Canad. Math. Bull. Vol. **56** (3), 2013 pp. 534–543 http://dx.doi.org/10.4153/CMB-2011-184-7 © Canadian Mathematical Society 2012

A Cohomological Property of π -invariant Elements

M. Filali and M. Sangani Monfared

Abstract. Let A be a Banach algebra and let $\pi: A \to \mathscr{L}(H)$ be a continuous representation of A on a separable Hilbert space H with dim $H = \mathfrak{m}$. Let π_{ij} be the coordinate functions of π with respect to an orthonormal basis and suppose that for each $1 \leq j \leq \mathfrak{m}, C_j = \sum_{i=1}^{\mathfrak{m}} ||\pi_{ij}||_{A^*} < \infty$ and $\sup_j C_j < \infty$. Under these conditions, we call an element $\overline{\Phi} \in l^{\infty}(\mathfrak{m}, A^{**})$ left π -invariant if $a \cdot \overline{\Phi} = {}^t \pi(a)\overline{\Phi}$ for all $a \in A$. In this paper we prove a link between the existence of left π -invariant elements and the vanishing of certain Hochschild cohomology groups of A. Our results extend an earlier result by Lau on F-algebras and recent results of Kaniuth, Lau, Pym, and and the second author in the special case where $\pi: A \to \mathbf{C}$ is a non-zero character on A.

1 Introduction

Let *A* be a Banach algebra and let A^{**} be its double dual Banach algebra equipped with the left Arens product \Box (*cf.* Arens [1] or Dales [3]). For continuous finitedimensional representations $\pi: A \to M_n(\mathbf{C})$, the (left) π -invariant elements of $l^{\infty}(n, A^{**})$ were recently studied by the authors in connection with the characterization of finite-dimensional left ideals in the dual of left introverted subspaces of A^* (Filali–Monfared [5]). In this paper we extend the concept of π -invariance to continuous representations on Hilbert spaces, and we prove an interesting link between the existence of π -invariant elements and the vanishing of certain Hochschild cohomology groups of *A*. In our proofs we use a modified version of a technique first employed by Lau in his study of *F*-algebras [7]. We remark that our results generalize an earlier result by Lau on *F*-algebras [7, Theorem 4.1] and recent results of Kaniuth– Lau–Pym [6, Theorem 1.1], and of the second author [9, Theorem 2.3], which were obtained for the special case where $\pi: A \to \mathbf{C}$ is a non-zero character on *A*.

Throughout this paper, we assume that *A* is a Banach algebra and *H* is a separable Hilbert space and dim $H = \mathfrak{m}$ $(1 \leq \mathfrak{m} \leq \aleph_0)$. We shall assume that *H* is equipped with an orthonormal basis $(e_i)_{1\leq i\leq \mathfrak{m}}$, and, unless otherwise stated, $\mathscr{L}(H)$, the space of all continuous linear operators on *H*, is equipped with its weak operator topology (here and elsewhere in the paper, if $\mathfrak{m} = \aleph_0$, then in an equality such as $1 \leq i \leq \mathfrak{m}$, we shall always assume that $i < \mathfrak{m}$). If $\pi : A \to \mathscr{L}(H)$ is a continuous representation, for each $1 \leq i, j \leq \mathfrak{m}$, we define the coordinate function $\pi_{ij} \in A^*$ by $\pi_{ij}(a) =$ $(\pi(a)e_j|e_i), (a \in A)$. We denote the canonical extension of π to A^{**} by $\tilde{\pi}$, so that $\tilde{\pi}$ is a *w*^{*}-continuous representation of A^{**} on *H* and for every $\Phi \in A^{**}, (\tilde{\pi}(\Phi)e_j|e_i) =$ $\langle \Phi, \pi_{ij} \rangle$ (cf. Filali–Monfared [5]). The projection map on the (i, j)-th coordinate is defined by $\operatorname{pr}_{ij} : \mathscr{L}(H) \to \mathbf{C}, T \mapsto (Te_i|e_i)$.

Received by the editors March 27, 2011; revised June 7, 2011.

Published electronically February 3, 2012.

The second author was partially supported by NSERC

AMS subject classification: 46H15, 46H25, 13N15.

Keywords: Banach algebras, π -invariance, derivations, representations.

We recall that if *E* is a Banach left [right] *A*-module, then its dual space E^* is a Banach right [left] *A*-module in a canonical way:

$$\langle \lambda \cdot a, x \rangle = \langle \lambda, a \cdot x \rangle, \quad \left[\langle a \cdot \lambda, x \rangle = \langle \lambda, x \cdot a \rangle \right] \quad (a \in A, x \in E, \lambda \in E^*).$$

In particular, it follows that both A^* and A^{**} have canonical Banach A-bimodule structures induced from the multiplication of A.

