A Cohomological Property of π-invariant Elements

Abstract

M. Filali and M. Sangani Monfared

Abstract. Let A be a Banach algebra and let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation of A on a separable Hilbert space H with $\operatorname{dim} H=\mathfrak{m}$. Let $\pi_{i j}$ be the coordinate functions of π with respect to an orthonormal basis and suppose that for each $1 \leq j \leq \mathfrak{m}, C_{j}=\sum_{i=1}^{\mathfrak{m}}\left\|\pi_{i j}\right\|_{A^{*}}<\infty$ and $\sup _{j} C_{j}<\infty$. Under these conditions, we call an element $\bar{\Phi} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ left π-invariant if $a \cdot \bar{\Phi}={ }^{t} \pi(a) \bar{\Phi}$ for all $a \in A$. In this paper we prove a link between the existence of left π-invariant elements and the vanishing of certain Hochschild cohomology groups of A. Our results extend an earlier result by Lau on F-algebras and recent results of Kaniuth, Lau, Pym, and and the second author in the special case where $\pi: A \rightarrow \mathbf{C}$ is a non-zero character on A.

1 Introduction

Let A be a Banach algebra and let $A^{* *}$ be its double dual Banach algebra equipped with the left Arens product \square (cf. Arens [1] or Dales [3]). For continuous finitedimensional representations $\pi: A \rightarrow M_{n}(\mathbf{C})$, the (left) π-invariant elements of $l^{\infty}\left(n, A^{* *}\right)$ were recently studied by the authors in connection with the characterization of finite-dimensional left ideals in the dual of left introverted subspaces of A^{*} (Filali-Monfared [5]). In this paper we extend the concept of π-invariance to continuous representations on Hilbert spaces, and we prove an interesting link between the existence of π-invariant elements and the vanishing of certain Hochschild cohomology groups of A. In our proofs we use a modified version of a technique first employed by Lau in his study of F-algebras [7]. We remark that our results generalize an earlier result by Lau on F-algebras [7 , Theorem 4.1] and recent results of Kaniuth-Lau-Pym [6, Theorem 1.1], and of the second author [9, Theorem 2.3], which were obtained for the special case where $\pi: A \rightarrow \mathbf{C}$ is a non-zero character on A.

Throughout this paper, we assume that A is a Banach algebra and H is a separable Hilbert space and $\operatorname{dim} H=\mathfrak{m}\left(1 \leq \mathfrak{m} \leq \aleph_{0}\right)$. We shall assume that H is equipped with an orthonormal basis $\left(e_{i}\right)_{1 \leq i \leq \mathrm{m}}$, and, unless otherwise stated, $\mathscr{L}(H)$, the space of all continuous linear operators on H, is equipped with its weak operator topology (here and elsewhere in the paper, if $\mathfrak{m}=\aleph_{0}$, then in an equality such as $1 \leq i \leq \mathfrak{m}$, we shall always assume that $i<\mathfrak{m})$. If $\pi: A \rightarrow \mathscr{L}(H)$ is a continuous representation, for each $1 \leq i, j \leq \mathfrak{m}$, we define the coordinate function $\pi_{i j} \in A^{*}$ by $\pi_{i j}(a)=$ $\left(\pi(a) e_{j} \mid e_{i}\right),(a \in A)$. We denote the canonical extension of π to $A^{* *}$ by $\widetilde{\pi}$, so that $\widetilde{\pi}$ is a w^{*}-continuous representation of $A^{* *}$ on H and for every $\Phi \in A^{* *},\left(\widetilde{\pi}(\Phi) e_{j} \mid e_{i}\right)=$ $\left\langle\Phi, \pi_{i j}\right\rangle$ (cf. Filali-Monfared [5]). The projection map on the (i, j)-th coordinate is defined by $\mathrm{pr}_{i j}: \mathscr{L}(H) \rightarrow \mathbf{C}, T \mapsto\left(T e_{j} \mid e_{i}\right)$.

[^0]We recall that if E is a Banach left [right] A-module, then its dual space E^{*} is a Banach right [left] A-module in a canonical way:

$$
\langle\lambda \cdot a, x\rangle=\langle\lambda, a \cdot x\rangle, \quad[\langle a \cdot \lambda, x\rangle=\langle\lambda, x \cdot a\rangle] \quad\left(a \in A, x \in E, \lambda \in E^{*}\right)
$$

In particular, it follows that both A^{*} and $A^{* *}$ have canonical Banach A-bimodule structures induced from the multiplication of A.

