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The heat transfer behaviour of convection-driven dynamos in a rotating plane layer
between two parallel plates, heated from the bottom and cooled from the top, is
investigated. At a fixed rotation rate (Ekman number, E = 107%) and fluid properties
(thermal and magnetic Prandtl numbers, Pr = Pr,, = 1), both dynamo convection (DC)
and non-magnetic rotating convection (RC) simulations are performed to demarcate the
effect of magnetic field on heat transport at different thermal forcings (Rayleigh number,
Ra = 3.83 x 10°-3.83 x 10'%). In this range, our turbulence resolving simulations
demonstrate the existence of an optimum thermal forcing, at which heat transfer between
the plates in DC exhibits maximum enhancement, as compared with the heat transport in
the RC simulations. Unlike any global force balance reported in the literature, the present
simulations reveal an increase in the Lorentz force in the thermal boundary layer, due to
stretching of magnetic field lines by the vortices near the walls with a no-slip boundary
condition. This increase in Lorentz force mitigates turbulence suppression due to the
Coriolis force, resulting in enhanced turbulence and heat transfer.
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1. Introduction

Hydromagnetic dynamo action is the commonly accepted source of sustained magnetic
fields in stars and planets. In this mechanism, a convective system with an electrically
conducting fluid can amplify a small magnetic field and continuously convert the kinetic
energy of the fluid to magnetic energy, to sustain the field against Joule dissipation. This
self-exciting dynamo action can be facilitated due to the presence of rotation leading
to large-scale organized fields (Moffatt & Dormy 2019). The most familiar example of
such a rotating convection-driven dynamo is the Earth’s outer core, where the dynamo
mechanism originating from the turbulent motions of electrically conducting liquid
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iron in the Earth’s outer core forms the sustained dipole dominant geomagnetic field
(Roberts & King 2013). Thermal convection in rotating dynamos, both in plane layer
(Stellmach & Hansen 2004; Tilgner 2012) and spherical (Glatzmaiers & Roberts 1995;
Christensen & Wicht 2015) geometries, has been extensively investigated to understand
their force balance, nature of magnetohydrodynamic turbulence and magnetic field
behaviour. Another aspect of fundamental importance is the heat transfer to diagnose
the global transport properties of such systems. Convective heat transfer through the
atmosphere decides the weather, climate, planetary and stellar energetics, their evolution
(Schmitz & Tilgner 2009) and the generation of magnetic fields from planetary cores
(Nimmo 2015). However, heat transport in self-excited rotating dynamos is yet to be
explored.

Dynamics of flow and heat transfer in thermal convection with rotation and magnetic
field depends on four governing non-dimensional numbers: (i) the Rayleigh number (Ra)
representing the thermal forcing, (ii) the Ekman number (E) signifying the ratio of the
viscous force to the Coriolis force, (iii) the thermal Prandtl number (Pr) and (iv) the
magnetic Prandtl number (Pr,,); Pr and Pr,, are fluid properties as defined in (2.5a—d).
These four numbers decide the global characteristics of the system, indicated by (a)
the magnetic Reynolds number (Re,, = u;,5d/ A, where u,,,s and d are the characteristic
velocity and length scales, whereas A is the magnetic diffusivity), characterizing the
dominance of electromagnetic induction over ohmic diffusion of the magnetic field,
(b) the Nusselt number (Nu) representing non-dimensional heat transfer (see (2.11)) and
(c) the Elsasser number (A = oBfmS /pS$2, where o is the electrical conductivity, By 1S
the characteristics magnetic field strength, p is the density and £2 is the rotation rate),
depicting the ratio of the Lorentz and the Coriolis forces.

Based on the behaviour of the magnetic field with varying Re,,, thermal convection
with rotation and a magnetic field can be broadly classified into two categories:
(1) rotating magnetoconvection (RMC) at low magnetic Reynolds number (Re;,;, — 0) and
(i1) dynamo convection (DC) for moderate to high values Re,;; = O(10). For RMC, the
system cannot self-induce or sustain a magnetic field, and therefore the magnetic field has
to be imposed externally. As the self-induced magnetic field remains small with respect
to the imposed field, linear analysis may be used to predict the critical value of Rayleigh
number (Ra.) at the onset of convection (Chandrasekhar 1961). Moreover, liquid metals
(e.g. mercury, sodium, gallium), having large magnetic diffusivities (1 — 0(10°~107))
are used to conduct RMC experiments at low Re,,. Strong rotation in any convective
system restricts convection, attributed to the Taylor—Proudman constraint imposed by the
Coriolis force, which inhibits changes along the axis of rotation. Linear theory of RMC
(Chandrasekhar 1961) suggests that the magnetic field can relax the Taylor—Proudman
constraint to enhance convection, known as the ‘magnetorelaxation’ process. These
theoretical predictions have been verified by experiments (Nakagawa 1957, 1959; Aurnou
& Olson 2001). Eltayeb (1972) performed an extensive linear analysis of RMC in the
asymptotic limits of large rotation rate (E — 0) with large imposed field strength for
various boundary conditions, orientations of the external magnetic field and rotation.
Later, the linear theory was extended to allow for finite-amplitude modes considering that
the dominant modes contribute most of the heat transport (Stevenson 1979). In RMC,
the action of the Lorentz force on the flow can lead to enhanced heat transfer (King
& Aurnou 2015) as compared with non-magnetic rotating convection (RC). The highest
enhancement occurs when the Lorentz force due to the magnetic field and the Coriolis
force due to rotation balance each other, as found in the experiment of King & Aurnou

942 A37-2


https://doi.org/10.1017/jfm.2022.402

https://doi.org/10.1017/jfm.2022.402 Published online by Cambridge University Press

Optimal thermal convection in rotating plane layer dynamos

(2015). This global balance, known as the ‘magnetostrophic’ state, is characterized by an
Elsasser number of order unity, A &~ O(1).