2 π -invariance and Derivations

We use the following lemma repeatedly in the rest of this paper.

Lemma 2.1 If $\pi: A \to \mathscr{L}(H)$ is a continuous representation, then for all $1 \le i, j \le m$, and all $a \in A$, we have

(2.1)
$$a \cdot \pi_{ij} = w \cdot \sum_{k=1}^{m} \pi_{ik} \pi_{kj}(a), \quad \pi_{ij} \cdot a = w \cdot \sum_{k=1}^{m} \pi_{ik}(a) \pi_{kj}$$

where w- \sum means the convergence is in the weak topology $\sigma(A^*, A^{**})$.

Proof Let $\Phi \in A^{**}$, then

$$\begin{split} \langle \Phi, a \cdot \pi_{ij} \rangle &= \langle \Phi \cdot a, \pi_{ij} \rangle = \left(\widetilde{\pi}(\Phi \cdot a) e_j | e_i \right) = \left(\widetilde{\pi}(\Phi) \pi(a) e_j | e_i \right) \\ &= \left(\widetilde{\pi}(\Phi) \left(\sum_{k=1}^{\mathfrak{m}} (\pi(a) e_j | e_k) e_k \right) | e_i \right) \\ &= \sum_{k=1}^{\mathfrak{m}} (\pi(a) e_j | e_k) \left(\widetilde{\pi}(\Phi) e_k | e_i \right) \\ &= \sum_{k=1}^{\mathfrak{m}} \pi_{kj}(a) \langle \Phi, \pi_{ik} \rangle. \end{split}$$

The second statement is proved similarly.

For our purpose of introducing well-defined Banach A-module operations using a continuous representation $\pi: A \to \mathcal{L}(H)$, we need to assume the following finiteness conditions on π :

(2.2)
$$C_j = \sum_{i=1}^m \|\pi_{ij}\|_{A^*} < \infty, \quad C = \sup_{1 \le j \le m} C_j < \infty.$$

Of course continuous finite-dimensional representations automatically satisfy the conditions in (2.2). However, one can easily find examples of infinite-dimensional representations satisfying these conditions. For example, if $(\pi_n)_{n=1}^{\infty}$ is a sequence of finite-dimensional representations of *A* such that for some M, N > 0 we have $\|\pi_n\| \leq M$ and $\dim(\pi_n) \leq N$ for all *n*, then the direct sum representation $\bigoplus_{n=1}^{\infty} \pi_n$

satisfies the conditions in (2.2) (with $C \le MN$). If π satisfies the conditions in (2.2) and if *E* is an arbitrary Banach right *A*-module, then we can turn the Banach space $l^{1}(\mathfrak{m}, E)$ into a Banach *A*-bimodule with the following operations in which $a \in A$ and $\overline{x} \in l^{1}(\mathfrak{m}, E)$:

(2.3)
$$(a \cdot \overline{x})(i) = \left(\pi(a)\overline{x}\right)(i) = \sum_{j=1}^{\mathfrak{m}} \pi_{ij}(a)\overline{x}(j) \qquad (1 \le i \le \mathfrak{m}),$$

(2.4)
$$(\overline{x} \cdot a)(i) = \overline{x}(i) \cdot a$$
 $(1 \le i \le \mathfrak{m}).$

It follows from (2.2) that the module operations in (2.3) and (2.4) are well defined on $l^1(\mathfrak{m}, E)$ and the convergence in (2.3) is absolute convergence. The space $l^1(\mathfrak{m}, E)^* = l^{\infty}(\mathfrak{m}, E^*)$ inherits the dual Banach *A*-bimodule structure given by

(2.5)
$$(a \cdot \overline{\varphi})(i) = a \cdot \overline{\varphi}(i)$$
 $(1 \le i \le \mathfrak{m}),$

(2.6)
$$(\overline{\varphi} \cdot a)(i) = ({}^t \pi(a) \,\overline{\varphi})(i) = \sum_{j=1}^{\mathfrak{m}} \pi_{ji}(a) \overline{\varphi}(j) \qquad (1 \le i \le \mathfrak{m}),$$

where $\overline{\varphi} \in l^{\infty}(\mathfrak{m}, E^*)$, ${}^t\pi(a)$ is the transpose of the infinite matrix $\pi(a) = (\pi_{ij}(a))$, and the convergence in (2.6) is absolute convergence.