2π-invariance and Derivations

We use the following lemma repeatedly in the rest of this paper.
Lemma 2.1 If $\pi: A \rightarrow \mathscr{L}(H)$ is a continuous representation, then for all $1 \leq i, j \leq$ m , and all $a \in A$, we have

$$
\begin{equation*}
a \cdot \pi_{i j}=w-\sum_{k=1}^{\mathrm{m}} \pi_{i k} \pi_{k j}(a), \quad \pi_{i j} \cdot a=w-\sum_{k=1}^{\mathrm{m}} \pi_{i k}(a) \pi_{k j} \tag{2.1}
\end{equation*}
$$

where w - \sum means the convergence is in the weak topology $\sigma\left(A^{*}, A^{* *}\right)$.
Proof Let $\Phi \in A^{* *}$, then

$$
\begin{aligned}
\left\langle\Phi, a \cdot \pi_{i j}\right\rangle & =\left\langle\Phi \cdot a, \pi_{i j}\right\rangle=\left(\widetilde{\pi}(\Phi \cdot a) e_{j} \mid e_{i}\right)=\left(\widetilde{\pi}(\Phi) \pi(a) e_{j} \mid e_{i}\right) \\
& =\left(\widetilde{\pi}(\Phi)\left(\sum_{k=1}^{\mathrm{m}}\left(\pi(a) e_{j} \mid e_{k}\right) e_{k}\right) \mid e_{i}\right) \\
& =\sum_{k=1}^{\mathrm{m}}\left(\pi(a) e_{j} \mid e_{k}\right)\left(\widetilde{\pi}(\Phi) e_{k} \mid e_{i}\right) \\
& =\sum_{k=1}^{\mathrm{m}} \pi_{k j}(a)\left\langle\Phi, \pi_{i k}\right\rangle
\end{aligned}
$$

The second statement is proved similarly.
For our purpose of introducing well-defined Banach A-module operations using a continuous representation $\pi: A \rightarrow \mathscr{L}(H)$, we need to assume the following finiteness conditions on π :

$$
\begin{equation*}
C_{j}=\sum_{i=1}^{\mathrm{m}}\left\|\pi_{i j}\right\|_{A^{*}}<\infty, \quad C=\sup _{1 \leq j \leq m} C_{j}<\infty \tag{2.2}
\end{equation*}
$$

Of course continuous finite-dimensional representations automatically satisfy the conditions in (2.2). However, one can easily find examples of infinite-dimensional representations satisfying these conditions. For example, if $\left(\pi_{n}\right)_{n=1}^{\infty}$ is a sequence of finite-dimensional representations of A such that for some $M, N>0$ we have $\left\|\pi_{n}\right\| \leq M$ and $\operatorname{dim}\left(\pi_{n}\right) \leq N$ for all n, then the direct sum representation $\bigoplus_{n=1}^{\infty} \pi_{n}$
satisfies the conditions in (2.2) (with $C \leq M N$). If π satisfies the conditions in (2.2) and if E is an arbitrary Banach right A-module, then we can turn the Banach space $l^{1}(\mathfrak{m}, E)$ into a Banach A-bimodule with the following operations in which $a \in A$ and $\bar{x} \in l^{1}(\mathfrak{m}, E):$

$$
\begin{array}{ll}
(a \cdot \bar{x})(i)=(\pi(a) \bar{x})(i)=\sum_{j=1}^{\mathfrak{m}} \pi_{i j}(a) \bar{x}(j) & (1 \leq i \leq \mathfrak{m}) \\
(\bar{x} \cdot a)(i)=\bar{x}(i) \cdot a & (1 \leq i \leq \mathfrak{m}) \tag{2.4}
\end{array}
$$

It follows from (2.2) that the module operations in (2.3) and (2.4) are well defined on $l^{1}(\mathfrak{m}, E)$ and the convergence in (2.3) is absolute convergence. The space $l^{1}(\mathfrak{m}, E)^{*}=$ $l^{\infty}\left(\mathfrak{m}, E^{*}\right)$ inherits the dual Banach A-bimodule structure given by

$$
\begin{array}{ll}
(a \cdot \bar{\varphi})(i)=a \cdot \bar{\varphi}(i) & (1 \leq i \leq \mathfrak{m}) \\
(\bar{\varphi} \cdot a)(i)=\left({ }^{t} \pi(a) \bar{\varphi}\right)(i)=\sum_{j=1}^{\mathfrak{m}} \pi_{j i}(a) \bar{\varphi}(j) & (1 \leq i \leq \mathfrak{m})
\end{array}
$$

where $\bar{\varphi} \in l^{\infty}\left(\mathfrak{m}, E^{*}\right),{ }^{t} \pi(a)$ is the transpose of the infinite matrix $\pi(a)=\left(\pi_{i j}(a)\right)$, and the convergence in (2.6) is absolute convergence.

Definition 2.2 Let A be a Banach algebra and $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation satisfying the conditions in (2.2). Suppose that A^{*} is equipped with its natural Banach right A-module action so that $l^{\infty}\left(\mathrm{m}, A^{* *}\right)$ is a Banach left A-module with the canonical operation $(a \cdot \bar{\Phi})(i)=a \cdot \bar{\Phi}(i)(1 \leq i \leq \mathfrak{m})$. We call an element $\bar{\Phi} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ left π-invariant if for every $a \in A$, we have $a \cdot \bar{\Phi}={ }^{t} \pi(a) \bar{\Phi}$, or equivalently,

$$
(a \cdot \bar{\Phi})(i)=\sum_{k=1}^{\mathfrak{m}} \pi_{k i}(a) \bar{\Phi}(k) \quad(1 \leq i \leq \mathfrak{m})
$$

where the series is absolutely convergent. A right π-invariant element can be defined analogously (see the discussion prior to Theorem 2.10).

