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Abstract

Let H = −∆ + V be a Schrödinger operator with some general signed potential V . This paper is mainly
devoted to establishing the Lq-boundedness of the Riesz transform ∇H−1/2 for q > 2. We mainly prove
that under certain conditions on V , the Riesz transform ∇H−1/2 is bounded on Lq for all q ∈ [2, p0) with
a given 2 < p0 < n. As an application, the main result can be applied to the operator H = −∆ + V+ − V−,
where V+ belongs to the reverse Hölder class Bθ and V− ∈ Ln/2,∞ with a small norm. In particular, if
V− = −γ|x|−2 for some positive number γ, ∇H−1/2 is bounded on Lq for all q ∈ [2, n/2) and n > 4.
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1. Introduction

Let H = −∆ + V be a Schrödinger operator on Rn, where ∆ is the Laplace operator
and V is a real-valued signed potential. Denote V = V+ − V−, where V+ and V− are the
positive and negative parts of V , respectively. It is well known that there exist many
interesting works about the Lq boundedness of the Riesz transform ∇H−1/2 associated
to H. Let us recall some important progresses by the following Table 1. We first
introduce some notation for the table: P(x) is a nonnegative polynomial, K∞n denotes
the local Kato class potential (see also [24]) and Lr,∞ (1 ≤ r < ∞) denotes the weak
Lr(Rn) space, that is,

Lr,∞ =

{
f : ‖ f ‖Lr,∞ = sup

γ>0
γ|{x ∈ Rn; | f (x)| > γ}|1/r <∞

}
.
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Table 1. The Lq boundedness for Riesz transforms.

Potentials Results Papers
V = |x|2 R j = H−1/2A j and R∗j = H−1/2A∗j ( j =

1, . . . , n) are bounded on Lq for 1 < q <
∞, where A j = ∂x j + x j and A∗j = −∂x j +

x j.

[25]

V = P(x) ∇H−1/2 is bounded on Lq for 1 < q <∞. [26, 28]

V ∈ Bθ and n ≥ 3 ∇H−1/2 is bounded on Lq for 1 < q ≤
nθ/(n − θ) if n/2 ≤ θ < n and for 1 < q <
∞ if θ = n.

[22]

0 ≤ V ∈ L1
loc ∇H−1/2 is of weak-type (1, 1) and is

bounded on Lq for 1 < q ≤ 2.
[11, 18, 23]

V ∈ Bθ and n ≥ 1 Let θ > 1 and θ ≥ n/2. ∇H−1/2 is
bounded on Lq for 1 < q < nθ/(n − θ) + ε
for some ε > 0 if θ < n and for 1 < q <∞
if θ ≥ n.

[4]

V ≤ 0 satisfies (A1) ∇H−1/2 is bounded on Lq for p′µ < q ≤ 2
and for 1 < q < n if further V ∈ Ln/2,∞ ∩

K∞n .

[1]

V = −µ(n − 2)2|x|−2/4
and n ≥ 3

∇H−1/2 is bounded on Lq for p′µ < q <
npµ/(n + pµ).

[14]

Also, Bθ denotes the reverse Hölder class for some θ ∈ (1,∞), which consists of a
nonnegative locally integrable function w satisfying( 1

|B|

∫
B
|w(x)|θ dx

)1/θ
≤ C

( 1
|B|

∫
B
|w(x)| dx

)
for every ball B ⊂ Rn and some constant C > 0 independent of θ and the ball B. For a
real number µ > 0, the index pµ is defined by

pµ =

2n/(n − 2)(1 −
√

1 − µ) if n ≥ 3,

∞ if n = 1, 2.
(1.1)

By reviewing Table 1 above, although much progress has been made, yet for
a signed potential or the cases q > 2, it seems that there is still room for further
investigation. It is well known that the space Ln/2,∞ plays an important role in many
studies of Schrödinger operators with critical potentials (see [5, 13]). A typical
example is the inverse square potential V(x) = −µ(n − 2)2|x|−2/4 ∈ Ln/2,∞, which is
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widely studied in modern mathematical physics and quantum mechanics (see for
example [7, 12, 19–21, 27] and references therein). Notice that the inverse square
potential does not belong to the Kato class K∞n and hence we could not apply
[1, Theorem 4.1] to determine whether the Riesz transform of H = −∆ + V with signed
potential V ∈ Ln/2,∞ is bounded on Lq for any q > 2 or not. In the present paper, we are
mainly devoted to the Lq boundedness of the Riesz transform ∇H−1/2 for q > 2 with
such kind of critical potentials.

To this end, in the following we need to introduce some new conditions on V .
First of all, a real-valued potential V = V+ − V− is said to satisfy (A1) (which is also
called the strongly subcritical condition) if there exists µ ∈ (0, 1) such that for all
f ∈ W1,2(Rn) satisfying

∫
Rn V+| f |2 dx <∞, the following inequality holds:

(A1) :
∫
Rn

V−(x)| f (x)|2 dx ≤ µ
(∫
Rn
|∇ f (x)|2 dx +

∫
Rn

V+(x)| f (x)|2 dx
)
.

If V satisfies (A1), the forms

Q( f , g) = Q+( f , g) −
∫
Rn

V−(x) f (x)g(x) dx (1.2)

with

Q+( f , g) =

∫
Rn
∇ f (x)∇g(x) dx +

∫
Rn

V+(x) f (x)g(x) dx (1.3)

are well defined and closed on the domain

D(Q) = D(Q+) =

{
f ∈ W1,2(Rn);

∫
Rn

V+(x)| f (x)|2 dx <∞
}
.

Thus, H+ := −∆ + V+ and H := −∆ + V are nonnegative self-adjoint operators
associated with the forms Q+ and Q, respectively. Denote by D(H+) and D(H) their
domains.

Next, the potential V is said to satisfy (A2) and (A3) for some p0 > 2, respectively,
if there exists a constant p0 > 2 such that

(A2) : ‖∇H−1/2
+ ‖Lp0−Lp0 <∞

and

(A3) : ‖V−(I + H+)−1‖Lp0−Lp0 <∞,

where H+ with domain Dp0 (H+) is the generator of the Schrödinger semigroup e−tH+ on
Lp0 (see Lemma 3.1 in Section 3 below). It should be emphasized that our conditions
are satisfied by a large class of signed potentials V with certain nonzero positive part
V+ (see Remark 1.2 below), whereas assumptions in Assaad [1] are only considered
for V ≤ 0 or for |V | in Assaad and Ouhabaz [2].

