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The post-genomic technologies are generating vast quantities of data but many nutritional scientists are not trained or equipped to analyse it. In

high-resolution NMR spectra of urine, for example, the number and complexity of spectral features mean that computational techniques are

required to interrogate and display the data in a manner intelligible to the researcher. In addition, there are often multiple underlying biological

factors influencing the data and it is difficult to pinpoint which are having the most significant effect. This is especially true in nutritional studies,

where small variations in diet can trigger multiple changes in gene expression and metabolite concentration. One class of computational tools that

are useful for analysing this highly multivariate data include the well-known ‘whole spectrum’ methods of principal component analysis and partial

least squares. In this work, we present a nutritional case study in which NMR data generated from a human dietary Cu intervention study is ana-

lysed using multivariate methods and the advantages and disadvantages of each technique are discussed. It is concluded that an alternative

approach, called feature subset selection, will be important in this type of work; here we have used a genetic algorithm to identify the small

peaks (arising from metabolites of low concentration) that have been altered significantly following a dietary intervention.

NMR: Humans: Copper: Urine: Chemometrics

The potential use of metabolomics approaches in nutritional
studies has been discussed in recent reports (Whitfield et al.
2004; Gibney et al. 2005). By analysing the metabolite content
and concentration of a biofluid using NMR or liquid chromatog-
raphy MS, a metabolic profile of a volunteer can be generated
that provides a non-invasive ‘whole body snapshot’ (Holmes
et al. 1994; Lenz et al. 2003, 2004; Kochhar et al. 2006).
Comparison of these snapshots before and after dietary interven-
tion may highlight particular metabolites that respond (Solanky
et al. 2003, 2005; Daykin et al. 2005; Wang et al. 2005). This in
turn may lead to potential biomarker identification and
ultimately to a greater understanding of biochemical pathways.

There is some commonality in the type of data produced by
post-genomic techniques. In general, it is highly multivariate:
thousands of discrete data points are obtained from each
sample examined, representing the action of many (known
and unknown) variables within the system under study.
Although the basic principles of the experimental techniques
are well understood, the mathematical analysis of the data
that come from such technologies has not been widely dis-
cussed in the nutritional literature. However, it is quite poss-
ible to misuse multivariate methods (Defernez & Kemsley,

1997), to the extent that meaningless conclusions are obtained;
this is an issue that researchers need to be aware of when plan-
ning and conducting their work.

There is a collection of statistical techniques – the ‘chemo-
metric’ approaches – that have become very popular for hand-
ling highly multivariate (or ‘high-dimensional’) data. One of
the best-known of these is principal component analysis
(PCA). PCA was first proposed over 100 years ago (Pearson,
1901) but for practical reasons was not widely used until the
arrival of modern computing technology over the past two
decades. PCA is a good method to use for data visualization
and exploration. It compresses the data so that they are
easier to examine graphically and in such a way that patterns
may be revealed, which, although present, were obscured in
the original data. Another data compression technique
favoured by analytical chemists is partial least squares
(PLS). Developed in the 1980s from the concept of iterative
fitting (Wold et al. 1982, 1984), PLS has been widely used
in its basic regression form (Geladi & Kowalski, 1986).

In the present article, we present a case study comprising a set
of high-resolution 1H NMR spectra of urine samples. These were
obtained from a volunteer participating in a dietary intervention
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study designed to explore the role of dietary Cu in human metab-
olism. The data analysis challenge is to extract significant fea-
tures from the spectra that show systematic differences
between the ‘pre-’ and ‘post-intervention’ samples.

Various multivariate techniques are applied to the dataset
and the advantages and disadvantages of each are discussed,
along with some of the pitfalls that may be encountered in
the analysis of high-dimensional data. We will show that
neither PCA nor PLS are sensitive enough when the most rel-
evant spectral information is concentrated in a few very small
peaks, even a single peak, set against the ‘background’ of
many other larger peaks varying in ways unconnected with
the grouping of interest. An alternative to the whole-spectrum
approach in these circumstances is feature subset selection
(Leardi et al. 1992; Yoshida et al. 2001; Tapp et al. 2003).
Genetic algorithms (GA) are effective at selecting variables
from large datasets and in the present work we have
implemented a GA to conduct a search for small subsets of
peaks that are the most useful discriminators.

The case study

Six healthy male subjects aged 34–57 (mean 39) years were
recruited to a dietary intervention study investigating human
Cu metabolism (Harvey et al. 2005). A 10 ml screening blood
sample was taken to exclude volunteers whose biochemical
and haematological indices fell outside the normal range.
Other exclusion criteria included taking medication or nutri-
tional supplements and smoking. The aims and procedures of
the study were explained to the volunteers during a visit to the
Human Nutrition Unit at the Institute of Food Research, and
written informed consent was obtained. The Norwich District
Ethics Committee approved the protocol and the study was con-
ducted in accordance with the Declaration of Helsinki 1975, as
revised in 1983. In the present article, we primarily discuss the
data from a single volunteer, as an example dataset with which
to illustrate the multivariate techniques. Data from a second vol-
unteer are introduced as a fully independent test set, with which
to illustrate the concept of external validation in multivariate
analysis. All other results will be reported in a separate article,
in which the emphasis will be on the results of the study from
a biochemical perspective.