Definition 2.2 Let A be a Banach algebra and $\pi: A \to \mathscr{L}(H)$ be a continuous representation satisfying the conditions in (2.2). Suppose that A^* is equipped with its natural Banach right A-module action so that $l^{\infty}(\mathfrak{m}, A^{**})$ is a Banach left A-module with the canonical operation $(a \cdot \overline{\Phi})(i) = a \cdot \overline{\Phi}(i)$ $(1 \le i \le \mathfrak{m})$. We call an element $\overline{\Phi} \in l^{\infty}(\mathfrak{m}, A^{**})$ left π -invariant if for every $a \in A$, we have $a \cdot \overline{\Phi} = {}^t \pi(a)\overline{\Phi}$, or equivalently,

$$(a \cdot \overline{\Phi})(i) = \sum_{k=1}^{\mathfrak{m}} \pi_{ki}(a)\overline{\Phi}(k) \qquad (1 \le i \le \mathfrak{m}),$$

where the series is absolutely convergent. A right π -invariant element can be defined analogously (see the discussion prior to Theorem 2.10).

Definition 2.3 Let $\pi: A \to \mathscr{L}(H)$ be a continuous representation of A on a separable Hilbert space H. Then π is said to satisfy the strong Hahn–Banach separation property on the column $1 \le j \le m$, if there exists $\epsilon = \epsilon(j) > 0$ such that for every $1 \le i \le m$, $d(\pi_{ij}, E_{ij}) \ge \epsilon$, where

$$E_{ij} = \overline{\lim}^{\|\cdot\|} \{\pi_{kj} \colon k \neq i\} \subset A^*$$

and $d(\pi_{ij}, E_{ij})$ is the distance between π_{ij} and the subspace E_{ij} . The strong Hahn– Banach separation property on the rows of π is defined similarly.

Lemma 2.4 Let $\pi: A \to \mathscr{L}(H)$ be a continuous, topologically irreducible representation.

A Cohomological Property of π -invariant Elements

- For each $1 \le i \le m$, the set $\{\pi_{ij} : 1 \le j \le m\}$ is linearly independent in A^* . (i)
- (ii) For each $1 \le j \le m$, the set $\{\pi_{ij} : 1 \le i \le m\}$ is linearly independent in A^* .

Proof (i) Suppose that $\sum_{j=1}^{n} \alpha_j \pi_{ik_j} = 0$, where $\alpha_j \in \mathbf{C}$ and $1 \leq k_j \leq \mathfrak{m}$, for j = 1, ..., n. Let $x \in H$ be defined by $x = \sum_{i=1}^{n} \alpha_i e_{k_i}$. Then for every $a \in A$,

$$\left(\pi(a)x|e_i\right) = \sum_{j=1}^n \alpha_j\left(\pi(a)e_{k_j}|e_i\right) = \sum_{j=1}^n \alpha_j\pi_{ik_j}(a) = 0.$$

It follows that x is not a cyclic vector for π , and hence irreducibility of π implies that

x = 0. Therefore $\alpha_1 = \cdots = \alpha_n = 0$, which is what we needed to show. (ii) Suppose that $\sum_{i=1}^{n} \alpha_i \pi_{k_i j} = 0$, where $\alpha_i \in \mathbf{C}$ and $1 \leq k_i \leq \mathfrak{m}$, for $i = 1, \ldots, n$. Let $x \in H$ be defined by $x = \sum_{i=1}^{n} \overline{\alpha_i} e_{k_i}$. Then for every $a \in A$,

$$\left(\pi(a)e_j|x\right) = \sum_{i=1}^n \alpha_i\left(\pi(a)e_j|e_{k_i}\right) = \sum_{i=1}^n \alpha_i\pi_{k_ij}(a) = 0.$$

Since π is irreducible, $\{\pi(a)e_i: a \in A\}$ is dense in *H*, and hence x = 0. Therefore $\alpha_1 = \cdots = \alpha_n = 0$, proving that $\{\pi_{ij} : 1 \le i \le m\}$ is linearly independent in A^* .

The following is an immediate corollary of the above lemma. We recall that by a result of Johnson, algebraically irreducible representations are automatically continuous (cf. Bonsall–Duncan [2, Theorem III.25.7]).

Corollary 2.5 All finite-dimensional irreducible representations of a Banach algebra satisfy the strong Hahn-Banach separation property on each of its columns and rows.

The following theorem is the main result of this paper.