Our main result in this paper is as follows.
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Theorem 1.1. Let n ≥ 3 and H = −∆ + V and V± be the positive and negative parts of
V, respectively. Assume that (A1) holds for some µ ∈ (0, 1) and (A2) and (A3) hold for
some 2 < p0 < n. Then there exists a constant δp0 depending on p0 such that when

‖V−‖Ln/2,∞ ≤ δp0 , (1.4)

the Riesz transform ∇H−1/2 is bounded on Lq(Rn) for all q ∈ (p′µ, p0) with pµ defined
by (1.1).

Before we prove Theorem 1.1, several remarks about (A2) and (A3) are given as
follows.

Remark 1.2. Let V = V+ − V−, where V± denote the positive and negative parts of V .

(i) It follows from Table 1 that ∇H−1/2
+ is of weak type (1, 1), which, combined with

(A2), implies that it is bounded on Lp(Rn) for all 1 < p ≤ p0. On the other hand,
(A3) is actually equivalent to the following perturbation inequality:

‖V− f ‖Lp0 ≤ a‖H+ f ‖Lp0 + b‖ f ‖Lp0 , f ∈ Dp0 (H+) (1.5)

with some positive constants a, b > 0. This is because

‖V− f ‖Lp0 ≤ ‖V−(I + H+)−1(I + H+) f ‖Lp0

≤ ‖V−(I + H+)−1‖Lp0−Lp0
(
‖H+ f ‖Lp0 + ‖ f ‖Lp0

)
and

‖V−(I + H+)−1 f ‖Lp0 ≤ a‖H+(I + H+)−1 f ‖Lp0 + b‖(I + H+)−1 f ‖Lp0

≤ C‖ f ‖Lp0 ,

where H+(I + H+)−1 and (I + H+)−1 are bounded on Lp0 by bounded functional
calculus.

(ii) If V+ = 0, clearly, the classical Riesz transform ∇(−∆)−1/2 is bounded on Lp for
all 1 < p <∞ and then (A2) holds for all 2 < p0 <∞. Moreover, let V− ∈ Ln/2,∞;
it follows from the weak-type Hölder inequality (3.3) and Sobolev’s embedding
theorem that for 1 < p < n/2,

‖V− f ‖Lp ≤ C‖V−‖Ln/2,∞‖∆ f ‖Lp . (1.6)

Therefore, if V+ = 0, V− ∈ Ln/2,∞ and n > 4, (1.5) and (1.6) imply that (A3) can
hold for all 2 < p0 < n/2.

(iii) If V+ , 0, then there exist several important nonnegative potential classes such
that (A2) holds. Let n ≥ 3, V+ ∈ Bθ for some θ ≥ n/2 and

θ∗ =

nθ/(n − θ) if n/2 ≤ θ < n,
∞ if θ ≥ n.

It follows from [22] and [4] that (A2) holds for all 2 < p0 < θ
∗. In particular, if

V+ is a positive polynomial, (A2) holds for all 2 < p0 <∞. Moreover, if V+ ∈ Bθ
with θ ≥ n/2 > 2 and V− ∈ Ln/2,∞, we have that (A3) holds for 2 < p0 < n/2 (see
Lemma 4.4 below).
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Notice that if V+ belongs to some reverse Hölder class Bθ and V− ∈ Ln/2,∞, then (A2)
and (A3) hold for some q0 > 2. Therefore, we have the following conclusion.

Theorem 1.3. Let n > 4 and H = −∆ + V+ − V−. If V+ satisfies (Bθ) for θ ≥ n/2, then
there exists a constant δ > 0 such that when

‖V−‖Ln/2,∞ ≤ δ,

the Riesz transform ∇H−1/2 is bounded on Lq for all q ∈ (p′µ, n/2).

Now we consider the Schrödinger operator with inverse square potential |x|−2. By
applying Theorem 1.3, the following corollary holds.

Corollary 1.4. Let n > 4 and H = −∆ + V+ − γ(n − 2)2|x|−2/4 with V+ ∈ Bθ for
θ ≥ n/2. Then there exists a constant δ ∈ (0, 1) such that when 0 < γ < δ, the Riesz
transform ∇H−1/2 is bounded on Lq for all q ∈ (p′γ, n/2).

Remark 1.5. Let V+ = 0 in Corollary 1.4. Recently, Hassell and Lin [14] have obtained
the sharp interval for the boundedness of ∇H−1/2 on Lq based on a different method.
Compared with their work, we here deal with a class of potentials V with nonzero
positive parts V+.

The paper is organized as follows. In Section 2, we establish the off-diagonal
estimates for some families of operators related to the Schrödinger semigroup e−tH .
As an application, we prove that the Riesz transform ∇H−1/2 is of weak-type (1, 1)
when n = 1. Section 3 is devoted to the study of the Lq regularity of {

√
t∇e−tH}t>0

for q > 2. In Section 4, we will give the proofs of Theorem 1.1, Theorem 1.3 and
Corollary 1.4.

2. The off-diagonal estimates and their application

2.1. The off-diagonal estimates. Let us begin with the definitions of the Lp–Lq

estimates and the Lp–Lq off-diagonal estimates for a general family of operators.

Definition 2.1 (Lp–Lq off-diagonal estimates for a family of operators). We say that
the family of operators {St}t>0 satisfies the Lp–Lq off-diagonal estimates for some
p, q ∈ [1,∞) with p ≤ q if there exist constants C, c, β > 0 such that for all closed sets
E, F ⊂ Rn, t > 0 and f ∈ L2 ∩ Lp supported in E, the following estimate holds:

‖St f ‖Lq(F) ≤ Ctn/2q−n/2pe−d2(E,F)/ct‖ f ‖Lp(E), (2.1)

where, and in the sequel, d(E, F) denotes the semidistance induced on sets by the
Euclidean distance. In particular, if (2.1) holds for p = q, then we say that {St}t>0
satisfies the Lp off-diagonal estimates.

Definition 2.2 (Lp–Lq estimates for a family of operators). We say that the family of
operators {St}t>0 satisfies the Lp–Lq estimates for some p, q ∈ [1,∞) with p ≤ q if

‖St f ‖Lq ≤ Ctn/2q−n/2p‖ f ‖Lp ,
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where C > 0, independent of t, and f ∈ L2 ∩ Lp. Obviously, if {St}t>0 satisfies the
Lp–Lp estimate, {St}t>0 is bounded on Lp uniformly in t. In this case, we say that St is
bounded on Lp.

The following lemma is due to Auscher [3].

Lemma 2.3. If {Tt}t>0 satisfies Lp–Lq estimates and {St}t>0 satisfies Lq–Lr estimates,
then {StTt}t>0 satisfies Lp–Lr estimates.

