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Involutions of RA Loops

Edgar G. Goodaire and César Polcino Milies

Abstract. Let L be an RA loop, that is, a loop whose loop ring over any coefficient ring R is an alter-

native, but not associative, ring. Let ℓ 7→ ℓθ denote an involution on L and extend it linearly to the

loop ring RL. An element α ∈ RL is symmetric if αθ
= α and skew-symmetric if αθ

= −α. In this

paper, we show that there exists an involution making the symmetric elements of RL commute if and

only if the characteristic of R is 2 or θ is the canonical involution on L, and an involution making the

skew-symmetric elements of RL commute if and only if the characteristic of R is 2 or 4.

1 Introduction

This is a contribution to the volume of recent papers that consider involutions of

group rings and, specifically, the sets of elements that are symmetric [Cri, CM06,

Lee03, Lee99, GSV98] or skew-symmetric [CM, JM05, GM03] relative to an involu-
tion. The twist here is that we focus attention on RA loops and their loop rings.

An RA or “ring alternative” loop is a loop for which the loop ring RL is alterna-

tive (but not associative) for any associative, commutative coefficient ring R with 1.
If L is an RA loop, then L is Moufang and it has a unique nonidentity commuta-

tor/associator that we always denote s. Thus, if a, b ∈ L, then either ba = ab or

ba = (ab)s and, if a, b, c ∈ L, either ab · c = a · bc or ab · c = (a · bc)s. It is easy to see
that s ∈ Z(L), the centre of L, and that s has order 2. For ℓ ∈ L, define

ℓ∗ =

{

ℓ if ℓ ∈ Z(L)

sℓ otherwise.

Then ℓ 7→ ℓ∗ is an involution on L (that is, an antiautomorphism of order 2) that
extends to the loop ring RL by linearity. We refer to ∗ as the canonical involution of L.

Diassociativity is a fundamental property of Moufang loops and alternative rings; that

is, the subloop (or subring) generated by any pair of elements is associative. More
generally, if three elements of a Moufang loop (or alternative ring) associate, they

generate a group (or an associative ring). One useful and important property of an
RA loop is called LC for “lack of commutativity”: if a, b ∈ L and ab = ba, then at least

one of a, b, ab is central; in particular squares in L are always central. The standard

reference for the theory of RA loops and their alternative rings is [GJM96]. In this
paper, we try also to quote the original literature wherever possible. For example, the

LC property was established in [CG86], but one can also consult [GJM96, §4.2].
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Any involution of an RA loop L extends by linearity to an involution of the loop
ring RL. Throughout this paper, it is convenient to use the same label θ for such a

map. Call α ∈ RL symmetric if αθ
= α and skew-symmetric if αθ

= −α. Denote
by L+ and (RL)+ the symmetric elements in L and RL, respectively, and by L− and

(RL)− the skew-symmetric elements of L and RL, respectively. Since s is the only

nonidentity commutator in L, it is easy to see that this element must be symmetric.
The product of symmetric elements is symmetric if and only if, given α, β ∈ RL

with αθ
= α and βθ

= β, we have (αβ)θ
= αβ. This occurs if and only if βθαθ

=

αβ, that is, if and only if βα = αβ. Thus the symmetric elements of RL form a
commutative set if and only if (RL)+ is a subring. It is well known that the “bracket”

operation [a, b] = ab − ba turns an associative algebra into a Lie algebra. On an
alternative algebra, the bracket induces the structure of a Malcev algebra, that is, an

anticommutative algebra that satisfies the identity

(xy)(xz) = (xy · z)x + (yz · x)x + (zx · x)y

[Sag61]. It follows that if RL is an alternative algebra, then RL− is Malcev with respect
to the bracket operation and, when (RL)− is commutative, this new product is clearly

trivial. These two observations explain some of the interest in the commutativity of
(RL)+ and (RL)−.

2 Skew-Symmetric Elements

Throughout this paper, θ denotes an involution of an RA loop L and (by linear ex-

tension) also on the alternative ring RL. In characteristic 2, elements that are skew
or symmetric relative to θ coincide. Since we will investigate the commutativity

of symmetric elements in characteristic 2 in the next section, we assume here that
char R 6= 2.

In what follows, we shall find it convenient to refer to the support of a loop ring

element α =

∑

αℓ∈R αℓℓ, this being the set of those elements of L which actually
appear in the sum: supp(α) = {ℓ ∈ L | αℓ 6= 0}.

Suppose α =

∑

αℓℓ is a skew-symmetric element in the loop ring RL. Then

∑

αℓℓ
θ

= αθ
= −α = −

∑

αℓℓ.

Assume k is in the support of α. There are two possibilities. If kθ
= k, then the

coefficient of k in −
∑

αℓℓ is −αk, whereas the coefficient of k in αθ is αk, so 2αk = 0.