Definition 2.3 Let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation of A on a separable Hilbert space H. Then π is said to satisfy the strong Hahn-Banach separation property on the column $1 \leq j \leq \mathfrak{m}$, if there exists $\epsilon=\epsilon(j)>0$ such that for every $1 \leq i \leq \mathfrak{m}, d\left(\pi_{i j}, E_{i j}\right) \geq \epsilon$, where

$$
\left.E_{i j}=\varlimsup_{\operatorname{lin}}\left\|^{\|}\right\|_{k j}: k \neq i\right\} \subset A^{*}
$$

and $d\left(\pi_{i j}, E_{i j}\right)$ is the distance between $\pi_{i j}$ and the subspace $E_{i j}$. The strong HahnBanach separation property on the rows of π is defined similarly.

Lemma 2.4 Let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous, topologically irreducible representation.
(i) For each $1 \leq i \leq \mathfrak{m}$, the set $\left\{\pi_{i j}: 1 \leq j \leq \mathfrak{m}\right\}$ is linearly independent in A^{*}.
(ii) For each $1 \leq j \leq \mathfrak{m}$, the set $\left\{\pi_{i j}: 1 \leq i \leq \mathfrak{m}\right\}$ is linearly independent in A^{*}.

Proof (i) Suppose that $\sum_{j=1}^{n} \alpha_{j} \pi_{i k_{j}}=0$, where $\alpha_{j} \in \mathbf{C}$ and $1 \leq k_{j} \leq \mathfrak{m}$, for $j=1, \ldots, n$. Let $x \in H$ be defined by $x=\sum_{j=1}^{n} \alpha_{j} e_{k_{j}}$. Then for every $a \in A$,

$$
\left(\pi(a) x \mid e_{i}\right)=\sum_{j=1}^{n} \alpha_{j}\left(\pi(a) e_{k_{j}} \mid e_{i}\right)=\sum_{j=1}^{n} \alpha_{j} \pi_{i k_{j}}(a)=0 .
$$

It follows that x is not a cyclic vector for π, and hence irreducibility of π implies that $x=0$. Therefore $\alpha_{1}=\cdots=\alpha_{n}=0$, which is what we needed to show.
(ii) Suppose that $\sum_{i=1}^{n} \alpha_{i} \pi_{k_{i} j}=0$, where $\alpha_{i} \in \mathbf{C}$ and $1 \leq k_{i} \leq \mathfrak{m}$, for $i=$ $1, \ldots, n$. Let $x \in H$ be defined by $x=\sum_{i=1}^{n} \overline{\alpha_{i}} e_{k_{i}}$. Then for every $a \in \bar{A}$,

$$
\left(\pi(a) e_{j} \mid x\right)=\sum_{i=1}^{n} \alpha_{i}\left(\pi(a) e_{j} \mid e_{k_{i}}\right)=\sum_{i=1}^{n} \alpha_{i} \pi_{k_{i} j}(a)=0 .
$$

Since π is irreducible, $\left\{\pi(a) e_{j}: a \in A\right\}$ is dense in H, and hence $x=0$. Therefore $\alpha_{1}=\cdots=\alpha_{n}=0$, proving that $\left\{\pi_{i j}: 1 \leq i \leq \mathfrak{m}\right\}$ is linearly independent in A^{*}.

The following is an immediate corollary of the above lemma. We recall that by a result of Johnson, algebraically irreducible representations are automatically continuous (cf. Bonsall-Duncan [2, Theorem III.25.7]).

Corollary 2.5 All finite-dimensional irreducible representations of a Banach algebra satisfy the strong Hahn-Banach separation property on each of its columns and rows.

The following theorem is the main result of this paper.
Theorem 2.6 Let A be a Banach algebra and let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation such that π satisfies the conditions in (2.2) as well as the strong HahnBanach separation property on the column j, for some $1 \leq j \leq \mathfrak{m}$. Suppose that for every Banach right A-module E for which $l^{1}(\mathfrak{m}, E)$ is equipped with the bimodule structure defined in (2.3)-(2.4), all continuous derivations $d: A \rightarrow l^{1}(\mathfrak{m}, E)^{*}$ are inner. In that case, there exists a left π-invariant element $\bar{\Phi}_{j} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ such that

$$
\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k} \quad(1 \leq i, k \leq \mathfrak{m})
$$

Proof Let us define

$$
F=\varlimsup^{w}\left\{\pi_{i j}: 1 \leq i \leq \mathfrak{m}\right\}=\varlimsup_{\ln }\|\cdot\|_{\left\{\pi_{i j}: 1 \leq i \leq \mathfrak{m}\right\} \subset A^{*} .}
$$