Challenges in producing dynamo action in laboratory experiments (Plumley & Julien
2019) mean that the studies on turbulent DC depend primarily on numerical simulations.
Self-exciting dynamo simulations at moderate values of magnetic Reynolds number
(Re;, = 243—346) in a spherical shell model performed by Yadav et al. (2016) revealed
a fundamentally different force balance compared with the experimental results of King
& Aurnou (2015). In such ‘geodynamo’ simulations that attempt to model the Earth’s
outer core, the primary force balance is ‘geostrophic’ between Coriolis and pressure
forces, whereas the magnetic, the Archimedean (buoyancy) and the Coriolis forces (MAC)
constitute a lower order of magnitude (quasi-geostrophic, QG) balance (Davidson 2013;
Aubert 2019; Schwaiger, Gastine & Aubert 2019). Interestingly, Yadav et al. (2016) also
reported a similar heat transfer enhancement as found in the RMC experiments of King &
Aurnou (2015), irrespective of very different force balance and parameter regime.

The present study explores the heat transfer behaviour in DC with a plane layer geometry
using direct numerical simulations (DNS). This is the simplest possible model of DC in
a rotating layer of an electrically conducting fluid between two parallel plates, heated
from the bottom and cooled from the top (see figure la). Using this model, Jones &
Roberts (2000) investigated the effect of Ra, E and Pry,, on the growth and saturation
of the magnetic field and the global force balance while neglecting inertial effects at
large Prandtl numbers (Pr — 00). The dynamo was found to saturate at A =~ O(1). At
moderate values of magnetic Reynolds number, Re,, ~ O(10%) a simple model of DC was
proposed. Rotvig & Jones (2002) studied DC in the range E = 10~%~107> and reported a
MAC balance in the bulk with A ~ O(10). Rapidly rotating (E = 2 x 10~4~107°), weakly
nonlinear DC was explored by Stellmach & Hansen (2004). They reported time-dependent
flow with cyclic variation between small- and large-scale magnetic fields. Interestingly,
dynamo action was found to exist even below the critical Rayleigh number for the
onset of non-magnetic convection (Ra.), indicating subcritical dynamo action. Cattaneo
& Hughes (2006) analysed the «-effect (a mechanism of large-scale field generation
from small scales due to the helical nature of the flow in DC Moffatt & Dormy 2019)
and reported small-scale dynamos with a diffusively controlled «-effect, without any
indication of large-scale field generation. A transition between small-scale and large-scale
field generation was found by Tilgner (2012, 2014) with separate scaling laws for the
magnetic energy. The transition occurs at Re,,E'/3 = 13.5, below which the magnetic
field generation is dependent on flow helicity. Equipartition of energies is observed above
the transition point where the field stretching process at high Re,, generates small-scale
fields independent of flow helicity. Guervilly, Hughes & Jones (2015) demonstrated the
existence of large-scale vortices in DC that can lead to large-scale field generation, which
is of great interest for astrophysical dynamos. These vortices reduced the heat transfer
efficiency. However, for high Re,,, generation of a small-scale magnetic field suppresses
the formation of such vortices (Guervilly, Hughes & Jones 2017). Calkins et al. (2015)
investigated asymptotically reduced DC models with a leading-order QG balance. Four
distinct QG dynamo regimes have been identified with varying dynamics and magnetic to
kinetic energy density ratios (Calkins 2018). Extension to non-Boussinesq convection was
investigated by Képyld, Korpi & Brandenburg (2009) and Favier & Bushby (2013).

The heat transport behaviour in plane layer DC remains almost unexplored. In this
geometry, two distinct regions of convection can be identified: the boundary layer region
near the plates with high velocity and temperature gradients (Ekman and thermal boundary
layers) and a well-mixed ‘bulk’ regime in the interior where gradients are much smaller.
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Figure 1. Plane layer dynamo driven by convection of an electrically conducting fluid.

Heat transfer scaling of dynamos without rotation has been found to be identical to
non-rotating, non-magnetic Rayleigh Bénard convection (Yan, Tobias & Calkins 2021),
where heat transfer is known to be constrained by the boundary layer dynamics (Plumley
& Julien 2019). Conversely, heat transfer in non-magnetic RC is constrained by the bulk,
although it can be significantly altered by the boundary layer dynamics (Stellmach et al.
2014). Even without considering the viscous boundary layer, Stellmach & Hansen (2004)
found enhanced heat transfer in weakly nonlinear convection in a rapidly rotating dynamo.
They attributed this increased heat transport to the increased length scale of convection
due to the presence of a strong magnetic field. However, the variation of heat transfer
with thermal forcing in a rotating dynamo remains unknown. Also, to the best of our
knowledge, no studies report the role of the boundary layer in the heat transfer behaviour in
rotating DC. We perform a systematic study, unprecedented in the previous investigations,
in a plane layer geometry to investigate the boundary layer dynamics of dynamos and its
implications on the heat transfer behaviour.