The statement of the lemma remains valid with ‘estimates’ replaced by ‘off-
diagonal estimates’.

As we know, the off-diagonal estimates play an essential role in the studying
of the Riesz transforms associated to operators. For the Schrödinger operators we
considered, Assaad [1] and Assaad and Ouhabaz [2] have investigated the off-diagonal
estimates (see Theorem A); one can also see the results for second and higher order
elliptic operators in divergence form in [3] and [10], respectively.

Theorem A. Let H = −∆ + V, where V+ ∈ L1
loc(Rn) and V satisfies (A1).

(i) {e−tH}t>0, {tHe−tH}t>0 and {
√

t∇e−tH}t>0 satisfy the L2 off-diagonal estimates.
(ii) {e−tH}t>0, {tHe−tH}t>0 and {

√
t∇e−tH}t>0 satisfy the Lq–L2 estimates and the Lq–L2

off-diagonal estimates for all q ∈ (p′µ, 2], where pµ is given by (1.1).
(iii) {e−tH}t>0 and {tHe−tH}t>0 satisfy the L2–Lq estimates and the L2–Lq off-diagonal

estimates for all q ∈ [2, pµ).
(iv) {e−tH}t>0 are uniformly bounded on Lq for all q ∈ (p′µ, pµ).

For the family {tHe−tH}t>0, we build a bridge connecting the Lq boundedness, Lq–L2

estimates and the Lq–L2 off-diagonal estimates by the following proposition.

Proposition 2.4. Let q ∈ [1, 2) and H = −∆ + V, where V+ ∈ L1
loc(Rn) and V satisfies

(A1).

(i) If {tHe−tH}t>0 is bounded on Lq, then it satisfies the Lq–L2 estimates.
(ii) If {tHe−tH}t>0 satisfies the Lq–L2 estimates, then, for all r ∈ (q, 2), it satisfies the

Lr–L2 off-diagonal estimates.
(iii) If {tHe−tH}t>0 satisfies the Lq–L2 off-diagonal estimates, then it is bounded on

Lq.

Moreover, The statements (i), (ii) and (iii) still hold when 2 ≤ q <∞, replacing Lq–L2

by L2–Lq everywhere.

Proof. We first consider the statement (i). Recall the Gagliardo–Nirenberg inequality

‖ f ‖2L2 ≤ C‖∇ f ‖2αL2 ‖ f ‖
2β
Lq ,

where α + β = 1 and (1 + γq)α = γq with γq = n/q − n/2. On the other hand, it follows
from the analyticity of e−tH on L2 that e−tH f ∈ D(H2) for all f ∈ L2, which means that
He−tH f ∈ D(H) ⊂ W1,2. Thus,

‖He−tH f ‖2L2 ≤ C‖∇He−tH f ‖2αL2 ‖He−tH f ‖2βLq (2.2)
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holds for all t > 0 and f ∈ L2 ∩ Lq. By the condition (A1) and (1.2),

‖∇He−tH f ‖2L2 ≤ 1/(1 − µ) 〈HHe−tH f ,He−tH f 〉

= −1/(2 − 2µ)
d
dt
‖He−tH f ‖2L2 . (2.3)

Assume that f ∈ L2 ∩ Lq with ‖ f ‖Lq = 1. Then it follows from the Lq boundedness of
tHe−tH , (2.2) and (2.3) that

ϕ(t) ≤ −Cϕ′(t)αt−2β, (2.4)

where ϕ(t) = ‖He−tH f ‖2L2 . Notice that by (2.4),

d
dt

[ϕ(t)1−1/α] ≥ Ct2β/α.

Integrating between t and 2t, we find that ϕ(t) ≤ Ct−2−γq , which implies the statement
(i).

By interpolating the Lq–L2 estimates with the L2 off-diagonal estimates, we can
prove (ii) immediately.

The proof of (iii) can be concluded by invoking Auscher [3, Lemma 4.3]. Hence,
we finish the proof of Proposition 2.4. �

Now let us focus on the off-diagonal estimates for n = 1. It has been proved in
Assaad and Ouhabaz [2] that e−tH satisfies the Lp–L2 off-diagonal estimates for all
p ∈ (1, 2]. Here, we can obtain the L1–L2 off-diagonal estimates for e−tH , tHe−tH and
√

t∇e−tH , which will be useful for the boundedness of ∇H−1/2 on L1(R).

Proposition 2.5. Let H = −∆ + V, where V+ ∈ L1
loc(R) and V satisfies (A1).

(i) {e−tH}t>0, {tHe−tH}t>0 and {
√

t∇e−tH}t>0 satisfy the Lq–L2 estimates and the Lq–L2

off-diagonal estimates for all q ∈ [1, 2].
(ii) {e−tH}t>0 and {tHe−tH}t>0 satisfy the L2–Lq estimates and the L2–Lq off-diagonal

estimates for all q ∈ [2,∞].

Proof. We first prove (ii). Let λ > 0 and E(R) be a set consisting of all bounded
Lipschitz functions φ on R satisfying ‖∇φ‖L∞ ≤ 1. Let Hλφ := eλφHe−λφ be the operator
associated to

Qλφ( f , g) := Q(e−λφ f , eλφg), f , g ∈ D(Q),

where Q is defined by (1.2). Since V− satisfies (A1),

(λ2 + Qλφ)( f , f ) ≥ Q( f , f ) ≥ ‖∇ f ‖2L2 .

Thus, Hλφ generates an analytic semigroup on L2 and

‖(tHλφ)ke−tHλφ‖L2−L2 ≤ Cecλ2t
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for all k ∈ N0 = N ∪ {0}. Notice that for all f ∈ L2(R), ft := e−tHλφ f ∈ D(Hλφ) = D(H) ⊂
W1,2(R) and the embedding inequality

‖u‖Lq ≤ C‖(−∆)1/2u‖θL2‖u‖1−θL2

holds for all u ∈ W1,2(R), where θ = 1/2 − 1/q and 2 ≤ q ≤ ∞. Then, for 2 ≤ q ≤ ∞,

‖ ft‖Lq ≤ C‖(−∆)1/2 ft‖θL2‖ ft‖1−θL2 ≤ C(λ2〈 ft, ft〉 + 〈Hλφ ft, ft〉)θ/2‖ ft‖1−θL2

≤ Ct−(1/4−1/2q)ecλ2t‖ f ‖L2 ,

which means that

‖e−tHλφ f ‖Lq ≤ Ct−(1/4−1/2q)ecλ2t‖ f ‖L2 (2.5)

for all 2 ≤ q ≤ ∞.
Now, for any compact subsets E, F ⊂ R, and f ∈ L2 supported in F, we choose