Theorem 2.6 Let A be a Banach algebra and let $\pi: A \to \mathscr{L}(H)$ be a continuous representation such that π satisfies the conditions in (2.2) as well as the strong Hahn– Banach separation property on the column j, for some $1 \leq j \leq m$. Suppose that for every Banach right A-module E for which $l^{1}(\mathfrak{m}, E)$ is equipped with the bimodule structure defined in (2.3)–(2.4), all continuous derivations $d: A \to l^1(\mathfrak{m}, E)^*$ are inner. In that case, there exists a left π -invariant element $\overline{\Phi}_i \in l^{\infty}(\mathfrak{m}, A^{**})$ such that

$$\langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \delta_{ik} \quad (1 \le i, k \le \mathfrak{m}).$$

Proof Let us define

$$F = \overline{\lim}^{w} \{ \pi_{ij} \colon 1 \le i \le \mathfrak{m} \} = \overline{\lim}^{\|\cdot\|} \{ \pi_{ij} \colon 1 \le i \le \mathfrak{m} \} \subset A^*.$$

The equality of the two closures in the weak and norm topologies of A^* follows from the Mazur's theorem (cf. Dunford–Schwartz [4, Theorem V.3.13]). We assume that A^* has its natural Banach right A-module structure, and we turn $l^1(\mathfrak{m}, A^*)$ and its dual $l^{\infty}(\mathfrak{m}, A^{**})$ into Banach A-bimodules with the operations defined in

(2.3)–(2.4) and (2.5)–(2.6), respectively. It follows from (2.1) that *F* is a Banach right *A*-submodule of *A*^{*}. If we let $E = A^*/F$ be the quotient Banach right *A*-module, then the space $l^1(\mathfrak{m}, E) \cong l^1(\mathfrak{m}, A^*)/l^1(\mathfrak{m}, F)$ inherits Banach *A*-bimodule operations from $l^1(\mathfrak{m}, A^*)$, and hence $l^1(\mathfrak{m}, E)$ and $l^1(\mathfrak{m}, E)^* = l^{\infty}(\mathfrak{m}, E^*)$ can also be equipped with the Banach bimodule multiplications defined in (2.3)–(2.4) and (2.5)–(2.6), respectively.

By our assumption, π satisfies the strong Hahn–Banach separation property on the column *j*, and hence by the Hahn–Banach theorem, for each $1 \le i \le m$, we can choose $\Psi_{ij} \in A^{**}$ such that

(2.7)
$$\langle \Psi_{ij}, \pi_{kj} \rangle = \delta_{ik}, \quad \|\Psi_{ij}\| = d(\pi_{ij}, E_{ij})^{-1} \le 1/\epsilon(j),$$

where $E_{ij} = \overline{\lim}^{\|\cdot\|} \{\pi_{kj} \colon k \neq i\} \subset A^*$. Let $\overline{\Psi}_j \in l^{\infty}(\mathfrak{m}, A^{**})$ be defined by $\overline{\Psi}_j(i) = \Psi_{ij}, 1 \leq i \leq \mathfrak{m}$. We now show that the image of the inner derivation

$$\delta_{\overline{\Psi}_j} \colon A \longrightarrow l^{\infty}(\mathfrak{m}, A^{**}), \quad a \mapsto a \cdot \overline{\Psi}_j - \overline{\Psi}_j \cdot a = a \cdot \overline{\Psi}_j - {}^t\pi(a)\overline{\Psi}_j,$$

is a subset of $l^1(\mathfrak{m}, E)^* = l^1(\mathfrak{m}, F)^\circ$ (the polar of $l^1(\mathfrak{m}, F)$ in $l^{\infty}(\mathfrak{m}, A^{**})$). Let $\overline{\lambda} \in l^1(\mathfrak{m}, F)$ be such that for each $1 \leq l \leq \mathfrak{m}$,

$$\overline{\lambda}(l) = \sum_{i \in F_l} \alpha_{il} \pi_{ij} \quad (\alpha_{il} \in \mathbf{C}),$$

where F_l is a finite subset of **N**. Such elements are norm dense in $l^1(\mathfrak{m}, F)$, therefore it suffices to show that for each $a \in A$, $\delta_{\overline{\Psi}_j}(a)$ annihilates such an element. For each $a \in A$ and $1 \leq l \leq \mathfrak{m}$, using (2.1), we have:

(2.8)
$$\overline{\lambda}(l) \cdot a = \sum_{i \in F_l} \alpha_{il} \pi_{ij} \cdot a = \sum_{i \in F_l} \alpha_{il} \left(w \cdot \sum_{k=1}^{\mathfrak{m}} \pi_{ik}(a) \pi_{kj} \right)$$

$$= w - \sum_{k=1}^{\mathfrak{m}} \left(\sum_{i \in F_l} \alpha_{il} \pi_{ik}(a) \right) \pi_{kj}.$$