The study consisted of three experimental periods, and all
subjects were free-living throughout. Collection of urine
samples for metabolomic analysis formed only part of the
experimental protocol (see Harvey et al. 2005). During the
first experimental period (EP1), complete 24 h urine collections
were made over 8 consecutive days. During the second exper-
imental period (EP2), a minimum of 4 weeks later, the subjects
collected a further eight consecutive 24 h urine samples. Volun-
teers kept a record of all food and beverages consumed for 2 d
before and days 1–5 of EP2 urine collections. Following EP2,
volunteers consumed a daily Cu supplement containing 6 mg
Cu for 6 weeks and then collected 24 h urine samples for 8
consecutive days (EP3). During EP3, volunteers were asked
to consume the same food and beverages on the 2 d before
and days 1–5 of urine collection as those recorded for EP2.

Spectral acquisition

Urine samples were prepared for NMR analysis by mixing
500ml urine with 200ml 0.2 M-phosphate buffer (pH 7.4) in

D2O containing 1 mM-sodium 3-(trimethylsilyl)-propionate-d4

as a chemical shift reference. Samples were shaken and 600ml
were transferred into a 5 mm NMR tube for spectral acquisition.
1H NMR spectra were recorded at 600.13 MHz on an Avance
spectrometer (Bruker BioSpin, Rhe stetten, Germany) equipped
with an auto-sampler and a BBI probe fitted with z gradients.
After locking on the D2O signal and carrying out automatic
gradient shimming, spectra were acquired on non-spinning
samples at 3008K using the nuclear Overhauser effect spec-
troscopy-presaturation sequence (RD – 908 pulse – t1 – 908 –
tm – 908 – ACQ) with relaxation delay (RD) 2 s, 908 pulse
10.6ms, t1 4ms, mixing time (tm) 150 ms, acquisition time
(ACQ) 1.95 s. The water signal was suppressed by applying
low power irradiation at the water frequency during RD and
tm. For each sample, 128 transients were acquired into 32 K
time domain points with the spectral width set to 14 ppm.
The time domain signals were Fourier transformed with a 1 Hz
exponential line broadening factor, zero filled to give spectra
with 32 K real points and automatically phase corrected.

Data pre-processing

Manual baseline correction was performed (usually only the
first two terms of a fifth order polynomial correction were
used). Spectra were aligned along the ‘chemical shift’ axis
(see later) by setting the trimethylsilyl-propionate-d4 signal
to 0 ppm. This sets all spectra onto a common horizontal
scale across most of the spectral range. However, in certain
regions of the NMR spectrum, the registration issue is too
complicated to be solved by simple sideways shifting. For
instance, in the spectra discussed here, the two doublets aris-
ing from citrate vary somewhat in position from sample to
sample. This type of problem is acknowledged in the literature
and various methods have been proposed to deal with it.
A common pre-processing approach is to de-resolve the data-
set by ‘binning’ (Holmes et al. 1994) – dividing the horizontal
axis into (equal or unequal) regions and calculating a sum of
the spectral intensity in each. Broader bins can be defined to
cover, say, each of the citrate doublets and so the resulting
‘binned’ data are less sensitive to the registration problem
(Wang et al. 2005). In the past, binning has been standard
practice in dealing with NMR data, not least because the
binned spectra contain far fewer data points than the original
data, substantially reducing the computational load in any sub-
sequent multivariate analysis. The penalty, however, is con-
siderable loss of spectral resolution. Minor but important
signals may be included in the same bin as major but non-sig-
nificant signals. At best, this complicates the interpretation; at
worst, important information may be obscured and over-
looked. Given the continuing advances in microprocessor per-
formance, we no longer believe that binning is necessary on
the grounds of computational load. Instead, we have elected,
as others are now doing (Cloarec et al. 2005), to make use
of all the spectral resolution as acquired, whilst acknowled-
ging that a few regions of the spectrum will suffer from
poor peak alignment.

The files containing the resulting spectra were converted to
JCAMP-6 format text files and imported to Matlabw, version 7
(The Mathworks, Inc., Natick, MA, USA). All subsequent
algorithm development and data analysis was carried out
within the Matlab environment. Further pre-processing steps
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are described later, along with the descriptions of the multi-
variate methods employed.

High-resolution NMR spectra

High resolution 1H NMR data were recorded from the 24 h
urine specimens from each volunteer, in random order. An
NMR spectrum comprises a horizontal axis recording the
‘chemical shift’ values, with a vertical axis that records the
signal intensity at each of many thousands of those chemical
shifts. For any given metabolite every distinct hydrogen
atom or group of equivalent hydrogen atoms (for instance,
the three hydrogens in a methyl group) gives rise to a NMR
signal at a chemical shift that is characteristic of the chemical
environment of that hydrogen. The signal can be a singlet or a
multiplet: the multiplet structure arises from interactions with
neighbouring hydrogen atoms and generally the multiplicity
increases with the number of ‘near-neighbour’ hydrogens.
The intensity of the NMR signal (strictly, the area under the
signal) is directly proportional to the concentration of the
parent molecule in the biofluid mixture. This is the basis for
the use of NMR as an analytical technique (Günther, 1995)
and is also fundamentally the reason why data analysis
based upon linear algebra methods is so effective. Under the
conditions of our experiment a few types of hydrogen atom,
such as those bonded to oxygen or to some nitrogen atoms,
exchange with hydrogen atoms of water and do not give a
signal. However, the vast majority of metabolites contain
hydrogen atoms linked to carbon and all of these hydrogens
give observable signals. Thus, most metabolites can be
detected if their concentrations are sufficiently high. The
main caveat is that all metabolites present in the biofluid
(possibly several thousand in urine) are detected simul-
taneously; because the chemical shift range for hydrogen is
rather limited there is inevitably some signal overlap. The
water signal itself is massive compared with signals of the
metabolites and has to be suppressed in order to measure
those much weaker signals.