φ(x) = d(x, F) in (2.5) to obtain that

‖e−tH f ‖Lq(E) ≤ Ct−(1/4−1/2q)e−λd(E,F)+cλ2t‖ f ‖L2(F),

which implies that

‖e−tH f ‖Lq(E) ≤ At−(1/4−1/2q)e−d2(E,F)/at‖ f ‖L2(F) (2.6)

for some constants A, a > 0. For arbitrary closed sets E, F ⊂ R, since E =
⋃∞
`=1 E` and

F =
⋃∞
`=1 E`, where both {E`}

∞
`=1 and {F`}

∞
`=1 are increasing monotone sets of sequences

and then by a limitation procedure, it is easy to see that (2.6) holds for an arbitrary
closed set. Hence, we prove that e−tH satisfies he L2–Lq off-diagonal estimates for
all q ∈ [2,∞]. The results for {tHe−tH}t>0 and {

√
t∇e−tH}t>0 can be obtained by the

following identities:
√

t∇e−tH =
√

t∇e−tH/2e−tH/2, tHe−tH = tHe−tH/2e−tH/2

and Lemma 2.3.
We turn to prove (i). In fact, by using duality and the above identities again, (i) can

be easily concluded. Hence, we finish the whole proof. �

Remark 2.6.

(i) It follows from the proof of Proposition 2.2 in [1] that all conclusions of
Proposition 2.4 also hold for the operator e−tH . Moreover, Proposition 2.4 is
still true for e−tL if L denotes the homogeneous elliptic operator in divergence
form with second and higher orders, respectively (see [3] and [10]).

(ii) When n = 1, by the Sobolev embedding theorem and duality, we can show that
e−tH satisfies the L1–L2 estimates, which, combined with the L2 off-diagonal
estimates of e−tH and [8, Theorem 4.2], would also imply the L1–L2 off-diagonal
estimates for e−tH .
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2.2. The weak-type (1, 1) estimate of the Riesz transform when n = 1. An
important application of the Lq–L2 off-diagonal estimates is to show the boundedness
of Riesz transforms ∇H−1/2 on Lq for q ≤ 2. In fact, Assaad [1] and Assaad and
Ouhabaz [2] proved the following theorem.

Theorem B. Let H = −∆ + V, where V+ ∈ L1
loc(Rn) and V satisfies (A1). Then ∇H−1/2

is bounded on Lq for all q ∈ (p′µ, 2], where pµ is defined by (1.1).

It was also mentioned in [1] that the lower bound p′µ in Theorem B is sharp; it is
of interest to concern the boundedness of ∇H−1/2 on Lp′µ . When n = 1, by using the
L1–L2 off-diagonal estimates for e−tH (see Proposition 2.5), we can prove that ∇H−1/2

is of weak-type (1, 1). However, it is not clear to us what would happen on Lp′µ when
n ≥ 2.

Theorem 2.7. Let n = 1 and H = −∆ + V, where V+ ∈ L1
loc(R) and V satisfies (A1).

Then ∇H−1/2 is of weak-type (1, 1).

Proof. By Proposition 2.5, we know that the families of operators {
√

t∇e−tH}t>0 and
{e−tH}t>0 satisfy L1–L2 estimates and L1–L2 off-diagonal estimates when n = 1. Thus,
Theorem 2.7 follows trivially from the same procedure which was involved in the
proof of [1, Theorem 3.2]. �

3. The Lp-regularity of
√

t∇e−tH

Before studying the family of operators {
√

t∇e−tH}t>0, we give a quick comment
on the regularity of the semigroup e−tH . Denote by Σµ the open sector {z ∈ C\{0} :
| arg z| < µ} for µ ∈ [0, π) and by H∞(Σν) the space of all bounded holomorphic
functions on Σµ. Since H+ is a nonnegative self-adjoint operator associated to Q+

defined by (1.3), it is well known that its heat kernel K(t, x, y) is nonnegative and
satisfies the Gaussian upper bound (see [18]). That is,

0 ≤ K(t, x, y) ≤ (4πt)−n/2e−|x−y|2/4t.

Moreover, we have the following lemma (see [6, 15–18] and so on).

Lemma 3.1. Let H+ be the nonnegative self-adjoint operator associated to Q+ defined
by (1.3). Then we have the following statements.

(i) The positive contractive semigroup e−tH+ on L2 has an analytic extension
{e−zH+}z∈Σπ/2 .

(ii) e−tH+ extends to an analytic semigroup on Lq for all 1 ≤ q < ∞. Let H+,q be its
generator; then H+,q is densely defined and closed on Lq with domain Dq(H+,q).
Furthermore, the sector of analyticity and the spectrum of the generator H+,q are
q-independent for 1 ≤ q <∞.

(iii) For all ν ∈ [0, π) and 1 < q <∞, H+ has an H∞(Σν) calculus on Lq. That is, there
exists a constant cν,q > 0 such that for all F ∈ H∞(Σν),

‖F(H+)‖Lq−Lq ≤ cν,q‖F‖L∞(Σν). (3.1)
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Remark 3.2. By (ii) of Lemma 3.1, it is easy to see that e−tH+,q are consistent for all
q ∈ [1,∞) on S (Rn) (Schwartz function spaces). Thus, for the sake of convenience,
we denote H+ and e−tH+ for all q ∈ [1,∞).

In the sequel, we denote by q∗ = nq/(n − q) the Sobolev embedding index of q for
q ∈ (1, n).

Lemma 3.3. Let n ≥ 3 and H = −∆ + V, where V satisfies (A1) for some µ ∈ (0, 1).
Assume that the family {

√
t∇e−tH}t>0 is bounded on Lp for some 2 ≤ p < n. Then

{e−tH}t>0 is bounded on Lq for all 2 ≤ q < p∗.

Proof. For given 2 ≤ p < n as in the assumption, interpolating by the Riesz–Thorin
theorem the Lp and L2 boundedness of

√
t∇e−tH , we have that

√
t∇e−tH is bounded on

Lr for all 2 ≤ r ≤ p; it then follows from Sobolev’s embedding theorem that

‖e−tH‖Lr−Lr∗ ≤ Ct−1/2, 2 ≤ r ≤ p. (3.2)

Noticing that there exist constants n0 ∈ N and 2 ≤ p0 < pµ such that p∗ = np0/
(n − n0 p0) < ∞ and e−tH satisfies L2–Lp0 estimates (see Theorem A), let pk = (pk−1)∗

(k = 1, 2, . . . , n0); by (3.2),

‖e−(n0+1)tH‖L2−Lp∗ ≤ ‖e−tH‖L2−Lp0 ‖e−tH‖Lp0−Lp1 · · · ‖e−tH‖Lpn0−1−Lpn0

≤ Ct−(n/4−n/2p∗),

which, combined with (i) of Remark 2.6, can finish the proof. �

Before proving the main theorem of this paper, we introduce the Sobolev constant
and the weak-type Hölder constant in the following ways. Let sp (1 ≤ p < n) be the
constant such that

‖ f ‖Lnp/n−p ≤ sp‖∇ f ‖Lp .