2. Method
2.1. Governing equations and numerical details

We consider DC in a three-dimensional Cartesian layer of an incompressible, electrically
conducting, Boussinesq fluid. The layer of depth d is kept between two parallel plates
with temperature difference AT where the lower plate is hotter (see figure 1). The
system is rotating about the vertical with an angular velocity §2. The fluid properties are
density (p), kinematic viscosity (v), thermal diffusivity («x), magnetic permeability (u),
electrical conductivity (o), adiabatic volume expansion coefficient (o) and the magnetic
diffusivity (4). The layer depth d is the length scale, free-fall velocity, ur = /ga ATd, is
the velocity scale where g is the acceleration due to gravity, ,/puuy is the magnetic field
scale and the temperature drop across the layer, AT is the temperature scale assumed for
non-dimensionalizing the governing equations (ILyer et al. 2020). The non-dimensional
equations for the velocity field u, temperature field 6 and magnetic field B, take the

following form:
% = % = 2.1)
dxj  0x; ’
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The non-dimensional parameters appearing in (2.2)—(2.4) are defined below

g ATd? v v v
a="——, E=—, Pr=—, Prp=-. (2.5a-d)

KV 2d? K Pl
In the horizontal directions (x1, xp) periodic boundary conditions are applied. In the
vertical direction (x3), the velocity boundary conditions are no slip and impenetrable. As
we aim to study the effect of the boundary layer dynamics on DC, the no-slip boundary
condition is the natural choice (Jones & Roberts 2000; Stellmach et al. 2014). Although
corresponding results for a free-slip boundary condition are also presented, we discuss the

results for the no-slip boundary condition unless stated otherwise. Therefore,
up=u =u3 =0 atx3==+1/2. (2.6)

An unstable temperature gradient is maintained by imposing isothermal boundary
conditions

0=1latx3=-1/2, 6 =0atx;=1/2. (2.7a,b)

For the magnetic field, either perfectly conducting or perfectly insulating boundary
conditions can be implemented. The insulating boundary condition is commonly applied
in spherical shell geometries for geodynamo simulations (Christensen & Wicht 2015;
Yadav et al. 2016). However, for plane layer geometries, a perfectly conducting boundary
condition is commonly used (Tilgner 2012; Guervilly et al. 2015; Hughes & Cattaneo
2019) because it enables comparison with the theoretical studies (Stellmach & Hansen
2004). Laboratory set-ups for RMC (King & Aurnou 2015) and dynamos (Monchaux et al.
2007) also use conducting materials as containers of liquid metals are commonly used to
conduct experiments. Thus, perfectly conducting boundary condition are implemented in
the present study such that

381 _ aBz

=0, B3=0 atxz3==+1/2. (2.8)
E)X3 8x3

The governing equations are solved in a cubic domain with unit side length, using
the finite difference method (Bakhuis et al. 2018) in a staggered grid arrangement.
The scalar quantities (pressure and temperature) are stored at the cell centres whereas,
velocity and magnetic field components are stored at the cell faces. Second-order central
difference is used for spatial discretization. The projection method is used to calculate
the divergence-free velocity field where the pressure Poisson equation is solved using
a parallel multigrid algorithm. Similarly, an elliptic divergence cleaning algorithm is
employed to keep the magnetic field solenoidal (Brackbill & Barnes 1980). An explicit
third-order Runge—Kutta method is used for time advancement except for the diffusion
terms, which are solved implicitly using the Crank—Nicolson method (Pham, Sarkar &
Brucker 2009; Brucker & Sarkar 2010). The solver has been validated extensively for
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Ra. a.  Nug Re; Rey Nuy Rey Nu Re 7 A ER

Chandrasekhar 124509 8.6 — — — — — — — — — —

(1961)
Validation I 124510 8.5 — —

Stellmach — — — — 483 134 1707 166 683 — 038 137
&  Hansen

(2004)
Validation II — —_- - — 486 136 1685 168 674 — 036 136

Yanetal (2019) —  — 1149 379 — —  —
Validation I1I — 149 372 - = =
Pandey e al. - - - - - — 81 290 024 - —

(2018)
Validation IV - - - - - 83 28 02 - —

Table 1. Results from the three test runs to reproduce results from the literature: (i) linear magnetoconvection
theory (Chandrasekhar 1961), (ii) RC and DC simulations of Stellmach & Hansen (2004), (iii) DNS results
of quasi-static magnetoconvection (Yan et al. 2019) and (iv) DNS of Rayleigh Bénard convection (Pandey,
Scheel & Schumacher 2018). Subscripts ‘0’ and g are used to represent non-magnetic RC and quasi-static
magnetoconvection results, respectively. Here, u, = (u;u;)y ;, where {-)y ; denotes a volume and time averaged
value. The magnetic to kinetic energy ratio is represented by ER.

numerous DNS of stratified turbulent flows (Pal, de Stadler & Sarkar 2013; Pal & Sarkar
2015; Pal & Chalamalla 2020).