Each spectrum usually comprises a very large number of
discrete intensities – in the case of the present study approxi-
mately 32 000. Due to this very large number, ‘joining the
dots’ in a graphical display gives a series of peaks of different
heights, with the appearance of a smooth, continuous trace.
Spectra are relatively easy for the human eye to assess; pat-
terns of peaks and troughs quickly become familiar and an
experienced spectroscopist can often recognize the spectrum
of a particular chemical compound immediately. In addition,
a vast amount of work exists in the literature on the assigna-
tion of spectral bands to particular chemical entities, so that
in some cases quite detailed elucidation of the composition
of the specimen is immediately possible (Fan, 1996; Lindon
et al. 1999).

All twenty-four spectra obtained from one individual’s
urine specimens are shown in Fig. 1(a) (the spectra are
offset vertically, for clarity). Although some sections of the
spectrum can be discarded as ‘baseline’ (i.e. containing no
information other than noise), around 22 000 intensity values
contain spectral information (peaks) in some or all of the
recordings and these were retained for subsequent data proces-
sing. There are several points to note here. The size of spectral
peaks arising from individual compounds varies over orders of

magnitude (compare the large peaks at around chemical shifts
3–4 ppm with those in the region, say, 7–8 ppm). In fact,
there are many features that can only just be discerned as
tiny bumps along the baseline on this figure, but simply by
expanding the scale these are revealed as clear, well-resolved
spectral bands. Fig. 1(b) shows an expansion of the region
2–2.8 ppm (comprising 2000 data points), again stacked verti-
cally. This gives a graphic impression of the sensitivity of the
NMR method.

It also illustrates the substantial variation within a single
volunteer’s measurements: note, for instance, the changing
patterns of peaks in the region around 2.1–2.2 ppm. Four sing-
lets with chemical shifts between 2.15 and 2.18 ppm that are
seen in several of this volunteer’s traces can be assigned to
metabolites of paracetamol (Bales et al. 1984). Signals from
ethanol and metabolites of common analgesics are commonly
found in a proportion of urine spectra in studies where no diet-
ary restrictions are imposed. The signals need to be recog-
nized, but can then generally be disregarded.

These figures illustrate the data visualization problem in
NMR experiments. Even from a modest collection of spectra

Fig. 1. (a) A set of high-resolution NMR spectra collected from twenty-four

urine samples from a single volunteer. Spectra are shown offset for clarity;

(b) an expansion of a region of the data shown in Fig. 1a. Spectra are shown

offset for clarity.
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(twenty-four spectra in total), the number of data points (and
spectral peaks) that need to be examined is very large
indeed. Whereas some differences between spectra are
immediately obvious, others are much more subtle and, more-
over, it is not readily apparent which regions of the spectrum
contain the most relevant information. In this case study, we
will concentrate on identifying systematic and meaningful
differences between the ‘pre-’ and ‘post-intervention’ samples
collected from a single volunteer – the challenge is to isolate
these from the large background of within-individual variance.

Multivariate techniques

A number of key concepts underpin the effective use of multi-
variate statistical methods in the analysis of high-dimensional
data. Consider first of all a hypothetical, simplified spectrum
that comprises measured intensities at just three chemical
shift values. Since there are three ‘variables’, each of which
is measured independently of the others, the data are described
as three-dimensional (the dimension simply means the number
of independent variables). Consider now a set of twenty-four
such measurements, as illustrated in Fig. 2(a). This is the stan-
dard way in which spectra are represented, but this very small
dataset could equivalently be plotted as twenty-four points on
a three-dimensional coordinate system, with axes given as
‘chemical shift 1’, ‘chemical shift 2’ and ‘chemical shift 3’
(Fig. 2(b)). The number of points recorded on this plot
equals the total number of spectra.

Of course, real NMR spectra comprise intensities measured
at thousands of chemical shifts: the case-study dataset under
discussion contains 22 000. If it were possible to depict
22 000 axes in some way, then each spectrum could be plotted
as a single point in this space, mimicking the simplified three-
dimensional example. In practice, plots in two and three

dimensions are straightforward, but representing 22 000
dimensions graphically is clearly hopeless.

Central to multivariate statistics are the ideas of variance
and covariance. Covariance measures how much two suppo-
sedly unrelated variables vary together: if two variables have
no association whatever then their covariance is zero, meaning
that as one variable changes the other pays no heed. Variance
is a special case of covariance that quantifies the variation in
just a single variable. PCA and PLS are based on the calcu-
lation of a covariance matrix (or, in related alternative defi-
nitions, a correlation matrix; this is discussed further later).
This is a square table displaying how all the possible combi-
nations of pairs of variables are associated with one another;
the diagonal of the matrix contains the variances of each vari-
able. The covariance matrix directly summarizes the infor-
mation content of the original dataset, although hardly in a
concise form; in our NMR data, for instance, the covariance
matrix is 22 000 rows by 22 000 columns and so contains
.400 million elements. Again, this represents no problem
from the mathematical perspective, but hints at the data hand-
ling and visualization challenges; it is impossible to make
sense of this quantity of information without some systematic
help.

Principal component analysis

The goal of PCA is to provide that help. In PCA, the aim is to
generate a new set of variables that are simple linear combi-
nations of the original data. Graphically, this corresponds to
rotating the original variable axes onto a new coordinate
system. In the three-variable example, this can be readily visu-
alized: the plotted points are left dangling in space while the
axes are rotated about the origin (see Fig. 2(b)). The original
data values are replaced by ‘scores’: these are projections of

Fig. 2. (a) A set of simulated ‘spectra’ consisting of only three variables (at three chemical shift values); (b) illustration of the concept of rigid data rotation, as

implemented in principal component analysis and partial least square data compressions.
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each point onto the new axes. In addition to the scores, we
obtain as an output a series of lists of the relative weights of
the original variables that must be blended together to form
each new score. These lists are called principal component
(PC) ‘loadings’; graphically, the loadings define the rotated
axes relative to the original axes. The new coordinate
system has lost the transparent interpretation of the original
axes, but this turns out to be a price worth paying.