Let hp,q,r be the constant such that the weak-type Hölder inequality (see [1,
Lemma 4.1])

‖ f g‖Lp ≤ hp,q,r‖ f ‖Lr,∞‖g‖Lq (3.3)

holds, where f ∈ Lr,∞, g ∈ Lq and 1/p = 1/q + 1/r for all r, p, q ∈ (1,∞).

Remark 3.4. Notice that if V+ ∈ L1
loc(Rn) and V− satisfies the assumption (1.4), then,

by (3.3), we have for f ∈ D(Q) and n ≥ 3,∫
Rn

V−(x)| f (x)|2 dx ≤ ‖V1/2
− f ‖L2‖V1/2

− f ‖L2 ≤ h2‖V1/2
− ‖

2
Ln,∞‖ f ‖2L2n/n−2

≤ h2s2
2‖V−‖Ln/2,∞‖∇ f ‖2L2 ≤ h2s2

2δp0Q+( f , f ), (3.4)

where h = h2,2n/n−2,n in (3.3). Equation (3.4) implies that V satisfies (A1) with µ <
µ̃ := δp0 h2s2

2 ∈ (0, 1) if δp0 < (hs2)−2. Thus, the constant µ in condition (A1) can be
understood as the best constant such that (A1) holds.
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Now we study the Lp boundedness of {
√

t∇e−tH}t>0 for some p > 2. Note that if
the potential V satisfies the condition (A1) only, the possible interval for Lp (p > 2)
boundedness of {

√
t∇e−tH}t>0 is [2, npµ/(n − pµ)) (n ≥ 3), which is not confirmed yet.

However, if extra conditions (A2) and (A3) are satisfied, we can prove the following
result.

Proposition 3.5. Let n ≥ 3 and H = −∆ + V with V ∈ L1
loc(Rn). Assume that (A1) holds

for some µ ∈ (0, 1) and (A2) and (A3) hold for some 2 < p0 < n. Then there exists a
constant δp0 > 0 such that when

‖V−‖Ln/2,∞ ≤ δp0 ,

we have that
√

t∇e−tH is bounded on Lp0 (Rn).

Proof. Let H+ be defined as in Lemma 3.1. We first show that both V1/2
− (I + tH+)−1/2

and (I + tH+)−1/2V1/2
− are bounded operators on Lp0 . To this end, notice that for all

t > 0, let Ft(z) =
√

tz/1 + tz with<z ≥ 0 and ν = π/2; by (iii) of Lemma 3.1, we have
Fz ∈ H∞(Σν) and

‖Fz(H+)‖Lp0−Lp0 = ‖H1/2
+ (t−1 + H+)−1/2‖Lp0−Lp0 ≤ cp0‖Fz‖L∞ ≤ cp0 , (3.5)

where cp0 = cπ/2,p0 in (3.1). Then it follows from (3.5) and the weak-type Hölder
inequality that

‖V1/2
− (t−1 + H+)−1/2‖Lp0−Lp0 ≤ ‖V1/2

− H−1/2
+ ‖Lp0−Lp0 ‖H1/2

+ (t−1 + H+)−1/2‖Lp0−Lp0

≤ cp0‖V
1/2
− H−1/2

+ ‖Lp0−Lp0

≤ cp0 hp0‖V
1/2
− ‖Ln/2,∞‖H−1/2

+ ‖Lp0−Lnp0/n−p0

≤ cp0 hp0 sp0δ
1/2
p0
‖∇H−1/2

+ ‖Lp−Lp ≤ Cp0δ
1/2
p0
,

where αp0 := ‖∇H−1/2
+ ‖Lp0−Lp0 , hp0 = hp0,np0/n−p0,n and Cp0 = cp0 hp0 sp0αp0 . Let 1/p0 +

1/p′0 = 1; by (i) of Remark 1.2, we have that ∇H−1/2
+ is bounded on Lp′0 . Then the same

procedure above can be applied to obtain

‖V1/2
− (t−1 + H+)−1/2‖Lp′0−Lp′0

≤ ‖V1/2
− H−1/2

+ ‖Lp′0−Lp′0
‖H1/2

+ (t−1 + H+)−1/2‖Lp′0−Lp′0

≤Cp′0δ
1/2
p0

and

‖V1/2
− (I + tH+)−1/2‖Lp′0−Lp′0

≤ ‖V1/2
− H−1/2

+ ‖Lp′0−Lp′0
‖H1/2

+ (I + tH+)−1/2‖Lp′0−Lp′0

≤Cp′0δ
1/2
p0

t−1/2,

where αp′0 := ‖∇H−1/2
+ ‖Lp′0−Lp′0

, hp′0 = hp′0,np′0/n−p′0,n and Cp′0 = cp′0 hp′0 sp′0αp′0 . By duality,

‖(I + tH+)−1/2V1/2
− ‖Lp0−Lp0 = ‖V1/2

− (I + tH+)−1/2‖Lp′0−Lp′0
≤ Cp′0δ

1/2
p0

t−1/2
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and

‖(t−1 + H+)−1/2V1/2
− ‖Lp0−Lp0 = ‖V1/2

− (t−1 + H+)−1/2‖Lp′0−Lp′0
≤ Cp′0δ

1/2
p0
.

We denote A = I − V−(t−1 + H+)−1. It is easy to see that the operator A is well
defined on Lp0 by (A3). Let

Ik = (I + tH+)−1/2(V−(t−1 + H+)−1)k

and Jk = IkA. Notice that for each k,

Ik = (I + tH+)−1/2(V−(t−1 + H+)−1) · · · (V−(t−1 + H+)−1)
= (I + tH+)−1/2V1/2

− V1/2
− (t−1 + H+)−1/2 · · ·

· · · ((t−1 + H+)−1/2V1/2
− V1/2

− (t−1 + H+)−1/2) · · ·
· · · ((t−1 + H+)−1/2V1/2

− V1/2
− (t−1 + H+)−1/2)(t−1 + H+)−1/2.