The equality of the two closures in the weak and norm topologies of A^{*} follows from the Mazur's theorem (cf. Dunford-Schwartz [4, Theorem V.3.13]). We assume that A^{*} has its natural Banach right A-module structure, and we turn $l^{1}\left(\mathfrak{m}, A^{*}\right)$ and its dual $l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ into Banach A-bimodules with the operations defined in
(2.3)-(2.4) and (2.5)-(2.6), respectively. It follows from (2.1) that F is a Banach right A-submodule of A^{*}. If we let $E=A^{*} / F$ be the quotient Banach right A-module, then the space $l^{1}(\mathfrak{m}, E) \cong l^{1}\left(\mathfrak{m}, A^{*}\right) / l^{1}(\mathfrak{m}, F)$ inherits Banach A-bimodule operations from $l^{1}\left(\mathfrak{m}, A^{*}\right)$, and hence $l^{1}(\mathfrak{m}, E)$ and $l^{1}(\mathfrak{m}, E)^{*}=l^{\infty}\left(\mathfrak{m}, E^{*}\right)$ can also be equipped with the Banach bimodule multiplications defined in (2.3)-(2.4) and (2.5)-(2.6), respectively.

By our assumption, π satisfies the strong Hahn-Banach separation property on the column j, and hence by the Hahn-Banach theorem, for each $1 \leq i \leq \mathfrak{m}$, we can choose $\Psi_{i j} \in A^{* *}$ such that

$$
\begin{equation*}
\left\langle\Psi_{i j}, \pi_{k j}\right\rangle=\delta_{i k}, \quad\left\|\Psi_{i j}\right\|=d\left(\pi_{i j}, E_{i j}\right)^{-1} \leq 1 / \epsilon(j) \tag{2.7}
\end{equation*}
$$

where $E_{i j}=\overline{\operatorname{lin}}^{\|\cdot\|}\left\{\pi_{k j}: k \neq i\right\} \subset A^{*}$. Let $\bar{\Psi}_{j} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ be defined by $\bar{\Psi}_{j}(i)=$ $\Psi_{i j}, 1 \leq i \leq \mathrm{m}$. We now show that the image of the inner derivation

$$
\delta_{\bar{\Psi}_{j}}: A \longrightarrow l^{\infty}\left(\mathfrak{m}, A^{* *}\right), \quad a \mapsto a \cdot \bar{\Psi}_{j}-\bar{\Psi}_{j} \cdot a=a \cdot \bar{\Psi}_{j}-{ }^{t} \pi(a) \bar{\Psi}_{j}
$$

is a subset of $l^{1}(\mathfrak{m}, E)^{*}=l^{1}(\mathfrak{m}, F)^{\circ}\left(\right.$ the polar of $l^{1}(\mathfrak{m}, F)$ in $\left.l^{\infty}\left(\mathfrak{m}, A^{* *}\right)\right)$. Let $\bar{\lambda} \in$ $l^{1}(\mathfrak{m}, F)$ be such that for each $1 \leq l \leq \mathfrak{m}$,

$$
\bar{\lambda}(l)=\sum_{i \in F_{l}} \alpha_{i l} \pi_{i j} \quad\left(\alpha_{i l} \in \mathbf{C}\right)
$$

where F_{l} is a finite subset of \mathbf{N}. Such elements are norm dense in $l^{1}(\mathfrak{m}, F)$, therefore it suffices to show that for each $a \in A, \delta_{\bar{\Psi}_{j}}(a)$ annihilates such an element. For each $a \in A$ and $1 \leq l \leq \mathfrak{m}$, using (2.1), we have:

$$
\begin{align*}
\bar{\lambda}(l) \cdot a=\sum_{i \in F_{l}} \alpha_{i l} \pi_{i j} \cdot a & =\sum_{i \in F_{l}} \alpha_{i l}\left(w-\sum_{k=1}^{\mathrm{m}} \pi_{i k}(a) \pi_{k j}\right) \tag{2.8}\\
& =w-\sum_{k=1}^{\mathrm{m}}\left(\sum_{i \in F_{l}} \alpha_{i l} \pi_{i k}(a)\right) \pi_{k j}
\end{align*}
$$

From the identities

$$
(\bar{\lambda} \cdot a)(l)=\bar{\lambda}(l) \cdot a \quad \text { and } \quad(a \cdot \bar{\lambda})(l)=\sum_{j=1}^{\mathrm{m}} \pi_{l j}(a) \bar{\lambda}(j)
$$

we find that

$$
\begin{aligned}
\left\langle\delta_{\bar{\Psi}_{j}}(a), \bar{\lambda}\right\rangle & =\left\langle a \cdot \bar{\Psi}_{j}-\bar{\Psi}_{j} \cdot a, \bar{\lambda}\right\rangle=\left\langle\bar{\Psi}_{j}, \bar{\lambda} \cdot a\right\rangle-\left\langle\bar{\Psi}_{j}, a \cdot \bar{\lambda}\right\rangle \\
& =\sum_{l=1}^{m}\left\langle\bar{\Psi}_{j}(l), \bar{\lambda}(l) \cdot a\right\rangle-\sum_{i=1}^{m}\left\langle\bar{\Psi}_{j}(i), \sum_{l=1}^{m} \pi_{i l}(a) \bar{\lambda}(l)\right\rangle
\end{aligned}
$$