Validation of our numerical solver is performed by replicating the results from the
following literature: (i) critical Rayleigh number and wavenumber (Ra. and a.) at the onset
of magnetoconvection with imposed field strength Q = oB%d?/pv = 10* predicted from
linear theory (Chandrasekhar 1961), (ii) RC simulations of Stellmach & Hansen (2004) at
Ra=14x10", E=5x 10" and Pr=1, along with DC simulation results for Pr,, =
2.5 with free-slip boundary conditions, (iii) DNS results of quasi-static magnetoconvection
(Yan et al. 2019) at Q = 10* and Ra = 1.3 x 10° and (iv) DNS of Rayleigh Bénard
convection at Ra = 10% and Pr = 0.7 as reported by Pandey et al. (2018). Our results
are in good agreement with these earlier studies, as demonstrated in table 1.

2.2. Problem set-up

Dynamical balances and heat transport are studied at constant rotation rate and constant
fluid properties with variation in thermal forcing. The thermal forcing here is represented
by the convective supercriticality R = Ra/Ra., where Ra. = 19.15E~*/3 is the minimum
required value of Ra to start RC for vanishingly small Ekman numbers E — 0 (King,
Stellmach & Aurnou 2012; Kunnen 2021). We have used a higher prefactor for free-slip
boundaries, where Ra. = 21.91E~4/3, following Chandrasekhar (1961). We choose the
values of R = 2,2.5,3, 4,5, 10, 20, Ekman number E = 10~ and the Prandtl numbers
Pr = Pr,, = 1 for the present simulations. To elucidate the effect of the magnetic field, we
perform two simulations at each value of R: DC and RC. It should be noted here that the
critical Rayleigh number for the onset of DC remains unknown (Plumley & Julien 2019).
Hence, we use the same value of Ra, for both DC and RC simulations following Stellmach
& Hansen (2004).

In the horizontal directions (x; and x;) 1024 uniform grid points are used, whereas in
the vertical direction (x3) we have used 256 non-uniform grid points. Grid clustering near
the walls is performed to ensure a minimum of four grid points inside the Ekman layer
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with the spacing, Ax3 = 4.8 x 10™* at the wall. The clustering function has been used for

this purpose is given in (2.9).
k—1 1
tanh { rx3 3
nx3
. (2.9)
2 tanh (rx_3>
2

Here, k is the grid index, nx3 is the number of grid divisions in x3 and rx3 is the stretching
factor which is fine tuned to resolve the boundary layers. Our aim is to explain the
optimal heat transfer characteristics in a plane layer dynamo using turbulence resolving
simulations. Capturing the boundary layer dynamics in these simulations is imperative
for understanding the enhanced heat transfer phenomenon, and requires a grid that can
resolve the smallest dissipative scales (Shishkina e al. 2010). An appropriate resolution
should achieve a balance of the stringent turbulent kinetic energy (t.k.e.) budget given

in (2.10) (Pal & Chalamalla 2020)
4o _ (u36) — (€v) — (€)). (2.10)

dr

The time evolution of the terms in (2.10) are presented for DC at R = 20 in figure 2(a).
Here, the volume-averaged balance depicts generation of kinetic energy from the vertical
buoyancy flux (u30), balanced by viscous and Joule dissipation, (€,) and (¢;), respectively,
acting as sinks of energy (see (2.11) for the definition of these terms). The balance
term, signifying the difference between the left- and right-hand sides of (2.10), remains
two orders of magnitude smaller than the leading-order terms for all the simulations.
Additionally, the vertical grid spacing, normalized by the non-dimensional Kolmogorov
scale, [, = (1 /&) /*(Pr/Ra)3/8, as estimated from the horizontally averaged dissipation,
is plotted in figure 2(b). The value of this quantity remains close to unity near the wall,
indicating appropriate wall resolution. In the horizontal directions, Ax;/ly min ~ 2.66,
where [, iy is the minimum Kolmogorov scale in the domain. It should be noted that,
Ax;i/ly min < 2—4 should be sufficient for accurate estimation of second-order moments in
DNS of turbulent flows (Brucker & Sarkar 2010). The grid resolution used in this study,
has been selected after subsequent grid refinements such that the kinetic and magnetic
energies are sufficiently dissipated, and the t.k.e. budget closure is maintained. Therefore,
the present simulations, albeit computationally expensive, can capture the smallest scales
in the flow, especially near the walls, and therefore successfully resolve the boundary layer
dynamics. The simulation details and global diagnostic parameters are summarized in
table 2.

We start the DC simulations at R = 20, by introducing a small magnetic perturbation
in a statistically steady RC simulation, as shown in figure 3(a). The magnetic field
shows an exponential growth over approximately one free decay time scale (f; = d%/1)
before it saturates. The decrease in Reynolds number (Re = Re,,/Pry,), signifies decrease
in turbulence due to dynamo action at R = 20. Simulations at lower values of R are
started using the data of higher R as the initial condition to save computational time.
The mean magnetic field is calculated to outline the behaviour of the dynamos, by
averaging the field over horizontal planes. This horizontal averaging of any quantity ¢
is denoted by an overbar in the following discussion, with ¢ denoting the mean and
¢rms representing the root mean square (r.m.s.) field. The vertical variation of the mean
horizontal magnetic fields (B; and B;) is depicted in figure 3(b). It should be noted
here that the vertical component of the mean magnetic field (B3) is zero everywhere by
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Figure 2. (a) Volume-averaged budget of turbulent kinetic energy at R = 20. The time evolution of
volume-averaged terms in (2.10) is presented. Here, the balance term signifies the difference between the left-
and right-hand sides of the equation. (b) Vertical variation of grid spacing (dx3) normalized by the Kolmogorov
scale (I;)) as estimated from the horizontally averaged dissipation.