Thus,

‖Ik‖Lp0−Lp0 ≤ ‖(I + tH+)−1/2V1/2
− ‖Lp0−Lp0 ‖V1/2

− (t−1 + H+)−1/2‖kLp0−Lp0

× ‖(t−1 + H+)−1/2V1/2
− ‖

k−1
Lp0−Lp0 ‖(t

−1 + H+)−1/2‖Lp0−Lp0 . (3.6)

Similarly to (3.5),

‖(t−1 + H+)−1/2‖Lp0−Lp0 ≤ cpt1/2. (3.7)

Thus, it follows from (3.6) and (3.7) that

‖Ik‖Lp0−Lp0 ≤ cp0 (Cp′0Cp0δp0 )k, (3.8)

which means that
∑`

k=0 Ik converges to an operator T on Lp0 if we choose δp0 <
(Cp′0Cp0 )−1. That is, T =

∑∞
k=0 Ik in the sense of Lp0 . Thus,∥∥∥∥∥T A f −

∑̀
k=0

Jk f
∥∥∥∥∥

Lp0
=

∥∥∥∥∥(T − ∑̀
k=0

Ik

)
A f

∥∥∥∥∥
Lp0
≤

∥∥∥∥∥T −
∑̀
k=0

Ik

∥∥∥∥∥
Lp0−Lp0

‖A f ‖Lp0

for all f ∈ Lp0 , which implies that T A f = lim`→∞
∑`

k=0 Jk f . On the other hand, for
every f ∈ Lp0 , it follows from (3.8) that∥∥∥∥∥∑̀

k=0

Jk f − (I + tH+)−1/2 f
∥∥∥∥∥

Lp0
= ‖I`+1 f ‖Lp0

≤ cp0 (Cp′0Cp0δp0 )`+1‖ f ‖Lp0 . (3.9)

Then, by choosing δp0 < (Cp′0Cp0 )−1 in (3.9),

(I + tH+)−1/2 f = lim
`→∞

∑̀
k=0

Jk f
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in the sense of Lp0 , which leads to the fact that (I + tH+)−1/2 f = T A f for all f ∈ Lp0 .
Thus, we can write

∇(I + tH)−1 = ∇(I + tH+ − tV−)−1

= ∇(I + tH+)−1/2(I + tH+)−1/2(I − V−(t−1 + H+)−1)−1

= ∇(I + tH+)−1/2T A(I − V−(t−1 + H+)−1)−1

= ∇(I + tH+)−1/2
∞∑

k=0

Ik. (3.10)

It follows from (3.5) and (A2) that

‖∇(I + tH+)−1/2‖Lp0−Lp0 ≤ ‖∇H−1/2
+ ‖Lp0−Lp0 ‖H1/2

+ (I + tH+)−1/2‖Lp0−Lp0

≤ cp0αp0 t−1/2. (3.11)

Thus, by (3.10), (3.11) and choosing δp0 < (Cp′0Cp0 )−1 in (3.8),

‖∇(I + tH)−1‖Lp0−Lp0 ≤ Ct−1/2. (3.12)

If pµ > p0, it follows from (3.12), Theorem A and Proposition 2.4 that

‖∇e−tH‖Lp0−Lp0 ≤ ‖∇(I + tH)−1‖Lp0−Lp0 ‖(I + tH)e−tH‖Lp0−Lp0 ≤ Ct−1/2.

However, when pµ < p0, we need a more sophisticated discussion. First of all, it
follows from the fact that ∇H−1/2 is bounded on L2 and the functional calculi of H on
L2 that

‖∇(I + tH)−1‖L2−L2 ≤ ‖∇H−1/2‖L2−L2‖H1/2(I + tH)−1‖L2−L2

≤Ct−1/2. (3.13)

By interpolating (3.12) with (3.13),

‖∇(I + tH)−1‖Lr−Lr ≤ Ct−1/2, 2 ≤ r ≤ p0. (3.14)

Notice that both e−tH and tHe−tH are bounded on Lr for all 2 ≤ r < pµ (see Theorem A);
then, for 2 ≤ r < pµ < p0,

‖∇e−tH‖Lr−Lr ≤ ‖∇(I + tH)−1‖Lr−Lr‖(I + tH)e−tH‖Lr−Lr ≤ Ct−1/2,

which, combined with Theorem A and Lemma 3.3, implies that e−tH is bounded on
Lr for all 2 ≤ r < p∗µ. Moreover, by (i) of Remark 2.6, Proposition 2.4 and the identity
tHe−tH = e−tH/2tHe−tH/2, we have that tHe−tH is bounded on Lr for all 2 ≤ r < p∗µ.
Therefore, for all 2 ≤ r < p∗µ (we assume that p∗µ < p0, otherwise the proof would be
concluded), it follows from (3.14) that

‖∇e−tH‖Lr−Lr ≤ ‖∇(I + tH)−1‖Lr−Lr‖(I + tH)e−tH‖Lr−Lr ≤ Ct−1/2.

Now let r0 ∈ (2, pµ) be chosen later and rk = r∗k−1 = nrk−1/(n − rk−1); we can find a
suitable r0 ∈ (2, pµ) and a integer k0 such that p0 = rk0 < n. Then, by applying the
same argument as above, we obtain that tHe−tH and e−tH are bounded on Lr for all
2 ≤ r < p∗0, which, combined with (3.14), again implies that

√
t∇e−tH is bounded on

Lp0 . Hence, we finish the proof. �
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Remark 3.6. It follows from the proof above that the constant δp0 can be expressed
explicitly by δp0 < (Cp′0Cp0 )−1, where

Cp′0 = cp′0 hp′0,np′0/n−p′0,nsp′0αp′0 and Cp0 = cp0 hp0,np0/n−p0,nsp0αp0 .

Moreover, Cp (p ∈ (p′0, p0)) can be obtained by interpolating all the constants in Cp′0
and Cp0 .

4. The Lq boundedness of the Riesz transform for q > 2

4.1. The proof of Theorem 1.1. Let H = −∆ + V satisfy (A1)–(A3) and V− ∈ Ln/2,∞;
we will study the Riesz transform ∇H−1/2 on Lq for q > 2. To do this, we first introduce
the following theorem which deals with general Calderón–Zygmund operators. For a
ball B ⊂ Rn and λ > 0, we denote by λ(B) the ball with the same center and radius λ
times that of B and set

S1(B) = 4B, S j(B) = 2 j+1B \ 2 jB for j ≥ 2.

Denote byM the Hardy–Littlewood maximal operator

M( f )(x) = sup
x∈B

1
|B|

∫
B
| f (y)| dy,

where B ranges over all open balls (or cubes) containing x.

