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Abstract

In this paper we study the classification of holomorphic flows on Stein spaces of dimension two. We
assume that the flow has periodic orbits, not necessarily with a same period. Then we prove a linearization
result for the flow, under some natural conditions on the surface.
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1. Introduction

In this paper we address the problem of classification of holomorphic flows on
Stein spaces of dimension two. Though the study of holomorphic actions of the
complex multiplicative group C∗ appears to be well developed, with an extensive
list of linearization and classification results for the action as well as for the ambient
manifold [8, 9, 17], the study of holomorphic flows (that is, holomorphic C-actions)
seems to be a harder topic. This is in part due to the fact that the group C∗ is reductive,
which is not the case for the additive group C. In addition, each C∗-action generates a
flow in an obvious manner, but the converse is not true and, indeed, there is a wide
class of examples of holomorphic flows which do not come from C∗-actions. At
this level of generality there is slim hope of getting extensive classification results
as indicated in some previous work [7]. Therefore we make a hypothesis on the orbits
of the flow that may allow a classification. In this work we consider the case where
the flow has periodic orbits. This means that the nonsingular orbits of the flow are
periodic but not necessarily with a common period. Since by Suzuki [18] periodic
orbits of holomorphic flows on Stein surfaces only accumulate at the singular set, our
hypothesis can be seen as a dynamical hypothesis.

Let us now recall some of the motivation for our current approach based also
on holomorphic foliations theory. A fundamental contribution to the study of
holomorphic actions on Stein surfaces was made by Suzuki who introduced into this
subject the techniques of theory of foliations and potential theory (see [18, 19]). In our
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current framework Suzuki’s main result is probably that any analytic C∗-action on C2

is analytically linearizable. The classification of holomorphic C-actions with proper
orbits on C2 was also obtained by Suzuki [19, Theorem 4], and not all of them are
linearizable. In connection with this, in [2] the authors address the classification of a
Stein analytic space N of dimension two, with a normal singularity p ∈ N , endowed
with a C∗-action ϕ having a dicritical singularity at p, meaning that p is a fixed point
such that every nonsingular orbit of ϕ close enough to p accumulates at and only
at p. These are called quasi-homogeneous singularities in the framework of analytic
and algebraic geometry [15]. This study continues in [5] where the authors study the
nondicritical case. Let us now state our main result. Given a holomorphic flow ψ on
a Stein manifold, a nonsingular orbit is biholomorphic either to C or to C∗ if it has a
nontrivial isotropy group. In the last case the orbit is called periodic. We prove the
following linearization result.

THEOREM 1.1. Let ψ be a holomorphic flow with periodic orbits (not necessarily
with a common period) and isolated singularities on a connected Stein surface N
with H2(N , Z)= 0 and H1(N , C)= 0. Then, up to a reparametrization, the flow is
induced by a holomorphic C∗-action and we have the following possibilities.

(i) ψ has a dicritical singularity and is globally linearizable.
(ii) ψ exhibits no dicritical singularity but has a nondicritical analytically

linearizable singularity, and the corresponding foliation is the pull-back of a
linear foliation on C2.

We shall see that the flow is periodic in case (i) and induces a C∗-action. In case (ii)
the corresponding holomorphic vector field is a multiple of a complete vector field with
periodic flow. It will follow from the proof we give that the result holds partially for
holomorphic flows with isolated singularities and generic orbit (generic in the sense
of Theorem 2.2) periodic, that is, diffeomorphic to C∗. Indeed, for item (ii), we can
prove that the tangent vector field Zψ := (∂ψt/∂t)|t=0 can be multiplied by a suitable
meromorphic function τ (the period map) so that it becomes periodic with constant
period and therefore associated with a C∗-action (see the proof of Lemma 2.9). If all
orbits are periodic the map τ is holomorphic without zeros.