Nu
Nug
2 3.8300 x 10° 729 0.7466  0.2186  0.0046 0.0220 3.55%
25  47875x10° 1327  1.2550  0.5163  0.2921 0.0484 1.08 %
3 5.7450 x 10° 2012 1.7205  1.0313  0.6170 0.0727 3.01%
4 7.6600 x 10° 2284  1.4941  1.6834 0.5545 0.1211 115%
5 9.5750 x 10° 2660 1.4282  2.3994 04616 0.1535 0.38%
10 1.9150 x 1010 4203  1.1714  3.7428 02137 0.3539 2.15%
20 3.8300 x 1010 7642  1.1377 13.2865 0.1672 0.8663 4.91 %

R Ra Rem A AT ROT D%

Table 2. Statistics of the DC simulations with no-slip boundary conditions at E = 1075, Pr = Pr,, = 1.

the definition of averages and solenoidal field conditions. Thus the mean field remains
horizontal. However, as we show later in figure 10(b), the vertical component of the
r.m.s. field (b3 ,,s) 1s non-zero except at the walls. We observe a one order of magnitude
drop in the mean-field strength (figure 3b) with increasing ‘R signifying a transition from
large-scale to small-scale dynamo action. The magnetic Reynolds number (based on the
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Figure 3. (a) Time evolution of Reynolds number and Elsasser number for DC at R = 20. (b) Vertical
variation of mean magnetic fields for different R.

horizontal scale of convective cells, Tilgner 2012) varies as Re,,E'/3 2 7-76 in the range
R = 2-20 in our simulations. A similar transition in dynamos is reported to occur at
Re,E'? =135 (Tilgner 2012, 2014) which lies in the range R = 2.5-3 our simulations.

In the following discussion, the DC and RC simulations are compared in terms of their
heat transfer and turbulence properties. Heat transfer is represented by the Nusselt number
(Nu), defined as the total heat to conductive heat transferred from the bottom plate to the
top plate. The intensity of turbulence is characterized by the t.k.e. (K), whereas the viscous
and the Joule dissipation signify the conversion of kinetic and magnetic energy to internal
energy via the action of viscous and magnetic diffusion, respectively,

d 1
Nu = kqA_T =14 ~vRaPr{uz0), (K)= <§ul~u,~>,

Pr [0u; 0u; Pr 1 [0b;db;
€)=y oo (o) (e =y oo (o)
Ra \ 0x; dx; Ra Pry, \ 0x; 0x;

Here, (-) denotes average over the entire volume. The volume-averaged total heat flux and
vertical buoyant energy flux are denoted by ¢ and (u36). Subscript ‘0’ is used to represent
the properties without a magnetic field (RC cases). All the statistical quantities presented
in this paper are averaged in time for at least 100 free-fall time units (d/uy), when the
turbulent flow becomes statistically stationary in our simulations.

@2.11)
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Figure 4. Ratio of Nusselt number, t.k.e., viscous dissipation and Joule dissipation as a function of
convective supercriticality. Subscript ‘0’ is used to represent non-magnetic simulation.

3. Result

We begin the analysis by comparing our simulation results for DC and RC in terms of their
global heat transfer and turbulence properties. In figure 4, the ratio of the Nusselt number
for DC to RC (Nu/Nuy) is plotted with respect to the convective supercriticality (R). The
dynamo action associated with the magnetic field results in increased heat transfer for DC,
except at R = 2. Maximum enhancement occurs at R = 3 where the heat transfer of DC
is more than 70 % as compared with RC. The experiment in a rotating cylinder by King &
Aurnou (2015) and the geodynamo simulation in a spherical shell model by Yadav et al.
(2016) have reported a similar heat transfer enhancement peak. However, this optimum
heat transfer enhancement owing to dynamo action is a novel finding for a plane layer
dynamo. Interestingly, the peak in heat transfer is found to occur at A & 1 (see table 2),
similar to the RMC experiments of King & Aurnou (2015) and the geodynamo simulation
of Yadav et al. (2016). When the Lorentz force is of similar magnitude to the Coriolis
force, the global magnetorelaxation process should enhance heat transport in RMC (King
& Aurnou 2015). However, this leading-order magnetostrophic balance for A = O(1) may
not represent the primary balance in DC (Soderlund et al. 2015; Aurnou & King 2017;
Calkins 2018). The traditional definition of the Elsasser number(A = O'B%ms /pS2) gives a
correct ratio of the Lorentz and the Coriolis forces only for small Re,, < O(1), which is
not valid for a dynamo (Soderlund et al. 2015; Aurnou & King 2017). As the global force
balance reported in the simulation (Yadav et al. 2016) is geostrophic, not magnetostrophic,
a similar magnetorelaxation process to that reported in the RMC experiment of King &
Aurnou (2015) may not be the reason for heat transfer enhancement in the DC simulations
of Yadav et al. (2016). The present study indicates a local increase in the Lorentz force
near the top and bottom plates signifying the importance of the thermal boundary layer
dynamics for the heat transfer enhancement in dynamo simulations, instead of any global
force balance.

