfw:Z—> W and a:A —> Y are 

G-homotopy equivalences, then the following results hold. 

(1) w*: v±(F,Z) —•» (w o v)-L(yr, W7) /$ an isomorphism. 

(2) (lx x a)*: v^(Y,Z) —• v ^ ^ Z ) is an isomorphism. 

Proof. These results are immediate consequences of Theorems 1.4 and 1.5. 

Remark 2.3. By Propositions 2.2 and 1.3(2), we know that the set v±(F,Z) de

pends only on the homotopy types of Y and Z and the homotopy class of v. 
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THEOREM 2.4. IfZ is a HopfG-space, then v±(Y, Z) = [Y, Z]for any map v: X —> 
Z. 

Proof. Since Z is a Hopf G-space, we have lz-i-lz and hence v_Lg for any map 
g: Y —» Z by Theorem 1.4. 

Given a copairing 0 : A —> B V C, a map a -i- /? : A —> X is defined by a + /3 = 
Vx ° (a V /?) o 0 for any maps a: J5 —+ X and /3 : C —-> X (Definition 1.8). Thus a 
copairing ^ : A - > S V C in the topological spaces induces a pairing 

+:[£,X] x [C,X]->[A,X] 

in the homotopy sets. We shall now study the induced pairings in v1(F, Z). 
In the rest of this section, we work in the category of G-CW complexes [9, 

10], because we use the G-homotopy extension property {G-HEP) in the proof of 
Theorem 2.5. The result holds in the category of G-ANR with some conditions. See 
Proposition 9.3 of [8]. The following theorem generalizes the results of Lemma 
4.8 of [51 and Theorem 1.5 of [13]. 

THEOREM 2.5. Let f:X —> Z, g\:Y\ —> Z and g2:Y2 —• Z be maps between 
G-CW complexes. Then the following results hold. 

(l)f±g\ andf±g2 impliesf±.{\/z o (g{ V g2)}. 

(2) Let 6:Y —>• Y\ V Y2 be a copairing. Thenfl.g\ andf-Lg2 implies f-L(g\ + 

82)' 

Proof, (cf. proof of Theorem 1.5 of [13]) (1) Let ̂ : I x Y\ —> Z be a pairing 
for/_Lgi and /x2: X x Y2 —• Z a pairing for/_Lg2. 

Let us define a map 

< / i i , /x 2 >:Xx(y 1 V Y2)^Z 

by the following way. We can assume that the maps p,\ and ji2 satisfy the following 
condition by G-HEP; 

/ i i |Xx { * } = / = / x 2 | X x { * } . 

Then we define < /zi,/x2 > \X x (Y\ x {*}) = //! and < /ii,/i2 > \X x 
({ *} x Fi) = /LJ2. This map < /ii, /i2 > is well-defined since they are equal when 
restricted to X x ({ *} x { *} ) = X x { *} . The map < fi\, [i2 > is a pairing for 

/_L{Vz°(gi Vg 2 )} . 
(2) Define j / : X x Y^Zby 

/z = < / i i , / i 2 > o ( l x x 0 ) : X x Y-+Xx(Yx V F2) -> Z. 
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Then we have 

M |{*} x Y= Vzo(gi Vg 2 )o0 =g{ + g2 and /x|Xx {*} = / . 

This completes the proof. 

Suppose we are given a copairing 0 : F —» Fj V F2. By Proposition 1.3(2) and 
Theorem 2.5(2), we can now define the induced pairing 

+: v1(Yl, Z) 0 v-L(F2, Z) -> v1(y, Z) 

by/i +/2 = V z o ( f i V / 2 ) o ô . 
If 0:Y—> FV F is a copairing, for example, co-Hopf structure, then 6 defines a 

binary operation on vx(F, Z). This is a generalization of Theorem 1.5 of [13] ; if v = 
Ix in the above pairing, then we see that the Varadarajan set G(Y, X) — {\x)L(Y, X) 
has a binary operation. See Corollary 4.9 of Lim [5] and Theorem 1.11. 

PROPOSITION 2.6. Let the spaces be G-CWcomplexes. Suppose that Y and B are 
co-Hopf G-spaces. Then the following results hold. 