There are rules to guide the selection of the new axes. First,
they must be at right-angles (orthogonal) to one another, just
as the original axes were mutually orthogonal. Second, the
new axes are chosen so that the scores along each axis are
uncorrelated with those along any other. This is central,
since in the original data, the values along any one axis typi-
cally were correlated to some extent with those along other
axes. The axis rotation translates mathematically to transform-
ing the original covariance matrix into a diagonal matrix; in
other words, a matrix relying solely on variances of the
scores. There are standard mathematical techniques for per-
forming this operation.

So, how does this procedure help? PC scores are ranked
according to the magnitude of their variance and, typically,
the variances of the first two or three scores will express
well over half the total variance of the original dataset. If
this is the case, then the remaining scores can be ignored on
the grounds that they contribute little to the data variability.
This is an example of what chemometricians call ‘data com-
pression’ or ‘dimension reduction’ – reducing the number of
variables from, say, 22 000 to just two, yet retaining most of
the information. So PCA is about describing the data, orig-
inally expressed by large numbers of manifest variables, in
terms of a handful of latent (underlying) variables selected
to encompass virtually all of the original information content.
PCA is especially useful when much of the data are ‘the
same’, which in the context of NMR means that the spectra
of many samples are broadly similar; such data are described
as multicollinear or highly redundant. It is also useful when
the number of variables (for instance, the number of intensity
values in each NMR spectrum) greatly exceeds the number of
observations (the total number of spectra).

Whereas 22 000 dimensions would be impossible to plot, it
is simple to plot two and so a typical PCA output is a display
of the first v. second PC scores. Fig. 3(a) shows the first v.
second scores obtained from PCA applied to the set of
twenty-four NMR spectra; recall that each point on this plot
represents a single spectrum. In carrying out PCA, the hope
is that patterns or groups of points will emerge in the scores
plot, reflecting underlying structure present but obscured in
the original data. When this is the case, then a mathematical
‘audit trail’ can allow us to trace back from points in the PC
plot, via the loadings, to features in the original spectra.
Unfortunately, we find no such interesting patterns in the pre-
sent example; the points representing spectra from the two
groups of interest are substantially overlaid.

Now, PCA scores represent successively maximized
sources of variance in the data, but this does not mean that
the first two PCs are necessarily the most interesting. In our
example, they might be exposing variation in the data due
to confounding factors (such as age or diet in general),
rather than variation due directly to the Cu supplementation.
The lesson is to explore beyond the first two PCs, perhaps

plotting various combinations including the third or even the
fourth. However, in our present work, neither the third nor
fourth PC showed any interesting clustering either. In
addition, there is a slight ‘health warning’ associated with
lower ranking PC; these are associated with decreasing var-
iance and increasing instability. In our example, the variances
associated with the first six PC are respectively 28 %, 22 %,
17 %, 14 %, 6 % and 3 %. When the variance of a PC is of
the order of 1/n, where n is the number of observations,
then that PC could represent the influence of a single obser-
vation only. As a rule of thumb, it is unwise to place much
reliance on such low-ranking PC.

Partial least squares

One important feature (and limitation) of PCA is that it oper-
ates solely on the matrix of experimental data and does not
take into account any additional information that may be
associated with each measurement. For instance, in the present
case the sample provenance information – sixteen spectra are
designated ‘pre-’ and eight ‘post-intervention’ – is not utilized
in the PCA transformation. A related approach, PLS, attempts
to plug this gap. More fully, PLS stands for partial least
squares projection onto latent structures. Rather than simply
exposing the dominating contributions of the experimental
data, PLS requires a second matrix of information relating
to each sample. In statistical language, this is a matrix of
dependent variable(s). It uses this additional information in
an attempt to reduce the influence of irrelevant data points
on the data compression.

Again thinking geometrically, PLS first constructs a single
new axis whose direction is dictated by maximizing the
covariance between the observed and the dependent variables.
With the best possible new axis determined, the data are then
projected onto it to yield corresponding scores. The projected
part of the data is subtracted from the complete dataset and the
process repeated on the residual data to find the next most rel-
evant axis, and so on.

A typical PLS scores plot will display the first few scores
plotted against one another, analogous to the kind of plots pro-
duced in PCA. The interpretation is much the same, only it is
now somewhat more likely that the scores plot will reveal pat-
terns relating to the question of interest. However, PLS has not
automatically usurped PCA for a very important reason: com-
pared with PCA, PLS is prone to ‘overfitting’. The outcome of
overfitting can be seriously misleading, with the added diffi-
culty that the problem is not always obvious. Consider
Fig. 3(b), which shows the first two PLS scores calculated
from our twenty-four NMR spectra, using a ‘dummy’ depen-
dent variable to encode the ‘pre’ and ‘post-intervention’ cat-
egory associated with each spectrum. On first inspection,
this appears to hold promise; there is clearly some division
of the points into the two groups of interest. Is PLS able to
detect a systematic difference between the groups? Unfortu-
nately not – it turns out that this misleading plot is the
result of an overfit data compression, as we will now see.