The global statistics of the underlying turbulent motion are shown in figure 4 to
understand the heat transfer enhancement phenomenon. We observe that the ratio of the
tk.e. of the DC simulations to the RC simulations, (K)/(Kp), achieves a maximum at

‘R = 3, indicating higher turbulence intensity in DC as compared with RC. We further
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confirm this enhanced turbulence activity by showing the variation of the ratio of viscous
dissipation, (€,)/{€o), in figure 4. A similar peak in the dissipation ratio for R =3
is observed. Additionally, the part of kinetic energy converted into magnetic energy
dissipates via Joule dissipation. The normalized Joule dissipation of magnetic energy,
(€j)/{€0), manifests a similar peak. It should be noted here that the overall energy balance
leads to the exact relation (Nu — 1)/~ RaPr = (€,) + (€;), between the Nusselt number
and the dissipation mechanisms present in the dynamo. Therefore, we can expect the
appearance of similar peaks in these quantities. These observations confirm increased
turbulence for R = 3 that promotes mixing and scalar transport, resulting in heat transfer
enhancement.

To explore the possible reasons for this increased turbulence and heat transfer
enhancement, we can compare the vertical variation of forces in figure 5 for DC and RC
with both no-slip and free-slip boundary conditions at /R = 3. The forces are calculated
from the r.m.s. values of the terms in the momentum equation (2.2) by averaging over
horizontal planes (Yan et al. 2021). The leading-order geostrophic balance between
pressure and the Coriolis forces are apparent for all cases, as shown in figures 5(a), 5(c) and
5(e). Geostrophic balance is known to be the characteristic of strong RC (King ef al. 2012).
Small departures from this balance due to the other forces make QG convection (even
turbulence) possible in such flows, making these other forces important for the dynamics.
Buoyancy, viscous and inertia constitute the QG force balance in RC at R =3 (see
figure Sa). Although the viscous diffusion term is smallest in the bulk, it increases near the
Ekman layer at the bottom plate, as shown in figure 5(b), and dominates the QG balance.
For the no-slip boundary condition, the velocities are zero at the wall, which results in an
increase in the pressure force at the walls (figure 5b.d). In figure 5 the difference between
the horizontal Coriolis and pressure forces is termed as ageostrophy. For the non-magnetic
simulations the ageostrophic component is primarily balanced by buoyancy and inertial
forces in the bulk, whereas the same balanced by the viscous forces near the boundary,
as the geostrophic balance breaks down near the Ekman layer. Moreover, for dynamo
simulations with a no-slip condition, Lorentz force plays a significant role in balancing
the ageostrophic component, whereas for free-slip cases buoyancy and inertia balance
the same with a sub-dominant role played the Lorentz force. In figure 5(c), the Lorentz
force, which is at least one order of magnitude smaller than the Coriolis force in the bulk,
decreases from the wall towards the centre of the domain, reaching a minimum. Therefore,
the global magnetostrophic balance between the Lorentz and the Coriolis forces, as found
in the previous RMC experiment (King & Aurnou 2015), may not be the reason for the heat
transfer enhancement in the present DC simulations. A closer look near the bottom plate
for DC at R = 3 reveals a different dynamical behaviour in figure 5(d). Here, the Lorentz
force increases nearly three orders of magnitude from its value at the centre of the domain
to become the dominant force at the wall. This increase in the Lorentz force near the wall
can attenuate the turbulence suppressing effect of the Coriolis force, resulting in enhanced
turbulence, mixing and heat transfer. We also observe a similar increase in the Lorentz
force near the boundary for R = 2.5, 4 and 5 (figures not shown). Apart from a dissimilar
vertical variation, the Lorentz force for the free-slip boundary condition case (figure Se)
is one order of magnitude smaller compared with the no-slip boundary condition case
(figure 5c¢). Furthermore, no enhancement in the Lorentz force is observed for the free-slip
boundary condition case near the wall (see figure 5f).

Further analysis of the boundary layer characteristics can be made to assess the relative
magnitudes of the Lorentz and the Coriolis forces near the walls. The variation of the r.m.s.
horizontal velocity (11 .ns), and the r.m.s. temperature (6,,,,5) in the vertical direction near
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Figure 5. Vertical variation of forces at R = 3 for (a,b) no-slip RC, (c,d) no-slip DC and (e, f) free-slip DC.
The horizontally averaged force distribution is shown in the bulk (a,c,e) and near the bottom plate (b.d. f). The
ageostrophy is defined by the difference between the r.m.s. horizontal Coriolis and pressure forces.