If kθ 6= k, then there exists ℓ ∈ supp(α) such that −αkk = αℓℓ
θ. Thus ℓθ

= k (and
ℓ = kθ), so that k 6= ℓ, and αk = −αℓ. So αkk + αℓℓ = −αℓℓ

θ + αℓℓ = αℓ(ℓ − ℓθ). It

follows that (RL)− is spanned by the set R ∪ S, where

R = {αℓ | ℓ ∈ L+, 2α = 0} and S = {ℓ − ℓθ | ℓ ∈ L}.

Proposition 2.1 Let L be an RA loop and let θ denote an involution θ of L with the

property that the set (RL)− of skew-symmetric elements commutes. For noncommuting

elements k, ℓ ∈ L, consider the conditions
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(a) kθ
= k or ℓθ

= ℓ or (kℓ)θ
= kℓ,

(b) kℓ = ℓkθ
= ℓθk or kℓ = ℓkθ

= kθℓθ or kℓ = ℓθk = kθℓθ.

If the coefficient ring R has characteristic different from 2, 3 and 4, then condition (a)
holds. If char R = 3, then (a) or (b) holds.

Proof If (RL)− is commutative, so is S, so

(2.1) (k − kθ)(ℓ − ℓθ) = (ℓ − ℓθ)(k − kθ)

for any k, ℓ ∈ L, that is,

(2.2) kℓ + ℓkθ + ℓθk + kθℓθ
= ℓk + kℓθ + kθℓ + ℓθkθ.

Suppose kℓ 6= ℓk. In characteristic different from 2, 3, 4, kℓ is in the support of the
left side, so it is in the support of the right. Thus kℓ ∈ {kℓθ, kθℓ, ℓθkθ}, meaning that

kθ
= k or ℓθ

= ℓ or kℓ = ℓθkθ
= (kℓ)θ. If char R = 3, then, in addition, it is possible

that kℓ is not in the support of the left side. This occurs in exactly the three situations
described by condition (b).

Lemma 2.2 Let R be a coefficient ring of characteristic different from 2 and suppose

θ is an involution of an RA loop L such that (RL)− is commutative. If a ∈ L has the

property that aθ
= sa, then, for any b ∈ L, either bθ

= b or ab = ba. Thus, ab = ba for

every b /∈ L+.

Proof Suppose b ∈ L and ab 6= ba. The elements a − aθ
= (1 − s)a and b − bθ

commute, so

(1 − s)(ab − abθ) = (1 − s)(ba − bθa).

If a and bθ commute, this becomes (1−s)ab = (1−s)ba = (1−s)(sab) = −(1−s)ab,
which cannot happen. Thus bθa = sabθ and

(1 − s)(ab − abθ) = (1 − s)(sab − sabθ) = −(1 − s)(ab − abθ),

so (1 − s)(ab − abθ) = 0. This says ab + sabθ
= sab + abθ . Since ab 6= sab, we have

ab = abθ and hence bθ
= b.

A fact about RA loops that is crucial in the proof of the proposition and theorem

that follow is that an RA loop L cannot contain a commutative subloop of index 2.

This is so because if B is a commutative subloop and x ∈ L, then 〈B, x〉 is a group
[GM96], [GJM96, Corollary IV.2.4].

Proposition 2.3 In characteristic different from 2, commutativity of (RL)− implies

that L+ is an abelian group.

Proof Suppose there exist x, y ∈ L+ with xy /∈ L+. Then xy 6= (xy)θ
= yθxθ

= yx,

so yx = sxy. Let a = xy. Then aθ
= sa and a is not central (x and y do not

commute), so C(a) = {b ∈ L | ab = ba} is proper and a subloop [GJM96, Corollary

IV.1.15]. Let b, c ∈ C(a). The LC property and ab = ba imply that a is central or

b is central or ab is central. Since a is not central, either b is central, or ab = z for

https://doi.org/10.4153/CMB-2009-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-027-0


248 E. G. Goodaire and C. Polcino Milies

some z ∈ Z(L) giving that b = a−2za is a central multiple of a. Similarly, c is central
or a central multiple of a. In all cases, we have bc = cb, so C(a) is commutative.

Suppose w /∈ C(a) and t /∈ C(a). By Lemma 2.2, w = wθ and t = tθ , and a third
appeal to Lemma 2.2 gives either wt ∈ C(a) or (wt)θ

= wt . Suppose wt /∈ C(a).

Then wt = tθwθ
= tw, so t is central or w is central or wt is central. None of these

possibilities actually occurs, however, because none of w, t, wt commute with a. Thus
wt = c ∈ C(a) and t = w−2cw ∈ C(a)w. It follows that C(a) has index 2. As noted

prior to the statement of the proposition, this cannot occur in an RA loop because

C(a) is commutative. Thus L+ is closed under multiplication, hence commutative
and hence a group. (In an RA loop, if two elements commute, they associate with

every third element [Goo83], [GJM96, Theorem IV.1.8].)