From the identities

$$(\overline{\lambda} \cdot a)(l) = \overline{\lambda}(l) \cdot a \text{ and } (a \cdot \overline{\lambda})(l) = \sum_{j=1}^{m} \pi_{lj}(a)\overline{\lambda}(j),$$

we find that

$$\begin{split} \left\langle \, \delta_{\overline{\Psi}_j}(a), \overline{\lambda} \, \right\rangle &= \left\langle a \cdot \overline{\Psi}_j - \overline{\Psi}_j \cdot a, \overline{\lambda} \right\rangle = \left\langle \overline{\Psi}_j, \overline{\lambda} \cdot a \right\rangle - \left\langle \overline{\Psi}_j, a \cdot \overline{\lambda} \right\rangle \\ &= \sum_{l=1}^{\mathfrak{m}} \left\langle \, \overline{\Psi}_j(l), \overline{\lambda}(l) \cdot a \right\rangle - \sum_{i=1}^{\mathfrak{m}} \left\langle \, \overline{\Psi}_j(i), \sum_{l=1}^{\mathfrak{m}} \pi_{il}(a) \overline{\lambda}(l) \right\rangle. \end{split}$$

A Cohomological Property of π -invariant Elements

Using (2.8), we have

$$\begin{split} \langle \delta_{\overline{\Psi}_j}(a), \overline{\lambda} \rangle &= \sum_{l=1}^{\mathfrak{m}} \left\langle \overline{\Psi}_j(l), w - \sum_{k=1}^{\mathfrak{m}} \left(\sum_{i \in F_l} \alpha_{il} \pi_{ik}(a) \right) \pi_{kj} \right\rangle - \sum_{i=1}^{\mathfrak{m}} \sum_{l=1}^{\mathfrak{m}} \pi_{il}(a) \left\langle \overline{\Psi}_j(i), \overline{\lambda}(l) \right\rangle \\ &= \sum_{l=1}^{\mathfrak{m}} \sum_{k=1}^{\mathfrak{m}} \sum_{i \in F_l} \alpha_{il} \pi_{ik}(a) \left\langle \overline{\Psi}_j(l), \pi_{kj} \right\rangle - \sum_{i=1}^{\mathfrak{m}} \sum_{l=1}^{\mathfrak{m}} \sum_{k \in F_l} \alpha_{kl} \pi_{il}(a) \left\langle \overline{\Psi}_j(i), \pi_{kj} \right\rangle. \end{split}$$

Finally, by (2.7), we find that

$$\left\langle \delta_{\overline{\Psi}_j}(a), \overline{\lambda} \right\rangle = \sum_{l=1}^{\mathfrak{m}} \sum_{i \in F_l} \alpha_{il} \pi_{il}(a) - \sum_{i \in F_l} \sum_{l=1}^{\mathfrak{m}} \alpha_{il} \pi_{il}(a) = 0.$$

Thus $\delta_{\overline{\Psi}_j}(a) \in l^1(\mathfrak{m}, F)^{\circ} = l^1(\mathfrak{m}, E)^*$ for all $a \in A$. Therefore by assumption, the continuous derivation $\delta_{\overline{\Psi}_j}: A \to l^1(\mathfrak{m}, E)^*$ must be inner; that is, there exists $\overline{\Psi}'_j \in l^1(\mathfrak{m}, E)^*$ such that $\delta_{\overline{\Psi}_j} = \delta_{\overline{\Psi}'_j}$ (in the special case that $F = A^*$, we have $l^1(\mathfrak{m}, F)^{\circ} = l^1(\mathfrak{m}, E)^* = \{0\}$ and $\overline{\Psi}'_j = 0$). Thus, for every $a \in A$, we have $\delta_{\overline{\Psi}_j}(a) = \delta_{\overline{\Psi}'_j}(a)$, which is equivalent to

$$a \cdot (\overline{\Psi}_j - \overline{\Psi}'_j) = {}^t \pi(a)(\overline{\Psi}_j - \overline{\Psi}'_j) \qquad (a \in A).$$

If we define $\overline{\Phi}_j = \overline{\Psi}_j - \overline{\Psi}'_j$, then for every $a \in A$, we have

$$a \cdot \overline{\Phi}_j = {}^t \pi(a) \overline{\Phi}_j \quad \text{and} \quad \langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \langle \overline{\Psi}_j(i), \pi_{kj} \rangle = \delta_{ikj}$$

completing the proof of the theorem.

We can prove the following partial converse to Theorem 2.6.