Overfitting can arise in PLS when there are very many more
variables than samples. In fact, overfitting is an ever-present
danger in any analysis of high-dimensional data: it is an una-
voidable hazard of trying to extract reliable information
from massively under-determined experimental data – in
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post-genomic measurements, there are almost always many,
many more variables than independent samples. When the
data are very high-dimensional and the experiment as a
whole is under-determined (as in the case of the NMR spectra:
22 000 @ 24), then it is highly likely that there will be one or
more variables with values that provide accidental correlation
with the dependent variable. As an example, consider twenty-
four ‘spectra’, each containing nothing but 22 000 data points
of noise. We can allocate these at random into two arbitrary
groups. Reassuringly, PCA conducted on this dataset will dis-
cover no signature by which the different ‘spectra’ can be
classified. However, Fig. 3(c) shows the outcome of applying

PLS to the same ‘toy’ example. This apparently clear discrimi-
nation was extracted from a dataset comprising random noise
allocated to meaningless groups!

Real life data are unlikely to behave in quite such an
extreme fashion as the simulated noise, but it is entirely poss-
ible to generate outcomes similar to that of Fig. 3(b), which
appear plausible but are in fact overfit. A common and
straightforward way to test for overfitting is to systematically
discard each spectrum from the dataset one at a time, use the
retained data to develop a model and then apply this model to
the discarded item to obtain a ‘prediction’ (of scores or group
assignment, say). Only the scores from the cross-validation

Fig. 3. (a) Principal component (PC) scores of the raw NMR dataset; (b) partial least squares (PLS) scores of the raw NMR data. (c) PLS scores of ‘noise’ with

the same dimensions as the NMR data. (d) Cross-validated PLS scores of the NMR data. For plots (a), (b) and (d), W, ‘pre-intervention’ samples; B, ‘post-inter-

vention’ samples.
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items are reported or plotted in a PLS scores plot. This is
called leave-one-out cross-validation and is one of a variety
of validation strategies in multivariate analysis. The idea is
that if there is genuinely underlying structure in the data,
then the PLS compression will be stable enough to withstand
the successive omission of individual observations, and the
scores of the cross-validation items will still be able to
reveal the groupings or patterns of interest. PLS was applied
in cross-validated form to the NMR data. The scores plot
obtained is shown in Fig. 3(d). We see that the apparent dis-
crimination depicted in Fig. 3(b) is not maintained under
cross-validation and must therefore be disregarded.

Data pre-processing: scaling, filtering and normalization

Scaling. In the most usual definitions of PCA and PLS, the
loadings are eigenvectors of a covariance matrix. Earlier, we
have described the application of these forms of PCA and
PLS directly to raw NMR spectra. However, in addition to
other forms of PCA and PLS, there also exists a range of
data pre-treatments, which are commonly used in conjunction
with multivariate analysis of spectral data. We will discuss
some of the most commonly encountered approaches here
and illustrate their effects using the data from our case study.

Both PCA and PLS can be defined slightly differently, such
that the loadings are instead eigenvectors of a correlation
matrix. Numerically, this is equivalent to ‘standardizing’ the
dataset before proceeding with covariance-method data com-
pression. Standardization involves scaling the data (by subtract-
ing the mean and dividing by the standard deviation) so that each
variable has zero mean and unity variance. An effect of standard-
ization in the context of data compression is to prevent variables
with very large variances (and covariances) from dominating the
selection of the compressed axes. Since NMR spectra can con-
tain peaks with order of magnitude intensity differences, the var-
iance of the largest peak in a dataset can be vastly greater than
that of the smallest (even though their CV may be similar). It
is therefore common practice to use scaling of some kind
when analysing NMR data. An alternative to standardization is
pareto-scaling, in which each variable is divided by the square
root of its standard deviation. The use of these and other scaling
methods (e.g. range scaling, log transformations) in metabolo-
mics has been discussed (van den Berg et al. 2006). A disadvan-
tage of scaling is that standardized spectral data no longer look
like spectra (Fig. 4(a) shows the same data as in Fig. 1(a), but
now standardized), and neither do products of the data com-
pression (i.e. the loadings). ‘Inverse variance-scaling’ of loading
vectors has been proposed as a means of assisting visualization
and some authors have suggested additional graphical aids to
interpretation (Cloarec et al. 2005).

Filtering. The central difficulties in high-dimensional data
analysis arise from the great disparity between the number of
observations and the number of variables, so an obvious
approach is to reduce this mismatch in some way. As discussed
earlier, binning is a commonly used means of reducing the data-
set size, but will not be employed in our present work as we want
to be able to exploit the high spectral resolution of our data.

Some reduction of variables can generally be made by using
an expert’s judgement to discard portions of the spectrum
known to contain no useful information (indeed, in our
example, we were able to immediately reduce the data from

32 000-variate to 22 000-variate by discarding approximately
10 000 variables that contained noise only). A straightforward
extension of this approach is to pass the data through a
threshold filter, retaining only those variables that exceed
some pre-defined threshold. Using a filter set at just above
the level of the ‘chemical noise’, we were able to further
reduce our dataset to around approximately 15 000 points
(Fig. 4(b)).

Normalization. Another type of pre-treatment that is often
encountered in the analysis of spectral data is normalization.
This is used to scale entire spectra simultaneously (rather than
individual variables separately); again, there are different
kinds of normalization and the choice of transformation is
related to considerations of spectral acquisition and experimen-
tal protocol. For example, in our case study, the total concen-
tration of metabolites in each urine sample is not known, nor
can it be easily controlled. Consequently, the variance in the
raw spectral data may be dominated by variability in total com-
pound concentration, which is not as interesting as relative con-
centration of individual metabolites. To mitigate this effect, we
can use ‘area-normalization’ – scaling the data so that the inte-
grated spectral intensity is set to unity, without altering the rela-
tive heights of the peaks within each spectrum. The rationale
behind this and some other less common normalization methods
has been examined (Craig et al. 2006) and a more sophisticated
approach has been proposed (Dieterle et al. 2006) to deal with
some anomalies that can arise.