Theorem 2.4 Let R be a coefficient ring of characteristic different from 2 and 4, and

let θ be an involution of an RA loop L. Then (RL)− is not commutative.

Proof We obtain the result by contradiction, assuming initially that (RL)− is indeed

a commutative set.

Suppose first that char R = 3 and that there exist noncommuting elements k, ℓ ∈
L satisfying condition (b) of Proposition 2.1. The first set of equations, kℓ = ℓkθ

=

ℓθk, imply kθ
= ℓ−1kℓ = sk and, similarly, that ℓθ

= sℓ. The second set of equations,
kℓ = ℓkθ

= kθℓθ, imply kθ
= sk and sℓk = kℓ = (ℓk)θ, and the third set of equations,

kℓ = ℓθk = kθℓθ, imply ℓθ
= sℓ and (ℓk)θ

= sℓk. Thus each alternative of (b) gives
two noncommuting elements a and b with aθ

= sa and bθ 6= b, a situation in conflict

with Lemma 2.2. We conclude that for every k, ℓ ∈ L with kℓ 6= ℓk, we have condition

(a) of Proposition 2.1.

As in the proof of Proposition 2.3, we show that L contains a commutative subloop

of index 2, which can never be the case for L an RA loop. The subloop A generated
by Z(L) and L+ is commutative by Proposition 2.3. Suppose k, ℓ /∈ A. If kℓ = ℓk,

then kℓ ∈ Z(L) ⊆ A because L has LC and neither k nor ℓ is in Z(L). If kℓ 6= ℓk,
then kℓ ∈ L+ ⊆ A because kθ 6= k and ℓθ 6= ℓ, and we know that condition (a) of

Proposition 2.1 is the case. So, whether or not k and ℓ commute, kℓ = a ∈ A, so

ℓ = k(k−2a) ∈ kA. Thus A has index 2.

2.1 Characteristic 4

When considering the commutativity of elements that are skew relative to some in-

volution of an RA loop L, and in view of Theorem 2.4, it is clear that characteristic

4 is special because, in this case, the canonical involution on L makes (RL)− com-
mutative. To see why, notice that L+

= {ℓ ∈ L | ℓ∗ = ℓ} = Z(L), so the elements

of R = {αℓ | ℓ ∈ L+, 2α = 0} are central. Also, if k, ℓ ∈ L and either of these

elements is central, then k∗ = k or ℓ∗ = ℓ and (2.1) holds whereas, if neither k nor ℓ
is central, then k∗ = sk and ℓ∗ = sℓ, the left side of (2.1) is (1 − s)2kℓ and the right

side is (1 − s)2ℓk. The two sides are clearly equal if kℓ = ℓk; otherwise, ℓk = skℓ, the
right side is −(1 − s)2kℓ = (1 − s)2kℓ since 2(1 − s)2

= 4 − 4s = 0 and again the

two sides are equal. In all situations, (2.1) holds, and the set S = {ℓ − ℓθ | ℓ ∈ L} is

commutative, so R ∪ S and hence (RL)− are commutative as well.
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Other involutions force commutativity of (RL)− as well in characteristic 4. See
Example 2.10.

We proceed now towards a theorem giving necessary and sufficient conditions for
(RL)− to be commutative in characteristic 4 (Theorem 2.8). Thus our underlying

assumption is that R is a coefficient ring of characteristic 4 and that θ is an involution

of an RA loop L for which (RL)− is commutative.
Suppose that for any k ∈ L, it is the case that kθ 6= sk. The first two lines of

the proof of Proposition 2.3 show that L+ is closed under multiplication and hence

an abelian group. Moreover, for any k, ℓ ∈ L with kℓ 6= ℓk, kℓ is in the support
of the left hand side of equation (2.2) because the possibilities kℓ = ℓkθ, kℓ = ℓθk,

kℓ = kθℓθ imply, respectively, kθ
= sk, ℓθ

= sℓ, (ℓk)θ
= s(ℓk). So for any k, ℓ ∈ L

with kℓ 6= ℓk, we have kℓ ∈ {kℓθ, kθℓ, ℓθkθ}, so ℓθ
= ℓ or kθ

= k or (kℓ)θ
= kℓ,

these possibilities comprising condition (a) of Proposition 2.1. The last paragraph

of the proof of Theorem 2.4 carries over verbatim to the present situation giving a
commutative subloop of L of index 2, which cannot be the case.

The next lemma is now clear.

Lemma 2.5 The loop L contains an element k with kθ
= sk.

Now take k ∈ L with kθ
= sk and suppose kℓ 6= ℓk for some ℓ ∈ L. Commutativity

of k − kθ
= k − sk and ℓ − ℓθ implies

(2.3) (1 − s)(kℓ − kℓθ) = (1 − s)(ℓk − ℓθk).