Using (2.8), we have

$$
\begin{aligned}
\left\langle\delta_{\bar{\Psi}_{j}}(a), \bar{\lambda}\right\rangle & =\sum_{l=1}^{\mathrm{m}}\left\langle\bar{\Psi}_{j}(l), w-\sum_{k=1}^{\mathrm{m}}\left(\sum_{i \in F_{l}} \alpha_{i l} \pi_{i k}(a)\right) \pi_{k j}\right\rangle-\sum_{i=1}^{\mathrm{m}} \sum_{l=1}^{\mathrm{m}} \pi_{i l}(a)\left\langle\bar{\Psi}_{j}(i), \bar{\lambda}(l)\right\rangle \\
& =\sum_{l=1}^{\mathrm{m}} \sum_{k=1}^{\mathrm{m}} \sum_{i \in F_{l}} \alpha_{i l} \pi_{i k}(a)\left\langle\bar{\Psi}_{j}(l), \pi_{k j}\right\rangle-\sum_{i=1}^{\mathrm{m}} \sum_{l=1}^{\mathrm{m}} \sum_{k \in F_{l}} \alpha_{k l} \pi_{i l}(a)\left\langle\bar{\Psi}_{j}(i), \pi_{k j}\right\rangle
\end{aligned}
$$

Finally, by (2.7), we find that

$$
\left\langle\delta_{\bar{\Psi}_{j}}(a), \bar{\lambda}\right\rangle=\sum_{l=1}^{\mathrm{m}} \sum_{i \in F_{l}} \alpha_{i l} \pi_{i l}(a)-\sum_{i \in F_{l}} \sum_{l=1}^{\mathrm{m}} \alpha_{i l} \pi_{i l}(a)=0 .
$$

Thus $\delta_{\bar{\Psi}_{j}}(a) \in l^{1}(\mathfrak{m}, F)^{\circ}=l^{1}(\mathfrak{m}, E)^{*}$ for all $a \in A$. Therefore by assumption, the continuous derivation $\delta_{\bar{\Psi}_{j}}: A \rightarrow l^{1}(\mathfrak{m}, E)^{*}$ must be inner; that is, there exists $\bar{\Psi}_{j}^{\prime} \in$ $l^{1}(\mathfrak{m}, E)^{*}$ such that $\delta_{\bar{\Psi}_{j}}=\delta_{\bar{\Psi}_{j}^{\prime}}$ (in the special case that $F=A^{*}$, we have $l^{1}(\mathfrak{m}, F)^{\circ}=$ $l^{1}(\mathfrak{m}, E)^{*}=\{0\}$ and $\left.\bar{\Psi}_{j}^{\prime}=0\right)$. Thus, for every $a \in A$, we have $\delta_{\bar{\Psi}_{j}}(a)=\delta_{\bar{\Psi}_{j}^{\prime}}^{\prime}(a)$, which is equivalent to

$$
a \cdot\left(\bar{\Psi}_{j}-\bar{\Psi}_{j}^{\prime}\right)={ }^{t} \pi(a)\left(\bar{\Psi}_{j}-\bar{\Psi}_{j}^{\prime}\right) \quad(a \in A)
$$

If we define $\bar{\Phi}_{j}=\bar{\Psi}_{j}-\bar{\Psi}_{j}^{\prime}$, then for every $a \in A$, we have

$$
a \cdot \bar{\Phi}_{j}={ }^{t} \pi(a) \bar{\Phi}_{j} \quad \text { and } \quad\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\left\langle\bar{\Psi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k}
$$

completing the proof of the theorem.
We can prove the following partial converse to Theorem 2.6.
Theorem 2.7 Let A be a Banach algebra and let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation satisfying the conditions in (2.2). Suppose that for each $1 \leq j \leq \mathfrak{m}$, there exists a left π-invariant element $\bar{\Phi}_{j} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ such that
(i) $\sup _{j}\left\|\bar{\Phi}_{j}\right\|_{\infty}<\infty$;
(ii) $\left\langle\bar{\Phi}_{j}(i), \pi_{k j}\right\rangle=\delta_{i k} \quad(1 \leq i, k \leq \mathfrak{m})$.