The various kinds of pre-processing (scaling, filtering, nor-
malization) can be applied individually, or in combination and
in different orders. In the interests of conciseness, we will not
attempt an exhaustive comparison of all possible combi-
nations – given the range of different approaches and ‘vari-
ations on a theme’, this is really rather large. As an
illustration, however, Fig. 5 shows how the outcome of
cross-validated PLS on our example dataset is affected by
selected pre-treatment combinations. The benefits of pre-pro-
cessing in this case are clear. Specifically, Fig. 5(d) shows

Fig. 4. Illustrating data pre-processing. (a) ‘Standardized’ spectra (the same

data as shown in Fig. 1(a), but here it has been mean-centred and scaled to unit

variance); (b) threshold filtering: the points representd the variables retained.
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the outcome of cross-validated PLS after three pre-treatments:
(i) normalization to unity integrated spectral intensity; fol-
lowed by (ii) threshold filtering to the variables shown in
Fig. 4(b); finally (iii) variance-scaling. There is clearly now
some distinction between the two groups of interest (compare
it with Fig. 3(d)). In this instance, variance-scaling appears to
have produced the greatest benefit – this hints that minor
peaks are important in differentiating the groups, but were
unable sufficiently to influence the PLS transformation with-
out variance-scaling.

Feature subset selection

PCA and PLS are widely used techniques that can perform
well in many different applications. However, sometimes the
most important and relevant information is concentrated in

spectral peaks that are too small and/or too few to influence
the data compression sufficiently. An alternative to the
whole-spectrum approach in these circumstances is feature
subset selection. This involves searching for small subsets of
peaks or data points that are the most useful, as judged by
some appropriate criterion. Variable selection algorithms
have long been used as precursors to multivariate analysis of
spectroscopic data. There are two main challenges with this
approach. First, when the total number of peaks to choose
from is very large, then the number of possible subsets
becomes astronomical. For instance, if the data contains
approximately 15 000 variables, and if we want to search for
even a small subset comprising, say, just four, then there are
approximately 1015 possible combinations! However, GA
have been found to be effective at selecting variables from
high-dimensional datasets (see Leardi et al. 1992).

Fig. 5. Cross-validated partial least squares (PLS) scores shown after various combinations of pre-treatment. (a) Filtering only; (b) filtering and standardization;

(c) ‘area-normalization’ and filtering; (d) area-normalization, filtering and standardization. W, ‘pre-intervention’ samples; B, ‘post-intervention’ samples.
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GA are a particular class of evolutionary algorithms;
numerical optimization procedures that employ biologically
inspired processes such as mutation and selection. In a GA,
a population comprising randomly generated trial solutions
(‘chromosomes’) is evaluated to yield a ‘fitness’. Next, a
new generation of solutions is created through reproduction,
with the fitness function determining how likely any individ-
ual chromosome is to reproduce. The process is iterated for
a number of generations, until an acceptable solution has
evolved.

In the present work, we have implemented a GA to search
for small subsets of peaks, which collectively distinguish the
‘pre-’ and ‘post-intervention’ spectra. In this context, each
chromosome identifies a small subset of peaks (i.e. chemical
shift values) and the fitness criterion is success rate in two-
group cross-validated linear discriminant analysis (LDA; this
is a well-known technique for treating classification-type pro-
blems in multivariate data (see for example Seber, 1984)).
The dataset passed to the GA had been area-normalized
and filtered (i.e. the same pre-treatments that had been applied
to the data in producing the PLS plots in Fig. 5(d); note that

variance-scaling is implicit in the form of LDA used,
which measures ‘distances’ between spectra using the
Mahalanobis metric).

A schematic illustrating the GA procedure is shown in
Fig. 6. The criterion for termination of GA evolution was
attainment of a 100 % classification success rate, which was
generally achieved in less than ten generations. We searched
for a subset size of four, with an initial population size of
4000 chromosomes. The brief outline given here indicates
that in implementing a GA, the user is required to set rather
a lot of parameters (including the mutation rate, subset size,
number of chromosomes, fitness and convergence criteria),
all of which will affect how the GA performs. Some of
these largely affect the rate at which the GA converges; our
choices for these parameter values have been based upon
experience. The interested reader can download our GA rou-
tine (as a Matlab m-file from www.metabolomics-nrp.org.uk/
publications).

The complete GA routine (‘epoch’) was carried out repeat-
edly (1000 repeats), because the random nature of the initial
chromosomes, and the various processes during the GA,

Fig. 6. Simple schematic showing the main steps involved in a genetic algorithm (GA) for feature selection in NMR data.
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affect the outcome of any single epoch. The best solution(s)
from each epoch were retained. At this juncture we need to
consider another ‘health warning’, concerning the second
challenge of the feature selection approach. This is again
related to the inherently under-determined nature of exper-
iments involving high-dimensional data. When there are
very large numbers of peaks to choose from, and relatively
very few spectra, then it is inevitable that some data points
(even noise along the spectral baseline) will by chance fit
the structure being sought – and an efficient GA will seek
these out and identify them. The greater the subset size
sought, the more easily the GA finds it to overfit and this
needs to be kept in mind when setting this parameter. Even
cross-validation is insufficient protection against this particu-
lar form of overfitting, when there is such a disparity between
the dimensions of the data and the number of observations.