If kℓθ
= ℓθk, we are left with (1 − s)kℓ = (1 − s)ℓk = −(1 − s)kℓ, so 2(1 − s) = 0, a

contradiction. Thus kℓθ 6= ℓθk. This little argument establishes the next lemma.

Lemma 2.6 If k ∈ L satisfies kθ
= sk, then kℓ = ℓk for ℓ ∈ L if and only if kℓθ

= ℓθk.

Lemma 2.7 For any ℓ ∈ L, we have ℓθ ∈ {ℓ, sℓ}.

Proof By Lemma 2.5, the set K = {k ∈ L | kθ
= sk} is nonempty. We claim it is not

central. Supposing otherwise, the first two lines of the proof of Proposition 2.3 show

that L+ is an abelian group. Then the argument establishing Lemma 2.5 shows that
condition (a) of Proposition 2.1 holds for any k, ℓ with kℓ 6= ℓk and the last paragraph

of the proof of Theorem 2.4 produces a commutative subloop of index two in L, an
impossibility. Thus we may fix a noncentral element k ∈ K .

Suppose ℓ ∈ L and kℓ 6= ℓk. Applying θ to kℓ = sℓk gives ℓθkθ
= skθℓθ

= kℓθ, so

ℓθk = skℓθ and (2.3) becomes

(1 − s)(kℓ − kℓθ) = −(1 − s)(kℓ − kℓθ),

giving 2(1 − s)(kℓ − kℓθ) = 0. This is 2kℓ + 2skℓθ
= 2skℓ + 2kℓθ. If ℓ 6= ℓθ, then kℓ is

not in the support of the right side, so kℓ = skℓθ implying ℓθ
= sℓ.

Suppose ℓ ∈ L and kℓ = ℓk. Fix an element a with ak 6= ka (so that aθ
= a or

aθ
= sa by what we have already shown). In an RA loop, two commuting elements

associate with every third, so parentheses are not needed when we record the fact that
(aℓ)k 6= k(aℓ) [GJM96, Theorem IV.1.8]. Using again what we have already learned

about elements that do not commute with k, we have ℓθaθ
= (aℓ)θ ∈ {aℓ, saℓ}, so

ℓθ ∈ {ℓ, sℓ} too.
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We have reached our main theorem about the commutativity of skew-symmetric
elements in characteristic 4.

Theorem 2.8 Suppose θ is an involution of an RA loop L and R is a coefficient ring of

characteristic 4. Then the set (RL)− of skew-symmetric elements of RL is commutative

if and only if elements of RL of the form αℓ with ℓ ∈ L+ and 2α = 0 commute and

kθ ∈ {k, sk} for each k ∈ L.

Proof Recall that (RL)− is spanned by R ∪ S, where

R = {αℓ | ℓ ∈ L+, 2α = 0} and S = {ℓ − ℓθ | ℓ ∈ L},

so that (RL)− is commutative if and only if R is commutative, S is commutative, and

each element of R commutes with each element of S. If (RL)− is commutative, then
kθ ∈ {k, sk} for any k by Lemma 2.7, so we have the theorem in one direction.

Conversely, assume that R is commutative and that kθ ∈ {k, sk} for any k ∈ L.
First we claim that k−kθ and ℓ−ℓθ commute for any k, ℓ ∈ L. This is clear if kθ

= k or

ℓθ
= ℓ, so assume the contrary. Thus kθ

= sk, ℓθ
= sℓ and (k−kθ)(ℓ−ℓθ) = (1−s)2kℓ

while

(ℓ − ℓθ)(k − kθ) = (1 − s)2ℓk =

{

(1 − s)2kℓ if kℓ = ℓk

−(1 − s)2kℓ if kℓ = sℓk.

Since s2
= 1 and we work in characteristic 4, we have (1−s)2

= 2−2s = −(2−2s) =

−(1 − s)2. It follows that S is commutative. By assumption, R is commutative, so

it remains to prove that each element of R commutes with each element of S. So let

αℓ ∈ R, k − kθ
= (1 − s)k ∈ S and compare the elements

αℓ(k − kθ) = α(1 − s)ℓk and α(k − kθ)ℓ = α(1 − s)kℓ.

These are certainly equal if kℓ = ℓk whereas, if ℓk = skℓ, the elements in question

are α(1 − s)skℓ = α(s − 1)kℓ = −α(1 − s)kℓ and α(1 − s)kℓ. Again these are equal
because α = −α. This completes the theorem.

Remarks 2.9. (1) With reference to Theorem 2.8, suppose ℓ1, ℓ2 ∈ L+ do not com-
mute. Then ℓ1ℓ2 − ℓ2ℓ1 = (1 − s)ℓ1ℓ2. If αℓ1, βℓ2 ∈ R, then 0 = αβ(ℓ1ℓ2 − ℓ2ℓ1) =

αβ(1− s)ℓ1ℓ2 and it follows that αβ = 0. So the condition that R be commutative is

equivalent to the condition

• either L+ is commutative or α, β ∈ R with 2α = 2β = 0 implies αβ = 0.

