therefore	$\begin{aligned} \mathrm{BD} \cdot \mathrm{CG} & =\mathrm{AC} \cdot \mathrm{DE}, \\ & =\mathrm{CA} \cdot \mathrm{AF} . \end{aligned}$
Now	$\mathrm{BD} \cdot \mathrm{DG}=\mathrm{BH} \cdot \mathrm{AE} ;$
therefore	$\mathrm{BH} \cdot \mathrm{AE}+\mathrm{CA} \cdot \mathrm{AF}=\mathrm{BD} \cdot \mathrm{DG}+\mathrm{BD} \cdot \mathrm{GC}$
	$=\mathrm{BD} \cdot \mathrm{DC}$.
In tri	gles AHD, ADE
since	$\angle \mathrm{ADH}=\angle \mathrm{AED}$, and $\angle \mathrm{DAH}$ is common;
therefore	th figures) $\mathrm{HA} \cdot \mathrm{AE}=\mathrm{AD}^{2}$;
therefore	$\mathrm{BH} \cdot \mathrm{AE}+\mathrm{CA} \cdot \mathrm{AF}+\mathrm{HA} \cdot \mathrm{AE}=\mathrm{BD} \cdot \mathrm{DC}+\mathrm{AD}^{2}$
therefore	$\mathrm{BA} \cdot \mathrm{AE}+\mathrm{CA} \cdot \mathrm{AF}=\mathrm{BD} \cdot \mathrm{DC}+\mathrm{AD}$

Figure 33.

$$
\begin{aligned}
\mathrm{BA} \cdot \mathrm{AE}+\mathrm{HA} \cdot \mathrm{AE} & =\mathrm{BH} \cdot \mathrm{AE}+\mathrm{BD} \cdot \mathrm{GC}, \\
& =\mathrm{BD} \cdot \mathrm{DG}+\mathrm{BD} \cdot \mathrm{GC}, \\
& =\mathrm{BD} \cdot \mathrm{DC}+\mathrm{BD} \cdot \mathrm{GC} ; \\
\mathrm{BA} \cdot \mathrm{AE}+\mathrm{AD}^{2} & =\mathrm{BD} \cdot \mathrm{DC}+\mathrm{CA} \cdot \mathrm{AF} ; \\
\mathrm{BA} \cdot \mathrm{AE}-\mathrm{CA} \cdot \mathrm{AF} & =\mathrm{BD} \cdot \mathrm{DC}-\mathrm{AD}^{2} .
\end{aligned}
$$

therefore
therefore
It may also be pointed out that the lemma which Simson employed before he had discovered Lemma 10 of the Loci Plani, namely,

If $A B$ be a straight line, C and D two points in it, C lying between A and B , then

$$
A D^{2} \cdot B C+B D^{2} \cdot A C=A C^{2} \cdot B C+B C^{2} \cdot A C+C D^{2} \cdot A B
$$

contains a theorem given by Euler in the Novi Commentarii Academiae . . . Petropolitance, vol. i., p. 49 (1747).

For $\quad\left(\mathrm{AD}^{2}-\mathrm{AC}^{2}\right) \mathrm{BC}+\left(\mathrm{BD}^{2}-\mathrm{BC}^{2}\right) \mathrm{AC}=\mathrm{CD}^{2} \cdot \mathrm{AB}$.
But $\mathrm{AD}-\mathrm{AC}=\mathrm{BD}+\mathrm{BC}=\mathrm{CD} ;$
therefore $(\mathrm{AD}+\mathrm{AC}) \mathrm{BC}+(\mathrm{BD}-\mathrm{BC}) \mathrm{AC}=\mathrm{CD} \cdot \mathrm{AD} ;$ therefore $\quad \mathrm{AD} \mathrm{BC}+\quad \mathrm{BD} \cdot \mathrm{AC}=\mathrm{CD} \cdot \mathrm{AB}$;
which is Euler's theorem.

Note on a property of a quadrilateral.
By Professor J. E. A. Steggall.
The property is that if any quadrilateral, $A B C D$, skew or otherwise, have its sides AB, DC divided in E, F so that

$$
\mathrm{AE}: \mathrm{EB}=\mathrm{DF}: \mathrm{FC}=\mathrm{AD}: \mathrm{BC},
$$

then the direction of the line EF shall bisect the angle between the directions of BC, AD.

This extension of Euclid's VI. 3 follows immediately from the proposition that if $\mathrm{AE}: \mathrm{EB}=\mathrm{DF}: \mathrm{FC}$, then all such lines as EF are parallel to one plane, namely, the plane parallel to BC, AD; and that they each cut similar lines drawn with reference to $B C, A D$.

Dr Mackay has kindly supplied to me the following references bearing on the subject:-Legendre's Geometry, Book V., Prop. 16, (Brewster's Edition, 1824, p. 119 ; Hutton's Course of Mathematics, 12th edition, 1843, Vol. II., p. 224; The Mathematician, Vol. III., Supplementary Number, pp. 36-38.

Note on a possible definition of a plane.
By Professor J. E. A. Steggall.