If E is a Banach right A-module and $l^{1}(\mathfrak{m}, E)$ is equipped with the Banach A-bimodule structure defined in (2.3)-(2.4), then every continuous derivation

$$
d=\left(d_{i}\right)_{1 \leq i \leq \mathfrak{m}}: A \longrightarrow l^{1}(\mathfrak{m}, E)^{*}
$$

is inner, provided that

$$
\begin{equation*}
d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right)=d_{j}^{* *}\left(\bar{\Phi}_{j}(i)\right) \quad(1 \leq i, j \leq \mathfrak{m}) \tag{2.9}
\end{equation*}
$$

where $d_{j}^{* *}: A^{* *} \rightarrow E^{* * *}$ is the double adjoint of d_{j}.

Proof Let us define $\bar{F} \in l^{\infty}\left(\mathfrak{m}, E^{*}\right)$ by

$$
\bar{F}(j)=\left.d_{j}^{* *}\left(\bar{\Phi}_{j}(j)\right)\right|_{E} \in E^{*} \quad(1 \leq j \leq \mathfrak{m})
$$

We claim that $d=\delta_{-\bar{F}}$. To show this, let $a \in A$ and $\bar{x} \in l^{1}(\mathfrak{m}, E)$, then

$$
\begin{align*}
\left\langle\delta_{\bar{F}}(a), \bar{x}\right\rangle & =\langle a \cdot \bar{F}-\bar{F} \cdot a, \bar{x}\rangle=\langle\bar{F}, \bar{x} \cdot a-\pi(a) \bar{x}\rangle \tag{2.10}\\
& =\sum_{i=1}^{m}\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right), \bar{x}(i) \cdot a\right\rangle-\sum_{i=1}^{m}\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right), \sum_{j=1}^{m} \pi_{i j}(a) \bar{x}(j)\right\rangle \\
& =\sum_{i=1}^{\mathfrak{m}}\left\langle\bar{\Phi}_{i}(i), d_{i}^{*}(\bar{x}(i) \cdot a)\right\rangle-\sum_{i=1}^{\mathfrak{m}} \sum_{j=1}^{\mathfrak{m}} \pi_{i j}(a)\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right), \bar{x}(j)\right\rangle .
\end{align*}
$$

However,

$$
\begin{equation*}
d_{i}^{*}(x \cdot a)=d_{i}^{*}(x) \cdot a-\sum_{j=1}^{m}\left\langle d_{j}(a), x\right\rangle \pi_{j i}, \quad(a \in A, x \in E) \tag{2.11}
\end{equation*}
$$

In fact, for all $b \in A$, we can write:

$$
\begin{aligned}
\left\langle d_{i}^{*}(x \cdot a), b\right\rangle & =\left\langle x, \operatorname{pr}_{i}(a \cdot d(b))\right\rangle=\left\langle x, \operatorname{pr}_{i}\left(d(a b)-{ }^{t} \pi(b) d(a)\right)\right\rangle \\
& =\left\langle x, d_{i}(a b)\right\rangle-\left\langle x, \sum_{j=1}^{\mathrm{m}} \pi_{j i}(b) d_{j}(a)\right\rangle \\
& =\left\langle d_{i}^{*}(x) \cdot a, b\right\rangle-\left\langle\sum_{j=1}^{\mathrm{m}}\left\langle d_{j}(a), x\right\rangle \pi_{j i}, b\right\rangle \\
& =\left\langle d_{i}^{*}(x) \cdot a-\sum_{j=1}^{\mathrm{m}}\left\langle d_{j}(a), x\right\rangle \pi_{j i}, b\right\rangle
\end{aligned}
$$

which proves (2.11). Now, if in (2.10), we substitute the value of $d_{i}^{*}(\bar{x}(i) \cdot a)$ from (2.11), and subsequently use condition (ii) in our theorem, we obtain

$$
\begin{align*}
\left\langle\delta_{\bar{F}}(a), \bar{x}\right\rangle= & \sum_{i=1}^{\mathfrak{m}}\left\langle\bar{\Phi}_{i}(i), d_{i}^{*}(\bar{x}(i)) \cdot a\right\rangle-\sum_{i=1}^{\mathfrak{m}} \sum_{j=1}^{\mathfrak{m}}\left\langle d_{j}(a), \bar{x}(i)\right\rangle\left\langle\bar{\Phi}_{i}(i), \pi_{j i}\right\rangle \tag{2.12}\\
& -\sum_{i=1}^{\mathfrak{m}} \sum_{j=1}^{\mathfrak{m}} \pi_{i j}(a)\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right), \bar{x}(j)\right\rangle \\
= & \sum_{i=1}^{\mathfrak{m}}\left\langle\operatorname{pr}_{i}\left(a \cdot \bar{\Phi}_{i}\right), d_{i}^{*}(\bar{x}(i))\right\rangle-\langle d(a), \bar{x}\rangle \\
& \quad-\sum_{i=1}^{\mathfrak{m}} \sum_{j=1}^{\mathfrak{m}} \pi_{i j}(a)\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right), \bar{x}(j)\right\rangle
\end{align*}
$$