From this we see, for example, that R is commutative when the coefficient ring R =

Z4 is the ring of integers modulo 4 or, more generally, any ring that is free as a module

over Z4.

(2) We have observed that, in characteristic 4, the standard involution forces the
skew-symmetric elements to commute. It is interesting to note that the converse is

nearly satisfied in the sense that when the skew-symmetric elements commute, for
each pair of elements k, ℓ ∈ L which do not commute and for which kθ

= sk and

ℓθ
= sℓ, the map θ is the restriction of the canonical involution to the group 〈k, ℓ〉

generated by k and ℓ.
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To see why, assume that (RL)− is commutative. By Theorem 2.8, kθ ∈ {k, sk} and
so (k2)θ

= k2 for any k ∈ L. Let k, ℓ ∈ L with kℓ 6= ℓk, kθ
= sk and ℓθ

= sℓ, and

let G = 〈k, ℓ〉. Since squares in L are central and since L has just one nonidentity
(central) commutator/associator, any g ∈ G can be written g = zk or g = zℓ or

g = zkℓ with z ∈ Z(G). Also, easily, Z(G) = 〈s, k2, ℓ2〉. Thus θ is the identity on

Z(G) and, since ℓθ
= ℓ∗, kθ

= k∗ and (kℓ)θ
= ℓθkθ

= (sℓ)(sk) = ℓk = skℓ = (kℓ)∗,
we have θ(w) = sw for w /∈ Z(G). Thus θ is canonical on G.

Example 2.10. We offer an example of an involution of an RA loop different from
the canonical involution, with (RL)− commutative and L+ not commutative. Let

x, y, u ∈ L be elements which do not associate and let G = 〈Z(L), x, y〉 be the subloop
generated by x, y, and the centre of L. It is known that G is a group of index 2 in L

and so L = G ∪ Gu [CG86, §3], [GJM96, Corollary IV.2.3]. The reader may check

that the map θ : L → L defined by gθ
= g∗ and (gu)θ

= gu for g ∈ G is an involution
with kθ ∈ {k, sk} for all k ∈ L. With R = Z4, the set R is commutative by the first of

Remarks 2.9, so (RL)− is commutative by Theorem 2.8.

3 Symmetric Elements

In this section, we consider involutions that force the symmetric elements to com-
mute. As with our considerations of skew-symmetric elements, characteristic is im-

portant. We have two theorems, according as the characteristic is or is not 2.

Theorem 3.1 Let θ be an involution of an RA loop L. Assume R is a commutative asso-

ciative ring with 1 and characteristic different from 2. Then the following are equivalent

assertions.

(1) (RL)+ is closed under multiplication.

(2) The elements of (RL)+ commute.

(3) (RL)+
= Z(RL), the centre of RL.

(4) θ = ∗ is canonical.

Proof This theorem and its proof are suggested by [JM06].

We noted the equivalence of (1) and (2) at the end of the introduction. That (3)
implies (2) is trivial while (4) implies (3) is a known property of ∗ [GP87, Corollary

2.2], [GJM96, Corollary III.4.3] so, to complete the proof, it suffices to show that (2)

implies (4).

So assume that the elements of (RL)+ commute. Then the elements of

S = L+ ∪ {ℓ + ℓθ | ℓ ∈ L, ℓθ 6= ℓ}

commute because S spans (RL)+. We claim that L+ ⊆ Z(L). For this, take ℓ0 ∈ L+

and ℓ ∈ L. If ℓ ∈ L+, then ℓ0ℓ = ℓℓ0 because the elements of S commute. If ℓ /∈ L+,

then ℓ0(ℓ + ℓθ) = (ℓ + ℓθ)ℓ0 gives ℓ0ℓ ∈ {ℓℓ0, ℓ
θℓ0}. In the case ℓ0ℓ = ℓθℓ0, we have

ℓ0ℓ = ℓθℓ0 = ℓθℓθ
0 = (ℓ0ℓ)θ giving ℓ0ℓ ∈ L+. Since S is a commutative set, it follows

that ℓ0 commutes with ℓ0ℓ, so ℓ0 commutes with ℓ. In any case, ℓ0 and ℓ commute,

so L+ ⊆ Z(L) as claimed.
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Now let k, ℓ ∈ L with kℓ 6= ℓk. Thus neither k nor ℓ is central, so k /∈ L+, ℓ /∈ L+

and k + kθ, ℓ + ℓθ must commute. We obtain

(3.1) kℓ + kℓθ + kθℓ + kθℓθ
= ℓk + ℓkθ + ℓθk + ℓθkθ

and claim that kℓ is in the support of the left hand side. To see why, note that kℓ 6= kℓθ

because ℓ is not central (hence not in L+) and, similarly, kℓ 6= kθℓ. So kℓ is in the
support of the left side with a coefficient of 1 or 2 6= 0, so kℓ is in the support of the

right side too. Thus kℓ ∈ {ℓkθ, ℓθk, ℓθkθ}.