Theorem 2.7 Let A be a Banach algebra and let $\pi: A \to \mathcal{L}(H)$ be a continuous representation satisfying the conditions in (2.2). Suppose that for each $1 \leq j \leq m$, there exists a left π -invariant element $\overline{\Phi}_j \in l^{\infty}(m, A^{**})$ such that

- (i) $\sup_{j} \|\overline{\Phi}_{j}\|_{\infty} < \infty;$
- (ii) $\langle \overline{\Phi}_j(i), \pi_{kj} \rangle = \delta_{ik} \quad (1 \le i, k \le \mathfrak{m}).$

If *E* is a Banach right A-module and $l^1(\mathfrak{m}, E)$ is equipped with the Banach A-bimodule structure defined in (2.3)–(2.4), then every continuous derivation

$$d = (d_i)_{1 \le i \le \mathfrak{m}} \colon A \longrightarrow l^1(\mathfrak{m}, E)^*$$

is inner, provided that

(2.9)
$$d_i^{**}(\overline{\Phi}_i(i)) = d_j^{**}(\overline{\Phi}_j(i)) \quad (1 \le i, j \le \mathfrak{m}),$$

where $d_j^{**}: A^{**} \to E^{***}$ is the double adjoint of d_j .

539

Proof Let us define $\overline{F} \in l^{\infty}(\mathfrak{m}, E^*)$ by

$$\overline{F}(j) = d_j^{**}(\overline{\Phi}_j(j))|_E \in E^* \quad (1 \le j \le \mathfrak{m}).$$

We claim that $d = \delta_{-\overline{F}}$. To show this, let $a \in A$ and $\overline{x} \in l^1(\mathfrak{m}, E)$, then

$$(2.10) \quad \langle \delta_{\overline{F}}(a), \overline{x} \rangle = \langle a \cdot \overline{F} - \overline{F} \cdot a, \overline{x} \rangle = \langle \overline{F}, \overline{x} \cdot a - \pi(a) \overline{x} \rangle$$
$$= \sum_{i=1}^{\mathfrak{m}} \langle d_{i}^{**}(\overline{\Phi}_{i}(i)), \overline{x}(i) \cdot a \rangle - \sum_{i=1}^{\mathfrak{m}} \langle d_{i}^{**}(\overline{\Phi}_{i}(i)), \sum_{j=1}^{\mathfrak{m}} \pi_{ij}(a) \overline{x}(j) \rangle$$
$$= \sum_{i=1}^{\mathfrak{m}} \langle \overline{\Phi}_{i}(i), d_{i}^{*}(\overline{x}(i) \cdot a) \rangle - \sum_{i=1}^{\mathfrak{m}} \sum_{j=1}^{\mathfrak{m}} \pi_{ij}(a) \langle d_{i}^{**}(\overline{\Phi}_{i}(i)), \overline{x}(j) \rangle.$$

However,

(2.11)
$$d_i^*(x \cdot a) = d_i^*(x) \cdot a - \sum_{j=1}^m \langle d_j(a), x \rangle \pi_{ji}, \quad (a \in A, x \in E).$$

In fact, for all $b \in A$, we can write:

$$\begin{split} \langle d_i^*(x \cdot a), b \rangle &= \left\langle x, \operatorname{pr}_i(a \cdot d(b)) \right\rangle = \left\langle x, \operatorname{pr}_i(d(ab) - {}^t\pi(b)d(a)) \right\rangle \\ &= \left\langle x, d_i(ab) \right\rangle - \left\langle x, \sum_{j=1}^{\mathfrak{m}} \pi_{ji}(b)d_j(a) \right\rangle \\ &= \left\langle d_i^*(x) \cdot a, b \right\rangle - \left\langle \sum_{j=1}^{\mathfrak{m}} \left\langle d_j(a), x \right\rangle \pi_{ji}, b \right\rangle \\ &= \left\langle d_i^*(x) \cdot a - \sum_{j=1}^{\mathfrak{m}} \left\langle d_j(a), x \right\rangle \pi_{ji}, b \right\rangle, \end{split}$$

which proves (2.11). Now, if in (2.10), we substitute the value of $d_i^*(\bar{x}(i) \cdot a)$ from (2.11), and subsequently use condition (ii) in our theorem, we obtain

$$(2.12) \quad \left\langle \delta_{\overline{F}}(a), \overline{x} \right\rangle = \sum_{i=1}^{m} \left\langle \overline{\Phi}_{i}(i), d_{i}^{*}(\overline{x}(i)) \cdot a \right\rangle - \sum_{i=1}^{m} \sum_{j=1}^{m} \left\langle d_{j}(a), \overline{x}(i) \right\rangle \left\langle \overline{\Phi}_{i}(i), \pi_{ji} \right\rangle$$
$$- \sum_{i=1}^{m} \sum_{j=1}^{m} \pi_{ij}(a) \left\langle d_{i}^{**}(\overline{\Phi}_{i}(i)), \overline{x}(j) \right\rangle$$
$$= \sum_{i=1}^{m} \left\langle \operatorname{pr}_{i}(a \cdot \overline{\Phi}_{i}), d_{i}^{*}(\overline{x}(i)) \right\rangle - \left\langle d(a), \overline{x} \right\rangle$$
$$- \sum_{i=1}^{m} \sum_{j=1}^{m} \pi_{ij}(a) \left\langle d_{i}^{**}(\overline{\Phi}_{i}(i)), \overline{x}(j) \right\rangle.$$