Since by the definition of left π-invariance we have $a \cdot \bar{\Phi}_{i}={ }^{t} \pi(a) \bar{\Phi}_{i}$, we can also write

$$
\begin{align*}
\sum_{i=1}^{\mathrm{m}}\left\langle\operatorname{pr}_{i}\left(a \cdot \bar{\Phi}_{i}\right), d_{i}^{*}(\bar{x}(i))\right\rangle & =\sum_{i=1}^{\mathrm{m}}\left\langle\sum_{j=1}^{\mathrm{m}} \pi_{j i}(a) \bar{\Phi}_{i}(j), d_{i}^{*}(\bar{x}(i))\right\rangle \tag{2.13}\\
& =\sum_{i=1}^{\mathrm{m}} \sum_{j=1}^{\mathrm{m}} \pi_{j i}(a)\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(j)\right), \bar{x}(i)\right\rangle \\
& =\sum_{j=1}^{\mathrm{m}} \sum_{i=1}^{\mathrm{m}} \pi_{i j}(a)\left\langle d_{j}^{* *}\left(\bar{\Phi}_{j}(i)\right), \bar{x}(j)\right\rangle
\end{align*}
$$

Therefore, using (2.13), we may rewrite (2.12) as

$$
\begin{align*}
\left\langle\delta_{\bar{F}}(a), \bar{x}\right\rangle=\sum_{j=1}^{\mathrm{m}} \sum_{i=1}^{\mathrm{m}} \pi_{i j}(a)\left\langle d_{j}^{* *}\left(\bar{\Phi}_{j}(i)\right)\right. & , \bar{x}(j)\rangle-\langle d(a), \bar{x}\rangle \tag{2.14}\\
& -\sum_{i=1}^{m} \sum_{j=1}^{m} \pi_{i j}(a)\left\langle d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right), \bar{x}(j)\right\rangle
\end{align*}
$$

By (2.9), the first and the third terms in the right-hand side of (2.14) cancel each other, and thus we obtain

$$
\left\langle\delta_{\bar{F}}(a), \bar{x}\right\rangle=-\langle d(a), \bar{x}\rangle \quad\left(a \in A, \bar{x} \in l^{1}(\mathfrak{m}, E)\right),
$$

which implies that $d=\delta_{-\bar{F}}$, completing the proof of the theorem.
Remark 2.8 We have been unable to remove condition (2.9) in the above theorem. Of course, this condition holds automatically when $n=1$ and π is a non-zero character on A, but in general it seems to impose a strong restriction on d. It would be interesting to know whether (2.9) can be removed or substituted by a weaker assumption.

Remark 2.9 As was kindly pointed out to us by the referee, it would be interesting to study the relation of right π-invariant elements of $l^{\infty}\left(n, A^{* *}\right)$ and fixed point properties similar to those in Lau and Zhang [8].

In the following, we shall formulate Theorems 2.6 and 2.7 for right π-invariant elements of $l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$. The proofs that are similar to those given above are omitted. We remark that using the same methods given in Filali-Monfared [5], right π-invariant elements of $l^{\infty}\left(n, A^{* *}\right)$ can be used to characterize finite-dimensional right ideals in $A^{* *}$ equipped with the right Arens product \diamond. More generally, if X is a faithful, right introverted subspace of A^{*} for which X^{*} is equipped with the induced right Arens product \diamond, then [5 , Lemma 2.2] remains true without any change, and the analogues of [5, Lemma 2.4, Theorems 2.7 and 2.8] can be readily formulated and proved for right π-invariants and finite-dimensional right ideals in X^{*}.

Let A be a Banach algebra and let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation satisfying the conditions

$$
\begin{equation*}
C_{i}=\sum_{j=1}^{\mathfrak{m}}\left\|\pi_{i j}\right\|_{A^{*}}<\infty, \quad C=\sup _{1 \leq i \leq m} C_{i}<\infty \tag{2.15}
\end{equation*}
$$

If E is an arbitrary Banach left A-module, then we can turn $l^{1}(\mathfrak{m}, E)$ into a Banach A-bimodule with the following operations:

$$
\begin{equation*}
(a \cdot \bar{x})(i)=a \cdot \bar{x}(i), \quad(\bar{x} \cdot a)(i)=\left({ }^{t} \pi(a) \bar{x}\right)(i)=\sum_{k=1}^{\mathfrak{m}} \pi_{k i}(a) \bar{x}(k) \tag{2.16}
\end{equation*}
$$

where $1 \leq i \leq \mathfrak{m}$. The dual space $l^{\infty}\left(\mathfrak{m}, E^{*}\right)=l^{1}(\mathfrak{m}, E)^{*}$ inherits the canonical Banach A-bimodule structure, given by:

$$
(a \cdot \bar{\varphi})(i)=(\pi(a) \bar{\varphi})(i)=\sum_{k=1}^{\mathrm{m}} \pi_{i k}(a) \bar{\varphi}(k), \quad(\bar{\varphi} \cdot a)(i)=\bar{\varphi}(i) \cdot a
$$