If kℓ = ℓθkθ , then kℓ = (kℓ)θ, so kℓ ∈ L+ ⊆ Z(L), giving kℓ = ℓk which is not
true. So either kℓ = ℓkθ or kℓ = ℓθk.

Assume that kℓ = ℓkθ. Applying to kℓ and ℓ what we have learned about non-
commuting elements, we have (kℓ)ℓ = ℓ(kℓ)θ or (kℓ)ℓ = ℓθ(kℓ). In the first case,

(kℓ)ℓ = ℓ(kℓ)θ
= ℓℓθkθ. (No parentheses are needed in the product ℓℓθkθ because

ℓℓθ ∈ L+ ⊆ Z(L) implies that ℓ and ℓθ commute and hence associate with every third
element.) Moreover, kℓℓ = kθℓθℓ, so kℓ = kθℓθ. In the second case, (kℓ)ℓ = ℓθ(kℓ) =

ℓθℓkθ, so ℓ2k = kℓ2
= ℓℓθkθ and ℓk = ℓθkθ . Thus kθℓθ

= (ℓk)θ
= kℓ. In both cases,

kℓ = kθℓθ. Thus ℓkθ
= kθℓθ

= sℓθkθ giving ℓθ
= sℓ. In passing, note too that the

assumption of this paragraph gives kθ
= ℓ−1kℓ = sk.

Similarly, if we assume kℓ = ℓθk, we can again show that both kθ
= sk and ℓθ

= sℓ.
All this shows that if k /∈ Z(L), then kθ

= sk.

Now let ℓ be a central element of L and let k be any element which is not central.

Then kℓ /∈ Z(L), so ℓθkθ
= (kℓ)θ

= s(kℓ). Since kθ
= sk, we have ℓθ

= ℓ. Thus θ = ∗
is canonical.

Now we turn our attention to the case of characteristic 2, where the next theorem
tells the story.

Theorem 3.2 Suppose R is a commutative, associative coefficient ring with 1 and of

characteristic 2, and L is an RA loop. Then there exists an involution θ of L which makes

the set (RL)+ of symmetric elements in RL commutative if and only if there exists a map

ϕ : L → Z(L) satisfying

(i) if ϕ(ℓ) = 1, then ℓ ∈ Z(L),

(ii) ϕ(ℓ)2
= 1 for all ℓ ∈ L,

(iii) ϕ(kℓ) =

{

ϕ(k)ϕ(ℓ) if kℓ = ℓk

sϕ(k)ϕ(ℓ) if kℓ 6= ℓk,

(iv) if kℓ 6= ℓk, then ϕ(k) = s or ϕ(ℓ) = s or ϕ(k) = ϕ(ℓ),

and ℓθ
= ϕ(ℓ)ℓ for all ℓ ∈ L.

Proof We remind the reader that any involution of an RA loop must fix s, the unique

nonidentity commutator/associator. As in Theorem 3.1, (RL)+ is commutative if and
only if

S = L+ ∪ {ℓ + ℓθ | ℓ ∈ L, ℓθ 6= ℓ}

is a commutative set.

Suppose there exists a map L → Z(L) with the indicated properties. It is straight-

forward to check that the map θ : L → L defined by ℓθ
= ϕ(ℓ)ℓ is an involution. If
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ℓ ∈ L+, then ℓθ
= ℓ so ϕ(ℓ) = 1 and ℓ is central so, to show that (RL)+ is commuta-

tive, we have only to show that two elements of the form k + kθ, k /∈ L+, commute;

that is, for k, ℓ /∈ L+,

kℓ + kℓθ + kθℓ + kθℓθ
= ℓk + ℓkθ + ℓθk + ℓθkθ.

This is

(3.2) kℓ + ϕ(ℓ)kℓ + ϕ(k)kℓ + ϕ(k)ϕ(ℓ)kℓ = ℓk + ϕ(k)ℓk + ϕ(ℓ)ℓk + ϕ(k)ϕ(ℓ)ℓk.

This equation is obviously satisfied if k and ℓ commute. We use condition (iv) to
show that it also holds if they do not. For example, if kℓ 6= ℓk and ϕ(k) = s, using

ℓk = skℓ, equation (3.2) reads

kℓ + ϕ(ℓ)kℓ + skℓ + sϕ(ℓ)kℓ = skℓ + kℓ + sϕ(ℓ)kℓ + ϕ(ℓ)kℓ.