Since by the definition of left π -invariance we have $a \cdot \overline{\Phi}_i = {}^t \pi(a) \overline{\Phi}_i$, we can also write

(2.13)
$$\sum_{i=1}^{m} \langle \operatorname{pr}_{i}(a \cdot \overline{\Phi}_{i}), d_{i}^{*}(\overline{x}(i)) \rangle = \sum_{i=1}^{m} \langle \sum_{j=1}^{m} \pi_{ji}(a) \overline{\Phi}_{i}(j), d_{i}^{*}(\overline{x}(i)) \rangle$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} \pi_{ji}(a) \langle d_{i}^{**}(\overline{\Phi}_{i}(j)), \overline{x}(i) \rangle$$
$$= \sum_{j=1}^{m} \sum_{i=1}^{m} \pi_{ij}(a) \langle d_{j}^{**}(\overline{\Phi}_{j}(i)), \overline{x}(j) \rangle.$$

Therefore, using (2.13), we may rewrite (2.12) as

$$(2.14) \quad \langle \delta_{\overline{F}}(a), \overline{x} \rangle = \sum_{j=1}^{m} \sum_{i=1}^{m} \pi_{ij}(a) \langle d_{j}^{**}(\overline{\Phi}_{j}(i)), \overline{x}(j) \rangle - \langle d(a), \overline{x} \rangle \\ - \sum_{i=1}^{m} \sum_{j=1}^{m} \pi_{ij}(a) \langle d_{i}^{**}(\overline{\Phi}_{i}(i)), \overline{x}(j) \rangle$$

By (2.9), the first and the third terms in the right-hand side of (2.14) cancel each other, and thus we obtain

$$\langle \delta_{\overline{F}}(a), \overline{x} \rangle = -\langle d(a), \overline{x} \rangle \qquad (a \in A, \ \overline{x} \in l^{1}(\mathfrak{m}, E)),$$

which implies that $d = \delta_{-\overline{F}}$, completing the proof of the theorem.

Remark 2.8 We have been unable to remove condition (2.9) in the above theorem. Of course, this condition holds automatically when n = 1 and π is a non-zero character on A, but in general it seems to impose a strong restriction on d. It would be interesting to know whether (2.9) can be removed or substituted by a weaker assumption.

Remark 2.9 As was kindly pointed out to us by the referee, it would be interesting to study the relation of right π -invariant elements of $l^{\infty}(n, A^{**})$ and fixed point properties similar to those in Lau and Zhang [8].

In the following, we shall formulate Theorems 2.6 and 2.7 for right π -invariant elements of $l^{\infty}(\mathfrak{m}, A^{**})$. The proofs that are similar to those given above are omitted. We remark that using the same methods given in Filali–Monfared [5], right π -invariant elements of $l^{\infty}(n, A^{**})$ can be used to characterize finite-dimensional *right* ideals in A^{**} equipped with the right Arens product \diamond . More generally, if X is a faithful, right introverted subspace of A^* for which X^* is equipped with the induced right Arens product \diamond , then [5, Lemma 2.2] remains true without any change, and the analogues of [5, Lemma 2.4, Theorems 2.7 and 2.8] can be readily formulated and proved for right π -invariants and finite-dimensional right ideals in X^* .

Let *A* be a Banach algebra and let $\pi: A \to \mathscr{L}(H)$ be a continuous representation satisfying the conditions

(2.15)
$$C_i = \sum_{j=1}^m \|\pi_{ij}\|_{A^*} < \infty, \quad C = \sup_{1 \le i \le m} C_i < \infty.$$

If *E* is an arbitrary Banach left *A*-module, then we can turn $l^1(\mathfrak{m}, E)$ into a Banach *A*-bimodule with the following operations:

(2.16)
$$(a \cdot \overline{x})(i) = a \cdot \overline{x}(i), \quad (\overline{x} \cdot a)(i) = \left({}^t \pi(a) \overline{x}\right)(i) = \sum_{k=1}^m \pi_{ki}(a) \overline{x}(k),$$

where $1 \le i \le m$. The dual space $l^{\infty}(\mathfrak{m}, E^*) = l^1(\mathfrak{m}, E)^*$ inherits the canonical Banach *A*-bimodule structure, given by:

$$(a \cdot \overline{\varphi})(i) = (\pi(a)\overline{\varphi})(i) = \sum_{k=1}^{m} \pi_{ik}(a)\overline{\varphi}(k), \quad (\overline{\varphi} \cdot a)(i) = \overline{\varphi}(i) \cdot a$$

for every $1 \le i \le m$.