(1) w*: v1(F, Z) -* (w o v)-L(F, W) is a homomorphism for any map w:Z —> W. 
(2) (a x 1K)*: V±(Y,Z)^ (voa)

L(Y,Z) is a homomorphism for any map a: A —> 
X. 
(3) ( l j x b)*: v±(7, Z) —> v^{B,Z) is a homomorphism for any co-Hopf map 
b.B^Y. 

3. The Dual Concepts. In this section we study the duals of the results in the 
previous sections. We omit most of the proofs of the results in this section, since 
they are given by dualizing the corresponding results. 

We write hTr if there exists a copairing 6 : A —• B V C with the coaxes h.A—^B 
and r.A-*C (Definition 1.8). 

Example 3.1. (1) A G-map r: A —• C is cocyclic if and only if UTr [13]. 
(2) A G-space A is a co-Hopf G-space if and only if l^TU. 

PROPOSITION 3.2. (1) Let h:A —> B and r.A —• C be maps. Then hTr if and 
only if rTh. 

(2) Let ho,h\:A —• B and ro, n:A —• C be maps. Suppose that ho ^ h\ and 
ro ™ r\. Then hoTro if and only ifh\Tr\. 

THEOREM 3.3. Leth\:A—>B\, h2:B{ —>£2, n:A—> Ch r2.C\ —* C2 be maps. 
Then h\Tr\ implies (h2 o h\)T{r2 o r\). 

THEOREM 3.4. Let h:A —> B, r:A —> C and d:D —> A be maps. Then hTr 
implies (h o d)T(r o d). 
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Let u: A —> B be a fixed map. We call a map r.A —> C u-cocyclic if wTr. We 

can now define the following set of the homotopy classes of the w-cocyclic maps 

r:A-+C; 

uJ(A,Q = {[r]:A->C\uTr}. 

If w ~ 1A, then (U)T(A, Q is just Varadarajan's DG(A, C) [13]. 

By Theorems 3.3 and 3.4, we have the following two propositions. 

PROPOSITION 3.5. If uTr for maps w.A^B and r: A—> Cthenlm(r*: [C,X] —• 

[ A J ] ) C M T ( A , I ) . 

PROPOSITION 3.6. Let w.A -^ B be a map. If a:V —> A and d:C —> D are 

G-homotopy equivalences, then the following results hold. 

(1) a*:uT(A,C) —> (uo a)T(V, C) is an isomorphism. 

(2) (lB V d)*: uT(A, O —• wT(A, D) is an isomorphism. 

The following result is a generalization of Lemma 3.4 of Lim [7]. 

PROPOSITION 3.7. Let h\:A{ —• #i , /*2:A2 —• £2 , n :Ai —> Ci, r2:A2 —» C2 £>e 

maps. Ifh{Tr\ andh2Tr2, then (h\ V /î2)T(ri V r2). 

/V00/ Let 0\\A\ —+ B\ V Ci be a copairing for h\Tr\ and 62: A2 —-> # 2 V C2 

for /i27>2. Define 0 : Ai V A2 - • (B{ V £2) V ( G V C2) by 

0 = ( l 5 l V 7 V l c 2 ) ° ( 0 i V 02): 

Ai V A2 -> (#i V Ci) V (B2 V C2) -> (B{ V £2) V (Ci V C2). 

Then 0 is a copairing for (h\ V /z2)T(n V r2). 

THEOREM 3.8. /f A /$ a co-Hopf G-space, then wT(A, C) = [A, C]for any map 

u:A-+B. 

THEOREM 3.9. Let h:A-+ B,r:A—> C,u:B —> U,d:B ^ D be maps. Suppose 

that uTd and hTr. Then the following results hold. 

(I)(uoh)T{(dohx r)oAA). 

(2) If n:D x C —> Zis a pairing, then (u o h)T(d o h + r). 

Proof. (1) Let QX\A - * 5 V C be a copairing for /zTr and 0 2 :£ —> U V D a 

copairing for uTd. We define a copairing 0 : A — > £ / V ( Z ) x C ) b y 

9 = ( l ( / V i ) o ( « 2 V l c ) o 9 i : A ^ f i V C - » î / V D V C - » [ / V ( D x C ) , 

where j.DWC —> D x C is the inclusion map. Then 0 is a copairing for (u o 

/ i )T{ ( Jo / zx r ) o A A } . 
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(2) By (1) and Theorem 3.3, we have (u o /z)T{/i o {d o h x r) o A^}, namely, 
(w o A)T(d o t + r). 