for every $1 \leq i \leq \mathfrak{m}$.
Suppose that π satisfies the conditions in (2.15) and that A^{*} is equipped with its natural Banach left A-module action so that $l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ is a Banach right A-module with the canonical action $(\bar{\Phi} \cdot a)(i)=\bar{\Phi}(i) \cdot a(1 \leq i \leq m)$. We call an element $\bar{\Phi} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ right π-invariant if for every $a \in A$, we have $\bar{\Phi} \cdot a=\pi(a) \bar{\Phi}$.
Theorem 2.10 Let A be a Banach algebra and let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation such that π satisfies the conditions in (2.15) and the strong Hahn-Banach separation property on the row i, for some $1 \leq i \leq \mathfrak{m}$. Suppose that for every Banach left A-module E for which $l^{1}(\mathfrak{m}, E)$ is equipped with the bimodule structure defined in (2.16), all continuous derivations $d: A \rightarrow l^{1}(\mathfrak{m}, E)^{*}$ are inner. In that case, there exists a right π-invariant element $\bar{\Phi}_{i} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ such that

$$
\left\langle\bar{\Phi}_{i}(j), \pi_{i k}\right\rangle=\delta_{j k} \quad(1 \leq j, k \leq \mathfrak{m})
$$

Theorem 2.11 Let A be a Banach algebra and let $\pi: A \rightarrow \mathscr{L}(H)$ be a continuous representation satisfying the conditions in (2.15). Suppose that for each $1 \leq i \leq \mathfrak{m}$, there exists a right π-invariant element $\bar{\Phi}_{i} \in l^{\infty}\left(\mathfrak{m}, A^{* *}\right)$ such that
(i) $\sup _{i}\left\|\bar{\Phi}_{i}\right\|_{\infty}<\infty$;
(ii) $\left\langle\bar{\Phi}_{i}(j), \pi_{i k}\right\rangle=\delta_{j k} \quad(1 \leq j, k \leq \mathfrak{m})$.

If E is a Banach left A-module and $l^{1}(\mathfrak{m}, E)$ is equipped with the Banach A-bimodule structure defined in (2.16), then every continuous derivation $d=\left(d_{i}\right)_{1 \leq i \leq m}: A \rightarrow$ $l^{1}(\mathfrak{m}, E)^{*}$ is inner, provided that

$$
d_{i}^{* *}\left(\bar{\Phi}_{i}(i)\right)=d_{j}^{* *}\left(\bar{\Phi}_{j}(i)\right) \quad(1 \leq i, j \leq \mathfrak{m})
$$

where $d_{j}^{* *}: A^{* *} \rightarrow E^{* * *}$ is the double adjoint of d_{j}.
Acknowledgment The authors would like to thank the referee for his/her careful reading of the paper and for useful suggestions.

References

[1] R. Arens, The adjoint of a bilinear operation. Proc. Amer. Math. Soc. 2(1951), 839-848. http://dx.doi.org/10.1090/S0002-9939-1951-0045941-1
[2] F. F. Bonsall and J. Duncan, Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, 80, Springer-Verlag, New York-Heidelberg, 1973.
[3] H. G. Dales, Banach algebras and automatic continuity. London Mathematical Society Monographs. New Series, 24, Oxford Uinversity Press, Oxford, 2000.
[4] N. Dunford and J. T. Schwartz, Linear operators. Part I. General theory. John Wiley \& Sons, New York, 1988.
[5] M. Filali and M. S. Monfared, Finite-dimensional left ideals in the dual of introverted spaces. Proc. Amer. Math. Soc. 139(2011), no. 10, 3645-3656. http://dx.doi.org/10.1090/S0002-9939-2011-10784-6
[6] E. Kaniuth, A. T. Lau, and J. Pym, On ϕ-Amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144(2008), no. 1, 85-96.
[7] A. T.-M. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups. Fund. Math. 118(1983), no. 3, 161-175.
[8] A. T.-M. Lau and Y. Zhang, Fixed point properties of semigroups of non-expansive mappings. J. Funct. Anal. 254(2008), no. 10, 2534-2554. http://dx.doi.org/10.1016/j.jfa.2008.02.006
[9] M. Sangani Monfared, Character amenability of Banach algebras. Math. Proc. Cambridge Philos. Soc. 144(2008), no. 3, 697-706. http://dx.doi.org/10.1017/S0305004108001126

Department of Mathematical Sciences, University of Oulu, Oulu 90014, Finland
e-mail: mahmoud.filali@oulu.fi
Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4 e-mail: monfared@uwindsor.ca

[^0]: Received by the editors March 27, 2011; revised June 7, 2011.
 Published electronically February 3, 2012.
 The second author was partially supported by NSERC
 AMS subject classification: $46 \mathrm{H} 15,46 \mathrm{H} 25,13 \mathrm{~N} 15$.
 Keywords: Banach algebras, π-invariance, derivations, representations