Alternative validation approaches (e.g. partitioning into
training, tuning and independent test sets) are possible if
there are sufficient measurements – in the present case
study, however, the small size of the ‘post-intervention’
group makes these approaches awkward within one volun-
teer’s data. However, in the present study, spectra from
additional volunteers were available. If the peaks and regions
identified by the GA are found to be useful discriminators in
these fully external ‘validation’ datasets, then this would
suggest that the GA has highlighted variables that are genu-
inely related to the question being addressed (rather than spur-
ious variables that happened fortuitously to fit the structure
being sought in the training data). We will consider this
further later, but first let us discuss the results obtained directly
from executing the GA.

From the 1000 epochs, over 12 000 unique solutions were
obtained, all of which gave a success rate of 100 % in cross-
validated LDA (recall that each solution is a subset of vari-
ables at four different chemical shift values). It may seem sur-
prising that so many equivalent solutions exist, but in fact this
high degree of redundancy is, in the present case study, a
manifestation of overfitting – with so many variables to
choose from (.15 000), it is to be expected that there are
many combinations of four variables, which by chance alone
will collectively allow such small sample group sizes (sixteen
and eight respectively) to be discriminated.

The purpose of executing multiple GA epochs with random-
ized initial chromosomes is to establish whether there are any
variables with a greater tendency to persist in each population
– these are likely to be the best discriminators. Fig. 7 presents
a histogram showing the frequency of occurrence of each vari-
able across all the solutions (along with the average NMR
spectrum). The histogram can be considered as a ‘pseudo-
loading’, with spectral-like features: the ‘peaks’ indicate the
most consistently effective discriminators. However, the
‘noise’ along the bottom of the histogram shows that subsets
can be found that include virtually any data point in the spec-
trum! Even if we consider only the histogram ‘peaks’, there
are rather a lot of data points (or regions) that appear to be
useful. If we examine the average spectrum (shown in the
upper half of the figure) plotted on the same axis, we find
that the majority of the histogram maxima correspond to rela-
tively small spectral signals. Although at this stage we cannot
be confident that the GA has identified genuinely important
spectral peaks, it is at least consistent with the outcome of

the cross-validated PLS analyses described earlier, which
clearly benefited from variance-scaling.

The region of the spectrum identified as perhaps the most
useful corresponds to chemical shifts in the range 0.7–
1.1 ppm. These are very small signals in the raw data; an expan-
sion of approximately 700 data points taken from all twenty-four
spectra in this region is shown in Fig. 8. Underneath is a corre-
sponding expansion of the GA histogram. The largest ‘bands’
are peak-picked and labelled with the corresponding chemical
shifts. Detailed inspection of the chromosomes showed that
the large majority of solutions contained variables taken from
across different bands (as opposed to several from within one
band). Within this spectral region alone, many combinations

Fig. 7. Histogram showing relative frequency of occurrence of each data

point within the 12000 best solutions obtained from the genetic algorithm

(GA) repeats and, on the same horizontal scale, the mean of the raw NMR

spectra.

Fig. 8. An expansion of a spectral region identified as important by the gen-

etic algorithm feature selection. Spectra are shown offset for clarity. The

lower part of the figure shows an expansion of the histogram in the same

region. Main ‘features’ in the histogram are marked with the corresponding

chemical shift.
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of only three variables taken from across any of the main histo-
gram bands will produce complete separation of the groups.
This can be seen graphically by plotting the variables against
one another. Fig. 9(a) shows the standardized data from, as
an example, chemical shifts 0.848 ppm, 0.861 ppm and
0.755 ppm, plotted against one another. The two groups are
clearly linearly separable; however, we emphasize once more
that this outcome must be treated cautiously – in view of the una-
voidable potential for overfitting, it is a meaningless finding
unless it can be externally validated by some means.

Thus far, we have discussed the data obtained from a single
volunteer’s samples, as a concise example with which to illus-
trate the multivariate methods. We now consider briefly the
data from the remaining five volunteers – a total of 120 further
NMR spectra. These data have not been used in any of the mod-
elling work and so constitute entirely independent data.
Fig. 9(b)–(f) show the data from the same three chemical
shifts as in Fig. 9(a), plotted for each of the remaining five vol-
unteers. Each volunteer’s dataset was pre-processed in the same
way (area-normalized and standardized). For all five further
datasets, the plotted points show evidence of discrimination
between the dietary intervention groups. Cross-validated LDA
was carried out for each volunteer using just these three data
points. The success rate obtained is marked on each plot.

For volunteers (b)–(f), we also test the following hypotheses:
H0a – the trivariate data for each volunteer contain no group
structure; H0b – all subsets of three peaks have the same discri-
minatory performance. In both cases, the test statistic used was
the cross-validated success rate, the empirical distributions of
which are obtained by permutation resampling (10 000 resam-
ples in each case). Permutation tests are a subset of non-para-
metric statistics (see for example, Westfall & Young, 1993, or
http://en.wikipedia.org/wiki/Resampling_(statistics)#Permuta-
tion_tests). The P values for H0a and H0b are marked on the
figure. We can conclude that there is strong evidence that
these spectral features genuinely play a role in distinguishing
the pre- and post-intervention groups.

Notice that different rotations of the axes are required in
order to best highlight the distinction between groups. This
indicates that multivariate models developed using one indi-
viduals’ data will not generalize to data from a different indi-
vidual, which is why the LDA modelling discussed earlier was
carried out for each individual separately. The reason for this
is straightforward; there is very large between-volunteer var-
iance. In the present article we simply make this observation.
A full discussion of inter-individual variation in NMR spectra
of urine samples will form the subject of a separate
publication.

Fig. 9. Data from three variables only (chemical shifts 0.848 ppm, 0.861ppm and 0.755 ppm) taken from area-normalized and standardized datasets from the ‘training

set’ volunteer (a), and additional volunteers (b)–(f). LDA, linear discriminant analysis; ICV, internal cross validation; Hypothesis H0a, the trivariate data for each volun-

teer contain no group structure; Hypothesis H0b, all subsets of three peaks have the same discriminatory performance. For details, see Feature subset selection.