the bottom plate is shown in figure 6(a) for DC cases at R = 2, 3 and10. Here, we can
define the Ekman boundary layer (EBL) and thermal boundary layer (TBL) as the regions
adjacent to the plates where viscous diffusion and thermal diffusion are important. In
strong RC, heat is transported by columnar structures, and plumes that are formed due
to the instability of the TBL (King et al. 2012). The heat transfer characteristics of such
systems depend on the relative thickness of the two layers (King et al. 2009, 2012). The
distance of the peaks in the r.m.s. horizontal velocity and temperature from the bottom
boundary can be used to estimate the EBL and TBL thicknesses (§¢ and d7) respectively
from figure 6(a) (King et al. 2009). If é7 > g, the strong Coriolis force stabilizes the
thermal layer, impeding the formation of plumes and thereby restricting heat transfer
(King et al. 2012). The TBL thickness is higher than the Ekman layer for the DC cases
as demonstrated in figure 6(a). Similar observations are true for RC cases (figure not
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Figure 6. (a) Horizontal r.m.s. velocity (solid lines) and temperature profiles (dashed lines) near wall for DC
cases, (b) variation of local Elsasser number and the Rossby number at the thermal boundary layer edge with
convective supercriticality.

shown), indicating a strong stabilizing effect of the Coriolis force in all simulations. To
determine the effect of the Lorentz force in DC cases, we define a local Elsasser number
(A7) at the edge of TBL that measures the ratio of the Lorentz and the Coriolis forces at
this location. We emphasize here that this Elsasser number is computed directly from the
r.m.s. magnitudes of the forces (see figure 5), not from the traditional definition (A). The
variation of A7 with R at the TBL edge near the bottom boundary is shown in figure 6(b).
The two forces can be seen to be of the same order of magnitude near the edge of the
TBL for R =2.5,3,4 and 5. The local Elsasser number also achieves a maximum at
‘R = 3, similar to the Nusselt number ratio (see figure 4), indicating a correlation between
the increase in the Lorentz force and the heat transport behaviour. The increase in the
Lorentz force at the TBL effectively mitigates the stabilizing effect of the Coriolis force
and can be seen as a local magnetorelaxation of the Taylor—Proudman constraint, resulting
in enhanced turbulence and heat transport. Although the inertial force, represented by the
Rossby number (Ror, the ratio of inertia to Coriolis force) in figure 6(b) also increases
near the wall, the monotonically increasing trend does not correlate with the heat transfer
behaviour.

To corroborate the local magnetorelaxation process, and enhancement in turbulence,
we show the vertical variation of the viscous dissipation ratio (€,/€p) near the bottom
wall in figure 7(a). This dissipation ratio is computed after averaging the dissipation for
DC, and RC simulations over the horizontal directions. We observe an increase in viscous
dissipation for R = 2.5, 3, 4 and 5, near the bottom boundary, suggesting an increase in
turbulence near the walls because of the local magnetorelaxation. This enhancement in
viscous dissipation is highest for R = 3, indicating higher turbulence intensity among
all the other cases. Similar enhancement in Joule dissipation can also be observed in
figure 7(b). However, no such enhancement in viscous and Joule dissipation is found at
‘R = 3 for free-slip boundary condition (dashed lines).

Isosurfaces of temperature perturbation for DC (a,c,e) and RC (b.d,f) are shown in
figure 8 to provide visualizations of the thermal structures. The horizontally averaged
temperature variation is subtracted from the instantaneous temperature field to compute
these temperature perturbations. For RC, the flow morphology changes from columnar
cells at R =2 (figure 8b) to plumes at R = 3 (figure 8d) to geostrophic turbulence
dominating at larger thermal forcing at R = 10 (figure 8f). The transition of flow
morphology from columnar cells to plumes occurs at RaE*/3 ~ 22 whereas the transition
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Figure 7. Vertical variation of (@) viscous dissipation ratio and (b) Joule dissipation ratio near the bottom
plate for DC cases with no-slip (solid lines) and free-slip (dashed line) boundary conditions.

from plumes to geostrophic turbulence happens at RaE*/3 ~ 55 (Julien ez al. 2012; Nieves,
Rubio & Julien 2014). For the present RC simulations at R = 2, 3and 10, the values of
RaE*3 =15.2,22.8 and 76, agree well with the predictions of this transition regime.
Thick columnar convection cells with larger horizontal scales are observed for DC at
R =2 in figure 8(a), due to higher effective viscosity in the presence of a magnetic
field (Chandrasekhar 1961). The temperature perturbation field at R = 3 constitutes both
columnar structures and plumes, as shown in figures 8(c) and 8(d). Compared with RC
in figure 8(d), DC at 'R = 3 (figure 8c) is more populated by columnar structures and
plumes. This increased population of columnar structures and plumes is expected due to
the local magnetorelaxation phenomenon near the TBL, as reported in figures 6 and 7.
The upwards (downwards) motion of the hot (cold) plumes from the bottom (top) wall
towards the bulk transport momentum and thermal energy to increase turbulence and heat
transport, as depicted in figure 4. The horizontal distortion of the thermal structures in
figure 8(c) also indicates the relaxation of the Taylor—Proudman constraint due to the
magnetic field. Convection at R = 10 occurs in the geostrophic turbulence regime, as
apparent from figure 8(e, f) with more turbulence and abundant small-scale structures as
compared with lower R cases.