Let Z be a grow/? like G-space [14], that is, Z is a homotopy associative Hopf 
G-space with a homotopy inverse i/: Z —* Z, namely, 1 Z + Z / ~ * ~ Î / + 1Z. Then 
as an application of Theorem 3.9, we have the following result of Theorem 4.2 of 
Lim [7]. 

THEOREM 3.10. ([7]) Let Zbe a group like G-space. Then DG(A, Z) is an abelian 
subgroup of[A,Z]. 

Proof. Set u — h — 1A in Theorem 3.9, then we see that DG(A,Z) is closed 
under the operation +. The inverse element i / o a i s contained in DG(A, Z) for any 
element a of DG(A,Z) by Theorem 3.3. Moreover, DG(A,Z) is contained in the 
center of [A,Z] by Proposition 1.9(1) (Set h = lA and (5 — \j). (cf. Corollary 
3.10 of [7].) 

4. Operations and Whitehead Products. Throughout this section we assume 
that G — { e}, the group of the identity alone. We assume furthermore that the 
spaces are CW complexes so that we can use the homotopy extension property. 
Then the fundamental group 7T\(X) operates on the homotopy set [A,X1. We find 

the definition of the operation in [13,14]. If a is an element of ix\ (X), then we have 
an isomorphism 

<7#:[A,X] —[A,X], 

which is induced by the operation of G on the homotopy set [A, X]. 

THEOREM \.\.LetQ\A—*B\/ C be a copairing. Let (3 be an element of [B, X] 
andl of[C,X]. Then 

a#(l3 + 7 ) = a#(/3) + a#(7) 

for any G of IT \ (X). 

Proof Let / , g and s be maps representing (3, 7 and a. We can choose homo-
topies F: B x / —+ X and G: C x / —» X so that 

F\Bx {0} = / , G\Cx {0} =g andF|{*} xl= s = G|{*} x / . 

We see that F\ B x { 1} = a#((3 ) and G\ C x { 1} = a#(7 ) by the definition of the 
operation of a. We define K: (B V C) x / —> X by 

^ | ( 5 x { * } ) x / = F a n d # | ( { * } x Q x I = G. 
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K is well-defined by the properties of F and G. Define a homotopy H: A x / —> X 
by a composition 

H = Ko(B x 17):A x / - + ( £ V Q x / - > X . 

Then 

/ / | A x { 0 } = V*o(/"Vg)o0 =p +7 a n d / / | A x { l } = <7#(/3 +7) . 

Here we see that H\A x { 1} = o#(/?) -i- <r#(7) by the definition of//, and hence 
we have <r#(/3 4- 7) = <r#(/3) 4- cr#(7). 

THEOREM 4.2. Ler v: X —> Z te a map. 

(1) The subgroup v*7T](X) operates trivially on v1(Y,Z). 
(2) Let a be an element ofvL(Sx, Z). Then o operates trivially on Im (v*: [A,X] 
—> [A, Z])for any space A. 

Proof. (1) Let \f] be an element of v±(Y,Z) and ii\X x Y —> Z be a pairing 
for vJ_/. For any element a = [s]: (/, {0,1}) —• (X,*) of TT\(X), we define a 
homotopy //: F x / —> Z by 

/ / = / i o ( s x l F ) o T : F x / ^ / x y ^ X x r - ^ Z . 

Then //| r x {0} ~ / - //| F x { 1} and H\ { *} xI~voS = v*(s). Hence we 
havev*(a)#(f) = / / | F x { l } ~ / . 

(2) Suppose that cr = [5] and / i : I x 5 ' —* Z is a pairing for vJLs and [/*] is an 
element of [A, X]. We define a homotopy //: A x / —> Z by 

# = iio(fxp):A xI^XxS1 -»Z, 

where /?: (/, { 0,1} ) —• (S1, *) is the projection. Then we have 

H\A x {0} - v o / = v*( / )~ / / |Ax {1} and// |{*} xI~sop. 

It follows that <7#(v*(/")) ~ //|A x { 1} ~ v*(/). This completes the proof. 

We denote by ZA the reduced suspension of a space A, and A A B the smash 
product A x B/A\/ B of A and #. 

Arkowitz [1] defined the generalized Whitehead product 

[a,/?]:X(AAfl)->X 

for any elements a:TA—>X and (3: 2# —• X. 
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THEOREM 4.3. Letf: IX —> Zandg: ZF —> Z. ThenfLg if and only if\f, g] = 0. 