The situation is similar if ϕ(ℓ) = s. Finally, if kℓ 6= ℓk and ϕ(k) = ϕ(ℓ), then
ϕ(k)ϕ(ℓ) = 1 by condition (ii), and (3.2) reads

kℓ + ϕ(k)kℓ + ϕ(k)kℓ + kℓ = ℓk + ϕ(k)ℓk + ϕ(k)ℓk + ℓk.

In characteristic 2, each side is 0, so we have established sufficiency.
For necessity, we suppose that θ is an involution of L with the property that (RL)+

and hence S are commutative sets. As in Theorem 3.1, L+ ⊆ Z(L) because the ar-
gument used previously was characteristic independent. Thus ℓℓθ ∈ Z(L) for any

ℓ ∈ L and, since ℓ−1
= ℓ−2ℓ with ℓ−2 central, ℓθ

= ϕ(ℓ)ℓ for some ϕ(ℓ) ∈ Z(L). If

ϕ(ℓ) = 1, then ℓ ∈ L+ ⊆ Z(L) giving statement (i).
Towards the proof of statement (ii), note first that for any k, ℓ ∈ L that do not

commute, we have

kℓ + kℓθ + kθℓ + kθℓθ
= ℓk + ℓkθ + ℓθk + ℓθkθ,

just as in Theorem 3.1. This shows that if ℓ ∈ L is not central and k ∈ L does not

commute with ℓ, then

(3.3) kℓ ∈ {kθℓθ, ℓkθ, ℓθk}.

In what follows, we use implicitly that ℓ, ℓθ, and k associate for any k, ℓ ∈ L (because
centrality of ℓℓθ implies that ℓ and ℓθ commute).

Case 1 Assume first that kℓ = kθℓθ. Then ℓθkθ
= ℓk, and (3.1) becomes

(3.4) kℓθ + kθℓ = ℓkθ + ℓθk.

Now k and ℓθ cannot commute, for otherwise, kℓθℓ = ℓθkℓ, so ℓθℓk = ℓθkℓ implying

kℓ = ℓk, which is not true. Thus (3.4) yields either kℓθ
= kθℓ and ℓkθ

= ℓθk or

kℓθ
= ℓkθ

= (kℓθ)θ. The latter implies kℓθ ∈ L+ ⊆ Z(L) giving that k and ℓθ

commute, which is not true. So we must have kℓθ
= kθℓ, which says kθ

= kℓθℓ−1,

kℓ = kθℓθ
= (kℓθℓ−1)ℓθ, ℓ = ℓθℓ−1ℓθ

= (ℓθ)2ℓ−1 and (ℓ2)θ
= (ℓθ)2

= ℓ2; that is,
ℓ2 ∈ L+.
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Case 2 Assume that kℓ = ℓkθ. Then kθ
= ℓ−1kℓ = sk, implying (k2)θ

= (kθ)2
=

s2k2
= k2, that is, k2 ∈ L+. Now k and ℓθ do not commute; otherwise, (kℓθ)θ

=

(ℓθk)θ, hence kℓ = ℓkθ
= kθℓ, and k ∈ L+ is central. Now apply (3.3) to the noncom-

muting elements kℓ and ℓ, obtaining

(kℓ)ℓ ∈ {(kℓ)θℓθ, ℓ(kℓ)θ, ℓθ(kℓ)}.

There are three possibilities.

(i) If (kℓ)ℓ = (kℓ)θℓθ, then kℓ2
= ℓθkθℓθ

= sℓθkℓθ
= k(ℓθ)2

= k(ℓ2)θ, so ℓ2 ∈ L+.

(ii) If (kℓ)ℓ = ℓ(kℓ)θ, then kℓ2
= ℓℓθkθ

= kθℓℓθ
= skℓℓθ so ℓθ

= sℓ and (ℓ2)θ
=

(ℓθ)2
= s2ℓ2

= ℓ2. Again ℓ2 ∈ L+.

(iii) If (kℓ)ℓ = ℓθkℓ, then kℓ = ℓθk, so ℓθ
= kℓk−1

= sℓ giving, again, ℓ2 ∈ L+.

Case 3 Suppose kℓ = ℓθk. Then sℓk = kℓ = ℓθk, so ℓθ
= sℓ, giving ℓ2 ∈ L+.

In all three cases, we have ℓ2 ∈ L+, showing that squares of noncentral elements

are fixed by θ. On the other hand, if x ∈ Z(L) and ℓ /∈ Z(L) is arbitrary, then

ℓx /∈ Z(L), so [(ℓx)2]θ
= (ℓx)2, that is, (ℓ2x2)θ

= ℓ2x2
= (ℓ2)θ(x2)θ. Since (ℓ2)θ

= ℓ2,
we have (x2)θ

= x2 too. Thus any square is fixed by θ.

Now remember that ϕ(ℓ) was defined by ℓθ
= ϕ(ℓ)ℓ and ϕ(ℓ) is central. Thus

ℓ2 ∈ L+ implies ℓ2
= (ℓθ)2

= ϕ(ℓ)2ℓ2, so ϕ(ℓ)2
= 1, which is statement (ii).