The result is sharp. Indeed, letting N = C∗ × C, then N is Stein and equipped
with a periodic (nonsingular) horizontal flow. Nevertheless, N is not biholomorphic to
C2. This shows that the hypothesis H1(N , C)= 0 cannot be dropped in Theorem 1.1.
For (ii), we consider a linear vector field Z0 = nx(∂/∂x)− my(∂/∂y) with n, m ∈ N
in affine coordinates (x, y) ∈ C2. Then we consider the transverse section 6 ⊂ C2

given by {x = 1} ∩ {|y|< 1}. Let N be the union of the y-axis with the saturation
SatZ0(6)⊂ C2 of the transverse section 6 by the orbits of Z0. Then N gives an
open subset of C2 invariant by the flow of Z0, which is periodic, and which exhibits
a nondicritical singularity at the origin 0 ∈ N . The foliation F Z0 induced by Z0 on N
is obviously the pull-back of a linear foliation on C2, the ambient surface is Stein,
satisfies H1(N , C)= 0 and H2(N , Z)= 0. On the other hand, N is not biholomorphic
to C2 and this shows that the conclusion in (ii) cannot be improved.
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From the main result in [19] we promptly conclude the following corollary.

COROLLARY 1.2. A holomorphic flow with isolated singularities and periodic orbits
on C2 is analytically linearizable of the form t ◦ (x, y)= (ent x, emt y) where t ∈ C,
(x, y) ∈ C2, and m, n ∈ Z.

2. Resolution of singularities

Throughout this section N denotes a nonsingular Stein analytic space of dimension
two endowed with a holomorphic flow ψ : C× N → N having isolated singularities.
We denote by Fψ the foliation induced by ψ and study the behavior of the flow in a
neighborhood of a nondicritical singularity (fixed point).

PROPOSITION 2.1. Let N be a nonsingular Stein analytic space of dimension two.
Let ψ be a holomorphic flow with periodic orbits on N, with isolated fixed points, and
let p ∈ N be a nondicritical singularity of the corresponding foliation Fψ . Then Fψ

is analytically linearizable in a neighborhood of p.

Let us recall some of Suzuki’s results.

THEOREM 2.2 [18]. Given a C-action ψ on a normal Stein analytic space N of
dimension two, the following statements hold.

(i) There is a subset e ⊂ N of logarithmic capacity zero such that ψt (e)= e, for any
t ∈ C, and all orbits of ψ in N \ e are biholomorphic.

(ii) Any leaf of Fψ containing an orbit of ψ isomorphic to C∗ is closed in N \
sing(Fψ ).

(iii) If the leaves of Fψ are properly embedded in N \ sing(Fψ ) then there is a
meromorphic first integral of Fψ on N, not constant, and one can find a Riemann
surface S and a surjective holomorphic map p : N \ sing(Fψ )→ S, such that:

(iii.1) the irreducible components of the fibers {p−1(w); w ∈ S} of p are the
leaves of Fψ ;

(iii.2) the subset E ⊂ N defined as the union of all the nonirreducible levels
p−1(w), w ∈ S, has zero logarithmic capacity.

(iv) If the generic orbit is biholomorphic to C∗, then each leaf of Fψ is closed in
N \ sing(Fψ ) and therefore there is a meromorphic first integral as in (iii).

The resolution theorem of Seidenberg [16] asserts that there is a proper holomorphic
map which is a finite sequence of quadratic blow-ups ρ : Ñ → N such that the
following statements hold.

(1) The exceptional divisor D = ρ−1(p)=
⋃m

j=1 σ j ⊂ Ñ is a union of projective
lines, copies of the Riemann sphere, with normal crossings, no cycles and no
triple points.

(2) The pull-back foliation F̃ψ := ρ
∗(Fψ ) on Ñ is such that any singularity p̃ ∈

sing(F̃ψ ) ∩ D is isolated and reduced of one of the following types in local
coordinates:
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(a) x dy − λy dx + h. o. t.= 0, λ ∈ C \Q+ (nondegenerate);
(b) xk+1 dy − [y(1+ λxk)+ h. o. t.] dx = 0, k ∈ N, λ ∈ C (saddle-node).

Here, by h. o. t. we mean ‘higher-order terms’.

Conditions (1) and (2) above hold for any isolated singularity p of a holomorphic
foliation in dimension two. Using now the flow ψ that generates Fψ and the fact that
the orbits are periodic, as well as the fact that N is Stein, we obtain the following
result.