Multivariate techniques 11

https://doi.org/10.1017/S0007114507685365  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114507685365


External validation can additionally take the form of expert
assessment – what are the peaks identified by the GA and are
the findings biochemically plausible? Returning once more to
Fig. 8, one of the most distinct features is the doublet at
0.75 ppm (splitting 6.8 Hz). This doublet can be seen in
every one of the bottom sixteen traces (corresponding to
pre-dose periods EP1 and EP2) in Fig. 8, but only in one of
the top eight traces (post-dose period EP3). Additional two-
dimensional NMR experiments on one of the afore-mentioned
samples showed that the doublet at 0.75 ppm was associated
with two other signals, at 0.88 and 2.18 ppm (the latter
being responsible for the 6.8 Hz splitting). It has not been

possible to identify the compound itself from available data-
bases but it is likely that the two signals at 0.75 and
0.88 ppm are from the two methyl groups of an isopropyl
unit with the methine hydrogen of the fragment giving the
signal at 2.18 ppm. The non-equivalence of the two methyl
groups indicates that the isopropyl group is linked (or is in
close proximity) to a chiral centre.

In a final comparison of methods, PCA and cross-validated
PLS were applied to the ,0.7–1.1 ppm region (area-normal-
ized, filtered, variance-scaled data). The PC and PLS scores
plots are given respectively in Fig. 10(a), (b). This again illus-
trates the difference in power between the techniques. PCA

Fig. 10. Scores plots obtained from applying (a) principal component (PC) and (b) partial least squares (PLS) to the spectral region shown in Fig. 6. W, ‘pre-inter-

vention’ samples; B, ‘post-intervention’ samples. (c) Plots of the first and second PLS loadings obtained from the spectral region of Fig. 9, on the same horizontal

axis as the mean spectra of the ‘pre-’ and ‘post-intervention’ groups. Loadings are shown ‘inverse-variance-scaled’.
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highlights only slightly the difference between the two groups
in the first two dimensions; clearly, other variances such as the
very obvious intensity differences at around 0.87 ppm, which
are unrelated to the ‘pre-‘ and ‘post-intervention’ groups, are
dominating the data compression. PLS, in contrast, is specifi-
cally seeking the grouping of interest and is able to promote
this source of variance into the first two PLS dimensions.

The separation between samples in the PLS scores plot is
‘explained’ by the two PLS loadings, which are shown in
Fig. 10(c), along with the mean spectra from the pre- and
post-intervention periods for comparison. (Recall that scores
are weighted sums of the original data, with the loadings sup-
plying the weights; plots of the loadings therefore show the
relative importance of each original variable to each PLS
dimension.) Fig. 10(b) shows that the pre-intervention group
tends to have more positive scores on PLS axes 1 and 2;
post-intervention samples tend to have more negative scores
on both axes. Loadings 1 and 2 in Fig. 10(c) both show
three prominent doublets (approximately 0.75, approximately
0.91 and particularly approximately 0.88 ppm), all with posi-
tive signs, which indicates that the compounds responsible
for these signals have increased levels in the pre-intervention
group. The difference in the 0.75 ppm doublet is apparent from
the two mean spectra (and Fig. 8), but the loading highlights
the involvement of the other two doublets much more clearly
than the mean spectra and provides independent corroboration
that a single compound is responsible for the doublets at 0.75
and 0.88 ppm.

It would be premature to conclude that changes in the level of
this compound, or the other compounds picked out by the GA,
are a direct consequence of the Cu supplementation. Stronger
evidence would be provided if the compound could be identified
and a plausible mechanism proposed. Differences could arise
simply from coincidental changes in diet (or other factors)
between pre- and post-intervention periods that were unrelated
to the imposed intervention. The number of unidentified minor
metabolites in urine is so great that it is not yet possible to link
many urinary metabolites with particular foods (although a
few associations are well known, for example, that between tri-
methylamine-N-oxide and fish eating). Definitive identification
of more of these compounds would undoubtedly help to dis-
criminate genuine effects of dietary interventions from the inter-
fering effects of an uncontrolled diet. Efforts are underway to
build comprehensive databases of metabolites found in body
fluids, including their NMR and MS data (see for example,
http://www.hmdb.ca/). However the use of a controlled diet
will always be preferable in metabolomics studies, especially
when the number of volunteers is limited.

Conclusions

Multivariate techniques are powerful tools but care must be
taken with them. In the context of metabolomics work, at
one extreme overfitting using PLS can lead to the conclusion
that there are significant systematic differences between
groups of metabolic profiles when in fact there are not. At
the other extreme, whole spectrum methods such as PCA
may lack the power to identify the very subtle changes in
metabolite concentration that are likely to result from dietary
interventions. A typical urinary metabolite profile contains
many thousands of features that are unlikely to change in

connection with the dietary intervention, but will exert a
large influence on PCA or PLS transformations by virtue of
their magnitude in comparison with other, smaller peaks aris-
ing from lower concentration metabolites. The use of a GA as
a feature subset selector can overcome these problems and
highlight regions or peaks in the NMR spectrum that are chan-
ging systematically, even if these are very small features.

It is hypothesized that metabolites at very low concentration
may provide some of the most useful biomarkers of nutritional
status. These may have been overlooked in the past because of
a lack of sensitivity in biofluid measurement, coupled with a
less sophisticated mathematical approach to pinpoint signifi-
cant changes. The approaches outlined in the present paper
will assist in addressing some of these issues.
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