Proof. By Definition 1.1, we see that/_Lg if and only if there exists a pairing 
/ i : X I x i r - > Z such that \I\1X V I F ~ Vz o (/" V g). The latter condition is 
equivalent to \f,g] = 0 by Proposition 5.1 of Arkowitz [1]. 

PROPOSITION 4.4. Létf v: ZX —> Z /?<? a ma/?, 77z<?rc 

v x ( IF ,Z)={[ / ] : IF -+Z | [v , / ] = 0}. 

Proof By Theorem 4.3, we have the result. 

The following theorem is a generalization of Theorem 3.2 of [13]. 

THEOREM 4.5. Let v.X —> Z be a map and (3 an element of vLÇLY,Z). Then 
[v*(a),/3] = 0 for any element a of[IA,X]. 

Proof Suppose that a — \f] and (3 = [g]. Since v_l_g, we have (v of)±g for 
any map/: 214 —> X by Theorem 1.4. It follows that [v*(a), (3 ] = [v o/, g] = 0 by 
Theorem 4.3. 

Varadarajan [13] defined the following subgroup of [ZF, Z]; 

PÇLY,Z) = {7 G [IF,Z] | [/3,7] = 0 for all (3 e[ZlY,Z] 

and all n > 1} . 

Let v: X —• Z be a map. We define 

/ ( Z r , Z ) = {7 G [IF,Z] | [v*(/3),7] = 0 for all/î G [X"F,X] 

and all /i > 1} . 

v^(Zr,Z) = {7 G [ZY,Z] | [v*(/3),7] = 0 for all/J G [IB,X] 

and all space #} . 

vc(Y,Z) = {[g] G [Y,Z] | v#(a) + £*(/?) = g*(/3) + v*(a) 

for all a G [£A,X] and all /? G [SA, F] and all space A} . 

The above definitions are generalizations of Definitions 4.1 and 4.5 of [6]. 

THEOREM 4.6. Let v:X —> Z be a map. Then the following results hold. 
(1) P(LY,Z) C vwÇLY,Z) C vpÇLY,Z). 
(2) vx(Zr,Z) C vwÇLY,Z) C vp(EF,Z). 
(3) vx(F,Z) C vc(F,Z). 

Proo/. (1) is a direct consequence of the definitions. 
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(2) Let 7 be an element of vx(iy, Z). Then [v*(/3 ), 7 ] = 0 for any element (3 of 
[£#, X] by Theorem 4.5 and hence 7 is an element of vw(LY, Z). 

(3) Choose an element [g] of v^fY, Z), Let /x : X x y —> Z be a pairing with the 
axes v and g. Then we have 

v*(a) + g*(j3) = g*(J3) + v*(a) 

for any elements a of [HA, X], /? of [XA, y] and any space A by Proposition 1.9(2). 
Hence we have the result. 

THEOREM 4.7. Let v:X —» Z be a map. The homotopy sets vwÇLY,Z) and 
vp(ZY, Z) <ar£ subgroups of[LY, Z]. 

Prcw/. (a) Let/? = [/I, 7 = [g] G [ZK, Z] be the elements of vwÇ£ Y9 Z). 
Then we have fv*(a),/3] = [v*(a),7] = 0 for any element a = [h] G [SB,X] 
and hence v*(/i)_L/ and v*(/i)-Lg by Theorem 4.3. Then we have v*(/0-L(/" + g) by 
Theorem 2.5(2). It follows that [v*(a),/3 + 7 ] = 0 by Theorem 4.3 and hence 
(5+1 evw(LY,Z). 

(b) Let 7 = [g] be an element of vw(LY,Z). Then we have [v*(or),7] = 0 and 
hence v*(/z)JLg for any element a — [h] G [Xfi,X] by Theorem 4.5. It follows that 
v*(/ i ) l{go(- l l y)} by Theorem 1.4 and hence [v*(a), —7] = 0 by Theorem 4.3, 
since 7 o (- l2y) = - 7 . Thus we have - 7 G vw(ZF,Z). 

Moreover the set vw(LY, Z) contains the zero element (the constant map). Thus 
we have proved that the set vw(LY, Z) is a subgroup of [XF, Z]. 

Similarly we have the result for vp(LY, Z). 
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