PROPOSITION 2.3. Let N be a nonsingular Stein analytic space of dimension two.
Let ψ be a holomorphic flow on N with periodic orbits and isolated fixed points, and
let p ∈ N be a nondicritical singularity of Fψ . There is a resolution ρ : Ñ → N of the
singularity p of Fψ such that:

(i) each singular point of F̃ψ has local form d(x`yk)= 0, for k, ` ∈ N, in suitable
local coordinates;

(ii) there is a holomorphic flow ψ̃ on Ñ induced by ψ in the sense that

ψ̃(s, p̃)= ψ(s, ρ( p̃)), ∀s ∈ C∗, p̃ ∈ Ñ ;

(iii) the exceptional divisor is a linear chain formed by invariant Riemann spheres
σ j , j ≥ 1, with two separatrices 0̃1, 0̃2 intersecting D outside the corners.

We recall that a compact analytic divisor D of dimension one on a complex
surface N is a linear chain if it is a union of compact Riemann surfaces, elements
of the divisor D, say D1, . . . , Dn , such that Di ∩ D j is nonempty with i < j if and
only if i = j − 1, and in this case it is a point, for j = 2, . . . , n. Each intersection
Di ∩ D j is called a corner.

In the first part of Proposition 2.3 we use the same argument as in the proof of
Proposition 1 in [5] and, for sake of clarity, we briefly repeat it here. The first part of
the argument is the following extension lemma from [5] (see Lemma 1).

LEMMA 2.4. Let Z̃ be a meromorphic vector field defined in a complex manifold Ñ ,
denote by F Z̃ the corresponding foliation in Ñ and assume that for some invariant
codimension-one compact analytic divisor D =

⋃r
j=1 D j ⊂ Ñ , the following

statements hold.

(i) Z̃ is holomorphic with isolated singularities and complete in Ṽ \ D.
(ii) The divisor D is connected, has normal crossings, no cycles and no triple points,

and each singularity of the foliation F Z̃ in D is reduced of the local form
d(xk y`)= 0, for k, ` ∈ N.

(iii) There is a separatrix 0̃ transverse to D with 0̃ ∩ D = 0̃ ∩ D1 = {p} and Z̃ |0̃
has an isolated singularity at p.

Then Z̃ is holomorphic, complete and with isolated singularities in D.

PROOF OF PROPOSITION 2.3. By hypothesis, the nonsingular orbits of ψ are
diffeomorphic to C∗. Since N is Stein of dimension two and the generic orbit of ψ
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is C∗ then by the main theorem of [18] the foliation Fψ admits a meromorphic
first integral in N . By composition with the resolution map ρ : Ñ → N we have a
meromorphic first integral for F̃ψ on Ñ . Thus, by the local form of the reduced
singularities [10–12] we conclude that all singularities arising in the exceptional
(resolution) divisor are linearizable with local holomorphic first integral, that is, of
the local form d(x`yk)= 0, k, ` ∈ N, in suitable coordinates. The natural lift ψ̃ of the
flow ψ to Ṽ \ D must extend to a flow on D: indeed, ψ̃ induces a holomorphic vector
field Z̃ on Ṽ \ D, and the vector field Z̃ has no essential singularity on the divisor D
so that we can extend it to D as a meromorphic (possibly holomorphic) vector field
which we shall also denote by Z̃ . Let us now prove that Z̃ has no poles in D and has
isolated singularities only. By [3] we can find a separatrix 0 of Fψ through p. This
gives a smooth curve 0̃ on the resolution which meets the exceptional divisor D at a
singular point p̃ of local type F̃ψ : kx dy + `y dx = 0, k, ` ∈ N. Then by Lemma 2.4
the vector field Z̃ extends holomorphically to D, with isolated singularities. This
extension is complete because D is compact. Therefore ψ̃ extends to Ñ , satisfying the
relation ψ̃t ( p̃)= ψt (ρ( p̃)), for all t ∈ C, for all p̃ ∈ Ñ . We know that Z̃ is a complete
holomorphic vector field with isolated singularities tangent to each component D j

of D, which is a copy of the Riemann sphere C. Thus, the restriction Z̃ j := Z̃ |D j

is linear and may be written in some suitable affine coordinate z : C→ D j ∼= C as
Z̃ j (z)= n j z(∂/∂z) for some n j ∈ N. In particular, Z̃ j has two singularities in D j .
Hence, each component of the resolution divisor exhibits exactly two singularities
of Z̃ and, since there are no cycles in the resolution divisor, the exceptional divisor is
a linear chain, with two separatrices 0̃1, 0̃2 intersecting D outside the corners. 2

We now prove Proposition 2.1. We denote by 01, 02 ⊂ N the separatrices obtained
by blowing down 0̃1, 0̃2, respectively. Using the fact that the orbits are biholomorphic
to C∗ and that a Stein manifold contains no compact curves we obtain, as in [5,
Lemmas 2 and 3], the following lemma.