Theorem C (Auscher–Coulhon–Duong–Hofmann). Let q0 ∈ [2,∞). Suppose that T is
a sublinear operator acting on L2(Rn) and {Ar}r>0 is a family of linear operators acting
on L2(Rn). Also, assume that( 1

|B|

∫
B
|T (I − Ar(B)) f (x)|2 dx

)1/2
≤ C(M(| f |2))1/2(y) (4.1)

and ( 1
|B|

∫
B
|T Ar(B) f (x)|q0 dx

)1/q0

≤ C(M(|T f |2))1/2(y) (4.2)

for all f ∈ L2, all balls B and all y ∈ B, where r(B) is the radius of B. Then, if 2 < q < q0
and T f ∈ Lq as f ∈ Lq, T is of strong type (q, q). That is, ‖T f ‖Lq ≤ c‖ f ‖Lq for all
f ∈ L2 ∩ Lq, where c depends only on n, q, q0 and C.

Lemma 4.1. Assume that {
√

t∇e−tH}t>0 satisfy L2 off-diagonal estimates. Then there
exists a constant C > 0 such that for all balls B with radius r > 0, f ∈ L2(Rn) with
supp f ∈ S j(B) and j ≥ 2,

‖∇H−1/2(I − e−r2H)M f ‖L2(B) ≤ C2−2M j‖ f ‖L2(S j(B)).

Proof. The proof for the operator ∇H−1/2(I − e−r2H)M is exactly the same as the one
with p = 2 in Auscher [3, Lemma 5.4], where the only fact involved in the proof is
that {

√
t∇e−tH}t>0 satisfy Lp–L2 off-diagonal estimates. One can also see the proof in

Assaad [1, Theorem 3.1] and Assaad and Ouhabaz [2, Theorem 3.6]. �

https://doi.org/10.1017/S1446788716000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000124


304 Q. Deng, Y. Ding and X. Yao [15]

Now we investigate the L2–Lq (q ≥ 2) off-diagonal estimates of the family
{
√

t∇e−tH}t>0, which essentially connect the Lq boundedness of the Riesz transform
for q > 2.

Proposition 4.2. Let p ∈ (2,∞) and n ≥ 3. Assume that H = −∆ + V, where V+ ∈

L1
loc(Rn) and V satisfies (A1) for some µ ∈ (0, 1). Then the following statements hold.

(i) If {
√

t∇e−tH}t>0 is bounded on Lp, then it satisfies the L2–Lp estimates.
(ii) If {

√
t∇e−tH}t>0 satisfies the L2–Lp estimates, then it satisfies the L2–Lq off-

diagonal estimates for 2 < q < p.
(iii) If {

√
t∇e−tH}t>0 satisfies the L2–Lp off-diagonal estimates, then it is bounded on

Lp.

Proof. The proof is based on the idea described in Auscher [3, Proposition 3.9]; we
omit the details. �

Proposition 4.3. Let H = −∆ + V, where V+ ∈ L1
loc(Rn) and V satisfies (A1) for some

µ ∈ (0, 1).

(i) If ∇H−1/2 is bounded on Lp for 2 < p <∞, then {
√

t∇e−tH}t>0 satisfies the L2–Lq

off-diagonal estimates for all 2 < q < p.
(ii) If {

√
t∇e−tH}t>0 satisfies the L2–Lp off-diagonal estimates for 2 < p < ∞ and

n ≥ 3, then ∇H−1/2 is bounded on Lq with 2 < q < p.

Proof. We first prove (i). By the assumptions, it is easy to see that ∇H−1/2 is bounded
on Lr for all 2 ≤ r ≤ p, which, combined with Sobolev’s embedding theorem, implies
that

‖H−1/2 f ‖Lr∗ ≤ C‖∇H−1/2 f ‖Lr ≤ C‖ f ‖Lr , 2 ≤ r ≤ p, r < n. (4.3)

We choose constants k0 ∈ N and 2 ≤ r0 < pµ such that p = nr0/(n − k0r0) and let
rk = (rk−1)∗ for k = 1, 2, . . . , k0; it follows from (4.3) that

H−k0/2 : Lr0 → Lrk0 . (4.4)

Now write

e−tH = H−k0/2e−tH/2(Hk0/2e−tH/2). (4.5)

Notice that Hk0/2e−tH/2 is bounded on L2 with bound Ct−k0/2 and e−tH/2 satisfies the
L2–Lr0 estimates (see Theorem A); then, by (4.4) and (4.5), we obtain that e−tH satisfies
the L2–Lp estimates. Write

∇e−tH = ∇H−1/2e−tH/2(H1/2e−tH/2);

it follows that {
√

t∇e−tH}t>0 satisfies the L2–Lp estimates. By applying (ii) of
Proposition 4.2, we conclude that {

√
t∇e−tH}t>0 satisfies the L2–Lq off-diagonal

estimates for all 2 < q < p. Hence, we finish the proof of (i).
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We turn to prove (ii). For given 2 < p < ∞, let B be an open ball and r = r(B) its
radius and Ar = I − (I − e−r2H)M , where M ∈ Nwith M > n/4. By applying Theorem C,
we need to show that (4.1) and (4.2) hold for T = ∇H−1/2 and q0, where q0 satisfies
2 < q < q0 < p. We will finish the proof in the following two steps.

Step 1. Note that M > n/4; to get (4.1), it suffices to show that for f ∈ Lq0 (Rn) ∩
L2(Rn),

‖∇H−1/2(I − e−r2H)M f ‖L2(B) ≤ C|B|1/2
∑
j≥1

g( j)
( 1
|2 j+1B|

∫
2 j+1B
| f |2 dx

)1/2
(4.6)

with g( j) = 2 j(n/2−2M). Let S j(B) ( j ≥ 1) be defined as in Theorem C; by Minkowski’s
inequality,

‖∇H−1/2(I − e−r2H)M f ‖L2(B) ≤
∑
j≥1

‖∇H−1/2(I − e−r2H)M(χS j(B) f )‖L2(B).

For j = 1, by the L2 boundedness of ∇H−1/2 and e−tH ,

‖∇H−1/2(I − e−r2H)M(χS1(B) f )‖L2(B) ≤ C|4B|1/2
( 1
|4B|

∫
4B
| f |2 dx

)1/2
.

When j ≥ 2, since H is the operator defined in Theorem 1.1, it follows that
√

t∇e−tH

satisfies the L2 off-diagonal estimate. Thus, Lemma 4.1 can be applied to get

‖∇H−1/2(I − e−r2H)M(χS j(B) f )‖L2(B) ≤ C2−2M j‖ f ‖L2(S j(B)),

which implies (4.6) immediately.