Suppose that π satisfies the conditions in (2.15) and that A^* is equipped with its natural Banach left *A*-module action so that $l^{\infty}(\mathfrak{m}, A^{**})$ is a Banach right *A*-module with the canonical action $(\overline{\Phi} \cdot a)(i) = \overline{\Phi}(i) \cdot a$ $(1 \leq i \leq \mathfrak{m})$. We call an element $\overline{\Phi} \in l^{\infty}(\mathfrak{m}, A^{**})$ right π -invariant if for every $a \in A$, we have $\overline{\Phi} \cdot a = \pi(a)\overline{\Phi}$.

Theorem 2.10 Let A be a Banach algebra and let $\pi: A \to \mathscr{L}(H)$ be a continuous representation such that π satisfies the conditions in (2.15) and the strong Hahn–Banach separation property on the row i, for some $1 \le i \le m$. Suppose that for every Banach left A-module E for which $l^1(m, E)$ is equipped with the bimodule structure defined in (2.16), all continuous derivations $d: A \to l^1(m, E)^*$ are inner. In that case, there exists a right π -invariant element $\overline{\Phi}_i \in l^\infty(m, A^{**})$ such that

$$\langle \Phi_i(j), \pi_{ik} \rangle = \delta_{jk} \quad (1 \le j, k \le \mathfrak{m}).$$

Theorem 2.11 Let A be a Banach algebra and let $\pi: A \to \mathscr{L}(H)$ be a continuous representation satisfying the conditions in (2.15). Suppose that for each $1 \leq i \leq m$, there exists a right π -invariant element $\overline{\Phi}_i \in l^{\infty}(\mathfrak{m}, A^{**})$ such that

- (i) $\sup_{i} \|\overline{\Phi}_{i}\|_{\infty} < \infty$;
- (ii) $\langle \overline{\Phi}_i(j), \pi_{ik} \rangle = \delta_{jk} \quad (1 \le j, k \le \mathfrak{m}).$

If E is a Banach left A-module and $l^1(\mathfrak{m}, E)$ is equipped with the Banach A-bimodule structure defined in (2.16), then every continuous derivation $d = (d_i)_{1 \le i \le \mathfrak{m}} : A \rightarrow l^1(\mathfrak{m}, E)^*$ is inner, provided that

$$d_i^{**}(\Phi_i(i)) = d_j^{**}(\Phi_j(i)) \quad (1 \le i, j \le \mathfrak{m}),$$

where $d_i^{**}: A^{**} \to E^{***}$ is the double adjoint of d_i .

Acknowledgment The authors would like to thank the referee for his/her careful reading of the paper and for useful suggestions.

A Cohomological Property of π -invariant Elements

References

- R. Arens, *The adjoint of a bilinear operation*. Proc. Amer. Math. Soc. 2(1951), 839–848. http://dx.doi.org/10.1090/S0002-9939-1951-0045941-1
- [2] F. F. Bonsall and J. Duncan, *Complete normed algebras*. Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer-Verlag, New York-Heidelberg, 1973.
- [3] H. G. Dales, Banach algebras and automatic continuity. London Mathematical Society Monographs. New Series, 24, Oxford University Press, Oxford, 2000.
- [4] N. Dunford and J. T. Schwartz, *Linear operators. Part I. General theory*. John Wiley & Sons, New York, 1988.
- M. Filali and M. S. Monfared, *Finite-dimensional left ideals in the dual of introverted spaces*. Proc. Amer. Math. Soc. 139(2011), no. 10, 3645–3656. http://dx.doi.org/10.1090/S0002-9939-2011-10784-6
- [6] E. Kaniuth, A. T. Lau, and J. Pym, On φ-Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144(2008), no. 1, 85–96.
- [7] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118(1983), no. 3, 161–175.
- [8] A. T.-M. Lau and Y. Zhang, Fixed point properties of semigroups of non-expansive mappings. J. Funct. Anal. 254(2008), no. 10, 2534–2554. http://dx.doi.org/10.1016/j.jfa.2008.02.006
- M. Sangani Monfared, *Character amenability of Banach algebras*. Math. Proc. Cambridge Philos. Soc. 144(2008), no. 3, 697–706. http://dx.doi.org/10.1017/S0305004108001126

Department of Mathematical Sciences, University of Oulu, Oulu 90014, Finland e-mail: mahmoud.filali@oulu.fi

Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4 e-mail: monfared@uwindsor.ca