LEMMA 2.5. In the above situation:

(1) each separatrix 0 j is contained in a curve C j ⊂ N which is smooth,
diffeomorphic to C and such that C1 ∩ C2 = {p};

(2) C j ∩ sing(Fψ̃ )= {p}.

We now apply [19] and consider a primitive meromorphic first integral F : N 99K
CP(1) for Fψ . According to [2], Fψ has no dicritical singularity (indeed, a dicritical
singularity must be unique as a singularity of the foliation). Therefore F has no
indeterminacy point and we have a holomorphic function F : N → CP(1). We denote
by R the image set R = F(N )⊂ CP(1). The map F is algebroid in the sense of [19],
that is, (i) the levels F−1(z), z ∈ R are isomorphic to compact Riemann surfaces minus
a finite set of points, and (ii) for any z ∈ R there is a neighborhood δ = δ(z) such that
F−1(δ) is Stein. In our case the orbits of ψ are isomorphic to C∗ and we can take N
as a neighborhood of its levels. Also F is of finite type as a consequence of [19,
Proposition 3, p. 534] and of our hypothesis H2(V, Z)= 0.
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Since F : N → R is primitive and surjective, (R, F) is already the base space
of F : N → R. Thus, according to the ‘Remarque’ in [19, p. 531], the fact that
H1(N , C)= 0 implies that H1(R, C)= 0, that is, R is simply-connected. Moreover,
according to the same remark, since F is free of indeterminacy points, R cannot be
compact. Therefore R is isomorphic to C or the unit disc D. We can assume that
F(p)= 0 so that C j ⊂ F−1(0), j = 1, 2.

LEMMA 2.6. F−1(0)= C1 ∪ C2.

PROOF. Since F : N → R is algebroid and primitive and N∗ = N − F−1(0) is Stein
we can apply [19, Lemma 7, p. 535] to conclude that there is an exact sequence

H1(C∗;Q)→ H1(N
∗
;Q)→ H1(R

∗
;Q)→ 0

where R∗ = R − {0}.
Thus rank H1(N∗)≤ rank H1(C∗)+ rank H1(R∗). Since R∗ = C− {0} or D− {0}

we obtain rank H1(N∗)≤ 2. This implies that rank H1(N∗)= 2, because if f j ∈

O(N ) is a reduced equation for C j , then the 1-forms d f j/ f j = θ j , j = 1, 2, are
holomorphic in N∗ and independent in the cohomology. The existence of these
reduced equations is a consequence of the fact that N is Stein with H2(N , Z)= 0. The
above shows that F−1(0) has exactly two irreducible components, that is, F−1(0)=
C1 ∪ C2. 2

Using again the hypothesis that N is Stein with H2(N , Z)= 0 we can write
F =

∏r
j=1 F

n j
j with F j ∈O(N ), n j ∈ Z. Since F is holomorphic, R ⊂ C and

F−1(0)= C1 ∪ C2, we have indeed, up to notation, F = f n1
1 f n2

2 h where h ∈O(N )∗ is
a unit. Since H1(N , C)= 0 we can write h = hn1

1 for some unit h1 on N . Replacing f1
by f1h1 we can write F = f n1

1 f n2
2 obtaining a first integral F : N → R(R = D or R =

C) of the form F = f n1
1 f n2

2 where ( f j = 0) is a reduced equation for C j . Finally, since
01 and 02 are transverse at p this implies that the map F takes these two transverse
curves into the coordinate axes of the xy-plane. This and the following two lemmas
will imply that 8= ( f1, f2) : N → C2 is biholomorphic at the point p.

LEMMA 2.7. If z ∈ R \ {0} then the fiber F−1(z) is irreducible and therefore
isomorphic to C∗.

PROOF. Since the map F is primitive it is enough to show that 0 ∈ R is the unique
critical value of F . Indeed, if λ ∈ R − {0} is another critical value of F then F−1(λ)

contains a singularity q ∈ V , q 6= p, of Fψ which is not of dicritical type. The same
conclusions that hold for p are valid for q . In particular, F−1(λ) is the union of two
irreducible curves C ′1, C ′2 and C ′1 ∩ C ′2 = {q}. Also Ci ∩ C ′j = ∅. Applying then the
same arguments as in the proof of Lemma 2.6 we obtain

rank H1(N − (F
1(0) ∪ F−1(λ)))≤ rank H1(C∗)+ rank H1(R − {0, λ}).

