therefore $BD \cdot CG = AC \cdot DE$, $= CA \cdot AF$. Now $BD \cdot DG = BH \cdot AE$; therefore $BH \cdot AE + CA \cdot AF = BD \cdot DG + BD \cdot GC$ $= BD \cdot DC$. In triangles AHD, ADE since $\angle ADH = \angle AED$, and $\angle DAH$ is common; therefore (both figures) $HA \cdot AE = AD^2$;

therefore $BH \cdot AE + CA \cdot AF + HA \cdot AE = BD \cdot DC + AD^2$; therefore $BA \cdot AE + CA \cdot AF = BD \cdot DC + AD^2$.

FIGURE 33.

	$BA \cdot AE + HA \cdot AE = BH \cdot AE + BD \cdot GC,$
	= BD·DG + BD·GC,
	$= BD \cdot DC + BD \cdot GC;$
therefore	$BA \cdot AE + AD^2 = BD \cdot DC + CA \cdot AF;$
therefore	$\mathbf{B}\mathbf{A}^{\mathbf{\cdot}}\mathbf{A}\mathbf{E}-\mathbf{C}\mathbf{A}^{\mathbf{\cdot}}\mathbf{A}\mathbf{F}=\mathbf{B}\mathbf{D}^{\mathbf{\cdot}}\mathbf{D}\mathbf{C}-\mathbf{A}\mathbf{D}^{2}.$

It may also be pointed out that the lemma which Simson employed before he had discovered Lemma 10 of the Loci Plani, namely,

If AB be a straight line, C and D two points in it, C lying between A and B, then

 $AD^2 \cdot BC + BD^2 \cdot AC = AC^2 \cdot BC + BC^2 \cdot AC + CD^2 \cdot AB$

contains a theorem given by Euler in the Novi Commentarii Academiae . . . Petropolitana, vol. i., p. 49 (1747).

For	$(AD^2 - AC^2)B$	$BC + (BD^2 - BC^2).$	$\mathbf{A}\mathbf{C} = \mathbf{C}\mathbf{D}^{2}\cdot\mathbf{A}\mathbf{B}.$	
But	AD - AC	= BD $+$ BC	= CD;	
therefore	(AD + AC)BC	C + (BD - BC)	$AC = CD \cdot AB;$	
therefore	AD B	$C + BD \cdot A$	$\mathbf{AC} = \mathbf{CD} \cdot \mathbf{AB};$	
which is Euler's theorem.				

Note on a property of a quadrilateral.

By Professor J. E. A. STEGGALL.

The property is that if any quadrilateral, ABCD, skew or otherwise, have its sides AB, DC divided in E, F so that

AE: EB = DF: FC = AD: BC,

then the direction of the line EF shall bisect the angle between the directions of BC, AD.

This extension of Euclid's VI. 3 follows immediately from the proposition that if AE: EB = DF: FC, then all such lines as EF are parallel to one plane, namely, the plane parallel to BC, AD; and that they each cut similar lines drawn with reference to BC, AD.

Dr Mackay has kindly supplied to me the following references bearing on the subject :-- Legendre's Geometry, Book V., Prop. 16, (Brewster's Edition, 1824, p. 119; Hutton's Course of Mathematics, 12th edition, 1843, Vol. II., p. 224; The Mathematician, Vol. III., Supplementary Number, pp. 36-38.

Note on a possible definition of a plane.

By Professor J. E. A. STEGGALL.