We now look into the reason for the enhancement of the Lorentz force at the thermal
boundary layer for DC at R = 3 with a no-slip boundary condition (figure 5d). A quarter
of the horizontal plane inside the thermal boundary layer x3 = —0.495 is plotted in figure 9
to depict the instantaneous vertical vorticity (w3). The section surrounded by the black
dashed line in the vorticity contour plot (figure 9a) is focused on in figures 9(b), 9(c)
and 9(d) to show the magnetic field strength in the xj-direction (i.e. b1, superimposed
with magnetic field lines), the viscous dissipation and the Lorentz force magnitude,
respectively. Comparison of the vorticity and the dissipation contours (figure 9a,c) exhibits
the interaction among vortices that leads to shear layers with intense dissipation around
the core of the vortices. The magnetic field lines are observed to concentrate around
the edges of these vortices (figure 9b). This behaviour of the magnetic field can be
understood from the flux expulsion mechanism (Weiss 1966; Gilbert, Mason & Tobias
2016), where magnetic field lines are advected towards the edges of a vortex. This
tendency of the field lines to gather around the vortical plumes leads to the dynamical
alignment of the small-scale vortex filaments and the magnetic field lines, which is
a known feature of strongly turbulent dynamos (Tobias, Cattaneo & Boldyrev 2012;
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Figure 8. Isosurfaces of temperature perturbation for DC (a,c,e) and RC cases (b.d, f). Hot (orange) and cold
(blue) columnar and plume structures are visualized by isosurface values +0.03 for R = 2 (a,b), £0.07 for

R =3 (c,d) and £0.07 R = 10 (e, f).

Aubert 2019). These magnetic field lines around the vortices are stretched due to shear,
leading to the amplification of the magnetic field, hence resulting in a localized increase
(figure 9d) in the Lorentz force.

Interestingly, the dynamo behaviours for DC at R = 3 with no-slip and free-slip
boundary conditions are found to be very different. In figure 10(a) the strength of the
vortices (represented by the horizontally averaged enstrophy, 1/2 w;w;) is an order of
magnitude higher near the walls for the no-slip boundary condition case as compared with
the free-slip boundary condition case. This increase may be attributed to Ekman pumping
(Hopfinger & Van Heijst 1993). Apart from higher vertical r.m.s. magnetic field strength
(b3,rms), an amplification in the horizontal magnetic field strength in the x; direction
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Figure 9. Instantaneous snapshots for horizontal planes of (a) vertical vorticity, (b) vertical vorticity
superimposed with magnetic field lines, (¢) viscous dissipation and (d) Lorentz force magnitude. A quarter
of the plane is plotted inside the TBL (x3 = —0.495) for no-slip DC simulation with R = 3 in (a). The section
marked by the black dashed line in (a) is enhanced in (b—d).

(b1,rms) is also observed near the wall for the case with the no-slip boundary condition
in comparison with the case with the free-slip boundary condition (see figure 10b).
Because of higher enstrophy, the stretching of magnetic field lines by these vortices,
and consequently the increase in the Lorentz force near the walls, is higher with no-slip
boundary conditions as compared with free-slip boundary conditions (figure 54, f). This
increase in Lorentz force leads to magnetorelaxation in the TBL that promotes turbulence
and heat transfer enhancement. We do not observe such enhancement in heat transport
with free-slip boundary conditions. It should be noted here that, for perfectly conducting
boundaries, the r.m.s. magnetic field has to become parallel to the plates with b3 5 — O
near the walls (figure 10b0). As the field cannot escape the boundaries, a build-up of
Lorentz force can be expected (St Pierre 1993). Investigations with insulated wall boundary
conditions will be carried out in the future to check whether this mechanism is exclusive
to the present combination of boundary conditions.
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Figure 10. Comparison of results for DC at /R = 3 between no-slip and free-slip conditions: (a) enstrophy
and (b) r.m.s. field strength. Vertical variations are presented after averaging all quantities in the horizontal
planes.

4. Conclusions

We have performed turbulence resolving simulations of the plane layer dynamo. Our
study reveals the presence of an optimum thermal forcing at which heat transfer in DC
is most efficient compared with RC. The novelty of this investigation is in reporting that
a local increase in the Lorentz force at the TBL edge (figure 5d) is the cause of this
enhanced heat transport instead of a global balance between the Lorentz and the Coriolis
forces. This local increase in the Lorentz force mitigates the turbulence suppression by
the Coriolis force, and can be viewed as local magnetorelaxation at the TBL. This local
magnetorelaxation phenomenon results in an increase in the population of plumes and
columnar structures (figure 8c) that increases the intensity of turbulence and kinetic
energy dissipation, especially near the walls (figure 7). We also demonstrate that the
stretching of the magnetic field lines around the vortices near the wall is the reason for this
enhanced Lorentz force in the TBL (figure 9). Therefore, the present simulations reveal that
capturing the boundary layer dynamics is imperative for understanding the heat transfer
characteristics in DC, and therefore further investigation of the near-wall behaviour of
dynamos is warranted.

It should be reiterated here that the traditional definition of the Elsasser number, A, is
unsuitable for dynamo simulations (Soderlund et al. 2015; Aurnou & King 2017; Calkins
2018). The Elsasser number in a dynamo simulation is not an input parameter that can
be externally controlled, unlike in low Re,,, magnetoconvection experiments. Therefore, in
this study, we chose to plot the heat transfer variation against R, which is more common for
heat transfer studies of scaling laws of convection with or without rotation or a magnetic
field (Plumley & Julien 2019). The enhancement of heat transfer at lower values of R
indicates a change of scaling law in strong RC due to the dynamo action. This parameter
choice will help in designing future experiments to facilitate the search for heat transfer
scaling laws for DC.
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