Thus
rank H1(N − C1 ∪ C2 ∪ C ′1 ∪ C ′2)≤ 1+ 2= 3.
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On the other hand, as in the proof of Lemma 2.6, we can conclude that
rank H1(N − C1 ∪ C2 ∪ C ′1 ∪ C ′2)≥ 4, a contradiction. This implies that F |N\F−1(0) :

N \ F−1(0)→ R \ {0} is a nonsingular primitive map and therefore has irreducible
fibers. 2

LEMMA 2.8. The resolution of the singularity p ∈ sing(Fψ ) exhibits a single
projective line.

PROOF. Take a singularity q̃ ∈ D in the exceptional divisor of the resolution. In a
neighborhood of q̃ the lifted foliation F̃ψ admits a holomorphic first integral of a local
form as xn ym , n, m ∈ N, in suitable coordinates (x, y) ∈ C2 centered at q̃ . There is at
least one component D j of D which contains q̃ and we may assume that (y = 0)⊂ D j .
Thus we can define a local ‘vertical’ projection σ : L0→ D j of a given (nonseparatrix)
leaf L0 passing close enough to q̃ onto the component D j of D that contains (y = 0)
as the restriction of the map π2(x, y)= y. If L0 is given locally around q̃ by
xn ym

= c ∈ C∗ then σ defines a finite-to-one map. Let us now consider for each
singularity q̃ν of sing(F̃ψ ) on the projective line D j a small disk Dν ⊂ D j centered
at q̃ν and its inverse image Dν ⊂ L0 by σ on the leaf L0. There are two possibilities
for Dν : either it is a disk on the cylinder L0 ≡ C∗ ' S1

× [0, 1] or it corresponds
to an end of L0. On the other hand, the projection map σ induces a finite-to-one
holomorphic covering L0 \

⋃
ν Dν→ D j \

⋃
ν Dν . By the study of the resolution

of p we know that D is a linear chain, so D j contains exactly two singularities,
and therefore we have exactly two disks Dν ⊂ D j . This implies that D j \

⋃
ν Dν

is conformally equivalent to the Riemann sphere CP(1) minus two disjoint disks, that
is, it is biholomorphic to the cylinder C∗. This already implies that the holomorphic
universal covering of L0 \

⋃
ν Dν is the complex plane C and therefore necessarily

L0 \
⋃
ν Dν is biholomorphic to C∗. Therefore we must have that the lifted disks Dν

correspond to ends of L0 and not to disks on L0. Hence the transverse separatrices of
the foliation F̃ψ through the singular points Dν ∩ D j correspond to the separatrices
01 and 02, not to other components of the divisor D. This proves that D contains a
single projective line. 2

PROOF OF PROPOSITION 2.1. Since the fibers of F = f n1
1 f n2

2 are irreducible and D
contains a single projective line, we conclude that p ∈ sing(Fψ ) is already reduced,
analytically linearizable and, furthermore, the map 8= ( f1, f2) has a nonsingular
derivative at p. 2

LEMMA 2.9. Let Z be a complete holomorphic vector field with isolated singularities,
all of nondicritical type, and periodic orbits on a Stein surface N. Then the period of
the orbits defines a holomorphic function τ : N → C. In particular, the foliation F Z ,
induced by Z, is also induced by a C∗-action on N.

PROOF. We first define the map τ on N \ sing(Z) as follows: given a point p ∈ N
which is not a singular point of Z , we consider τ(p) ∈ C as the period of the orbit O p
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of Z through p. It is now not difficult to see that this is a meromorphic function
constant along the orbits of Z . This is in fact already in the work of Suzuki [18] and
mentioned in [1, Section 5]: the main reason is that any tube covering UT of F is
biholomorphic to UC and, in the case where UT is Stein, this follows from the results
of Nishino [13] and Yamaguchi [20, 21]. The fact that UT is Stein when N is Stein
and Z periodic is proved by Suzuki in [18]. In our case, the orbits of the flow are
periodic so that τ has no poles (the poles correspond to the orbits of ‘infinite period’).
Thus τ is holomorphic on N \ sing(Z) and by the classical Hartogs extension theorem
the map τ extends to a holomorphic map τ : N → C. Also notice that, since all orbits
are periodic, τ has no zeros on N , that is, 1/τ is also holomorphic on N . Now define
the vector field Ẑ := τ · Z on N . Since Z is complete and τ is constant along the orbits
of Z then Ẑ is also complete. The flow maps Ẑ t and Z t of Ẑ and Z , respectively,
are related by Ẑ t (p)= Zτ(p)t (p), for all p ∈ N , for all t ∈ C. Thus Ẑ1 := Zτ ≡ Id.
This shows that Z is a multiple of a periodic complete holomorphic vector field and
concludes the proof of the lemma. 2