Step 2. Notice that Ar =
∑M
`=1 CM,`e−`r

2H . We first prove that( 1
|B|

∫
B
|∇e−`r

2H f (x)|q0 dx
)1/q0

≤ C
∑
j≥1

g( j)
( 1
|2 j+1B|

∫
2 j+1B
|∇ f (x)|2 dx

)1/2
(4.7)

for all ` = 1, . . . , M with
∑

g( j) < ∞. Let S j(B) ( j ≥ 1) be defined as in Theorem C.
For j = 1, by Propositions 3.5 and 4.2, we have that

√
t∇e−tH also satisfies the L2–Lp

estimate. Thus,( 1
|B|

∫
B

∣∣∣∇e−`r
2H(χS1(B) f )(x)

∣∣∣q0 dx
)1/q0

≤ C|B|−1/q0 r−1+(n/q0−n/2)‖ f ‖L2(4B).

When j ≥ 2, by Propositions 3.5 and 4.2 again, we have the L2–Lp off-diagonal
estimate for

√
t∇e−tH , which leads to( 1

|B|

∫
B

∣∣∣∇e−`r
2H(χS j(B) f )(x)

∣∣∣q0 dx
)1/q0

≤ C|B|−1/q0 r−1+(n/q0−n/2)e−22 j
‖ f ‖L2(S j(B)).
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On the other hand, for every j ≥ 1, by Hardy’s inequality, we have for n > 2,(∫
S j(B)
| f (x)|2 dx

)1/2
≤ 2 jr

( 1
(2 jr)2

∫
S j(B)
| f (x)|2 dx

)1/2

≤ C2 jr
(∫
Rn
|χS j(B) f (x)|2/|x|2 dx

)1/2

≤ C2 jr‖∇ f ‖L2(S j(B)).

Thus,( 1
|B|

∫
B

∣∣∣∇e−`r
2H f

∣∣∣q0 dx
)1/q0

≤ C
∑
j≥1

2−2M j+ j+N j/2
( 1
|2 j+1B|

∫
2 j+1B
|∇ f (x)|2 dx

)1/2
,

which implies (4.7) by choosing large enough M. Now this applied to f = H−1/2g
gives us (4.2). �

The proof of Theorem 1.1. The proof for q ∈ (p′µ, 2] is essentially the same as the one
in [2] (see also [1, 3]), where the Lp–L2 off-diagonal estimates for {

√
t∇e−tH}t>0 and

{e−tH}t>0 are involved. Thus, we consider the case for 2 < q < p0 only. It follows from
Proposition 3.5 that the family {

√
t∇e−tH}t>0 is bounded on Lp0 for the given p0 in

Theorem 1.1, which, combined with Proposition 4.2, means that {
√

t∇e−tH}t>0 satisfies
the L2 − Lr off-diagonal estimates for all 2 < r < p0. Thus, we can finish the proof of
Theorem 1.1 by applying Proposition 4.3.

4.2. Applications. In this section, we will give the proofs of Theorem 1.3 and
Corollary 1.4, which are actually important applications of Theorem 1.1. First of all,
we consider Theorem 1.3. Let us begin with the following lemma.

Lemma 4.4. Let n > 4 and H = −∆ + V+ − V−, where V+ ∈ Bθ for θ ≥ n/2 and V− ∈
Ln/2,∞. Then the condition (A3) holds for all 2 < p0 < n/2.

Proof. It was proved in Shen [22, Theorem 0.3] that if V+ ∈ Bθ with θ ≥ n/2, then, for
all 1 < p ≤ θ,

‖∆(−∆ + V+)−1 f ‖Lp−Lp ≤ Cp, (4.8)

where the constant Cp depends on n, p and the constant in the reverse Hölder inequality
of V+. Then it follows from (1.6) and (4.8) that for all 1 < p < n/2,

‖V− f ‖Lp ≤ C‖V−‖Ln/2,∞‖∆ f ‖Lp ≤C‖V−‖Ln/2,∞‖∆(−∆ + V+)−1(−∆ + V+) f ‖Lp

≤C‖(−∆ + V+) f ‖Lp ,

which, combined with (1.5), implies that (A3) holds for all 2 < p0 < n/2. �
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The proof of Theorem 1.3. For the Schrödinger operator H defined as in Theorem 1.3,
by Remark 3.4, it is easy to see that there exists µ ∈ (0, 1) such that (A1) holds if we
choose suitable δp0 . Moreover, by the results in [4], we know that ∇H−1/2

+ is bounded
on Lp for all 1 < p < nθ/(n − θ) + ε for some ε > 0 as n/2 ≤ θ < n and for 1 < p <∞
as θ ≥ n (see also Table 1 above), which means that (A2) holds for all 2 < p0 < n/2.
Thus, by Lemma 4.4 and Theorem 1.1, ∇H−1/2 is bounded on Lq for all q ∈ (p′µ, n/2)
if we choose δp0 in (1.4) appropriately.

It remains to show that the constant δp0 is bounded uniformly for all 2 < p0 < n/2.
In fact, it follows from the proof of Proposition 3.5 that δp0 < (Cp′0Cp0 )−1, where

Cp′0 = cp′0 hp′0,np′0/n−p′0,nsp′0αp′0 and Cp0 = cp0 hp0,np0/n−p0,nsp0αp0 .

On the other hand, it is easy to see that C2 and Cn/2 are finite. Then, by Remark 3.6,
we have that δp0 is uniformly bounded for all 2 < p0 < n/2, which finishes the proof.

The proof of Corollary 1.4. If V+ ∈ Bθ and V− = γ(n − 2)2|x|−2/4, then, by Hardy’s
inequality (see [9]),

(n − 2)2/4
∫
Rn
|x|−2| f (x)|2 dx ≤

∫
Rn
|∇ f (x)|2 dx ≤ Q+( f , f ),

which means that the potential V satisfies (A1) for µ = γ ∈ (0, 1). Then, by using
Theorem 1.3, there exists a constant δ̄ > 0 independent of p0 such that when

‖V−‖Ln/2,∞ = γ(n − 2)2/4
∥∥∥|x|−2

∥∥∥
Ln/2,∞ = γ(n − 2)2dn/2

n /4 < δ̄,

that is, γ < δ := 4d−2/n
n δ̄/(n − 2)2, where dn denotes the volume of the unit ball in Rn,

the Riesz transform ∇H−1/2 is bounded on Lq for all q ∈ (p′γ, n/2).
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