Furthermore, if kℓ = ℓk, then ϕ(kℓ)kℓ = (kℓ)θ
= kθℓθ

= ϕ(k)ϕ(ℓ)kℓ, so ϕ(kℓ) =

ϕ(k)ϕ(ℓ). On the other hand, if kℓ 6= ℓk, then kℓ = sℓk gives ϕ(kℓ)(kℓ) = (kℓ)θ
=

(sℓk)θ
= skθℓθ

= sϕ(k)ϕ(ℓ)kℓ, hence ϕ(kℓ) = sϕ(k)ϕ(ℓ). So we have statement (iii).

Finally, if k and ℓ do not commute, we have (3.3) and three possibilities. If kℓ =

kθℓθ, then ϕ(k)ϕ(ℓ) = 1, so ϕ(k) = ϕ(ℓ) because of (ii). If kℓ = ℓkθ
= ϕ(k)skℓ, then

ϕ(k) = s, while, if kℓ = ℓθk = ϕ(ℓ)skℓ, we have ϕ(ℓ) = s. Thus statement (iv) holds

and the proof is complete.

Examples 3.3. As noted in Section 2, an RA loop L is generated by its centre and three

elements x, y, u which do not associate. Since squares are central, each element of L

can be written in the form zw, where z ∈ Z(L) and w ∈ W = {x, y, u, xy, xu, yu,
(xy)u}. Moreover, since w−1

1 w2 /∈ Z(L) for distinct w1, w2 ∈ W , the elements z and

w in the representation zw are unique. Suppose ϕ : L → Z(L) satisfies properties i–iv

of Theorem 3.2 and Z(L) is cyclic of order a power of 2. (For example, L could be
an indecomposable loop in classes L1 or L2—see [GJM96, Chapter V].) Then s is

the unique element of order 2 in the centre so, if ℓ /∈ Z(L), ϕ(ℓ) = s because ϕ(ℓ)
has order 2. It follows readily that ϕ(a) = 1 if a ∈ Z(L), so θ = ∗ is the canonical

involution on L.

We claim that in any other situation, that is, where Z(L) contains an element t 6= s

of order 2, there are other maps ϕ satisfying the conditions of Theorem 3.2 and hence

involutions θ other than the canonical one that force the symmetric elements to com-

mute. Specifically, let ϕ(a) = 1 for a ∈ Z(L), choose ϕ(x), ϕ(y) and ϕ(u) arbitrarily
in {s, t} (but not all s), extend ϕ to W by the rule ϕ(w1w2) = sϕ(w1)ϕ(w2), and then

to L via the rule ϕ(zw) = ϕ(w), for z ∈ Z(L), w ∈ W . One such ϕ is defined by the
table

w x y u xy xu yu (xy)u

ϕ(w) s t s t s t t
.
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It is straightforward to check that ϕ(w1w2) = sϕ(w1)ϕ(w2) for any w1, w2 ∈ W ,
w1 6= w2. For example, if w1 = xy and w2 = yu, using the fact that xy, y, and u do

not associate (otherwise, they would generate a group containing x, y, and u) we have
w1w2 = (xy)(yu) = s(xy · y)u = s(xy2)u = (sy2)xu with sy2 central. So ϕ(w1w2) =

ϕ(xu) = s. On the other hand, ϕ(w1)ϕ(w2) = ts, so ϕ(w1w2) = sϕ(w1)ϕ(w2).

Now z1w1 and z2w2 commute if and only if w1 = 1 or w2 = 1 or w1 = w2 ∈ W ,
so ϕ indeed has the properties of Theorem 3.2 and the corresponding map θ is an

involution of L, different from ∗, with the property that the symmetric elements of

RL commute.

Theorem 3.4 Let L be an RA loop and let R be an associative, commutative ring of

coefficients with characteristic 2. The canonical involution ℓ 7→ ℓ∗ has the property that

the symmetric elements of RL commute. There exist other involutions with this property

if and only if Z(L) contains more than one element of order 2.

Proof We have just constructed a noncanonical involution with (RL)+ commutative

assuming Z(L) contains an element t 6= s of order 2. Conversely, if s is the only

element of order 2 in Z(L), then statement (ii) of Theorem 3.2 says ϕ(ℓ) ∈ {1, s}
for any ℓ ∈ L and then statements (i) and (iv) say that ϕ(ℓ) = s for any ℓ /∈ Z(L).

This implies that if ℓ /∈ Z(L), then ϕ(ℓ) = 1: take k /∈ Z(L); then kℓ /∈ Z(L),

so s = ϕ(kℓ) = ϕ(k)ϕ(ℓ) = sϕ(ℓ). So the involution θ defined by ℓθ
= ϕ(ℓ)ℓ is

canonical.
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