3. Proof of the theorem

Denote by Fψ the one-dimensional holomorphic foliation induced by ψ on N .
The leaves of Fψ are the nonsingular orbits of ψ and, since the singularities of ψ
are isolated, the singular set of Fψ is sing(Fψ )= Fix(ψ), the set of fixed points
of ψ . By hypothesis, the flow ψ has periodic orbits, thus since N is Stein, by [18]
the foliation Fψ admits a meromorphic first integral f : N 99K CP(1) for Fψ . This
already implies that the nonsingular orbits of the flow only accumulate at the singular
set. Also, according to Stein factorization theorem we can assume that the first
integral is primitive and is onto an open Riemann surface R ∈ {C, D} as explained
in the paragraphs before Lemma 2.6. If ψ has no fixed point on N then f defines
a holomorphic fibration over R, which is not possible thanks to the hypothesis
that H1(N , C)= 0 (recall that the fibers are C∗ which is topologically a cylinder).
Therefore ψ must have some fixed point, that is, some singularity p ∈ N for Fψ .
Suppose that p is dicritical. Then the resolution of singularities of p by the blow-
up method exhibits some projective line E which is completely transverse to the
pull-back foliation [4, 16]. For each point q ∈ E on this projective line there is a
single orbit Oq of the lifted flow accumulating at, and only at, this point (indeed,
otherwise we would have Oq \Oq containing more than one point, what is not possible
since Oq is biholomorphic to C∗). This defines a holomorphic function τ on E
which associates with each q ∈ E the period of the corresponding orbit Oq . Since E
is compact the period function τ must be constant and therefore there is an open
subset of N (similar to a ‘sector’ with vertex at the point p) where the flow ψ has
a constant period. By the identity principle the flow ψ has a constant period τ ∈ C
and therefore corresponds to a holomorphic action ϕ of the multiplicative group C∗.
The point p ∈ sing(Fψ ) is a singularity (fixed point) of the C∗-action ϕ. Since p
is a dicritical singularity then (the action ϕ and therefore) ψ is globally linearizable
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by [2] or by [14]: indeed, a holomorphic C∗-action is analytically linearizable in a
neighborhood of an isolated fixed point, and then, since we are in the case where p
is a dicritical singularity, we can apply the main result of [14] to conclude that the
action is globally linearizable. Assume now that p ∈ sing(Fψ ) is nondicritical, more
specifically that Fψ exhibits no dicritical singularity (otherwise we can apply the case
above to conclude the linearization). Then Fψ admits a holomorphic first integral
f : N → CP(1) (indeed, a meromorphic first integral is holomorphic, taking values
on CP(1) in the neighborhood of a nondicritical singularity). In particular, Fψ

admits a holomorphic first integral in a neighborhood of p (given by f or 1/ f ) and
by Proposition 2.1 the foliation is analytically linearizable in a neighborhood of the
singularity p. From Lemma 2.9 we know that ψ can be replaced by a holomorphic
action ψ̂ with constant period and therefore associated with a C∗-action ϕ̂. The
vector field Z

ψ̂
corresponding to the action ψ̂ is therefore analytically linearizable

in a neighborhood of p (it is a multiple Ẑ = h · Z0 of a linearizable vector field of
the local form Z0 = nx(∂/∂x)− my(∂/∂y), n, m ∈ N, by a holomorphic first integral
and, since Ẑ also has constant period, h is also constant so that Ẑ is also analytically
linearizable at p). On the other hand, evoking Theorem 1 in [5], we conclude that Fϕ̂

and therefore F
ψ̂
= Fψ is the pull-back of a linear foliation with holomorphic first

integral.
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