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Abstract
In the November 2016 U.S. presidential election, many state-level public opinion polls, particularly in the

Upper Midwest, incorrectly predicted the winning candidate. One leading explanation for this pollingmiss is

that the precipitous decline in traditional polling response rates led to greater reliance on statisticalmethods

to adjust for the corresponding bias—and that these methods failed to adjust for important interactions

between key variables like educational attainment, race, and geographic region. Finding calibration weights

that account for important interactions remains challengingwith traditional surveymethods: raking typically

balances themargins alone, while post-stratification, which exactly balances all interactions, is only feasible

for a small number of variables. In this paper, we propose multilevel calibration weighting, which enforces

tight balance constraints for marginal balance and looser constraints for higher-order interactions. This

incorporates some of the benefits of post-stratification while retaining the guarantees of raking. We then

correct for the bias due to the relaxed constraints via a flexible outcomemodel; we call this approach “double

regression with post-stratification.” We use these tools to re-assess a large-scale survey of voter intention in

the 2016 U.S. presidential election, finding meaningful gains from the proposed methods. The approach is

available in the multical R package.

Keywords: public opinion, survey weighting, calibration, post-stratification

1 Introduction

Given the precipitous decline in response rates for traditional polling approaches and increased

reliance on possibly nonrepresentative convenience samples, a pressing statistical question in

modern public opinion research is how to find surveyweights that appropriately adjust for higher-

order interactions between key variables. Traditional approaches, like raking, can perform poorly

with even a moderate number of characteristics, typically balancing marginal distributions while

failing to balance higher-order interactions. By contrast, post-stratification, which in principle

exactly balances all interactions, is only feasible for a small number of variables. And, while

approaches like multilevel regression and post-stratification (MRP; Gelman and Little 1997) use

outcome modeling to overcome this, they do not produce a single set of survey weights for

all outcomes and can lead to unchecked extrapolation away from the data. Fortunately, recent

research onmodern survey calibration (e.g., Chen, Li, andWu 2020; Guggemos and Tillé 2010) and

on balancing weights for causal inference (e.g., Hirshberg andWager 2021; Zubizarreta 2015) offer

promising paths forward.

Building on these advances, we propose two principled approaches to account for higher-

order interactions when estimating population quantities from non-probability samples. First,

we propose multilevel calibration weighting, which exactly balances the first-order margins and
approximately balances interactions, prioritizing balance in lower-order interactions over higher-
order interactions. Thus, this approach incorporates some of the benefits of post-stratification

while retaining the guarantees of the common-in-practice raking approach. And unlike outcome

modeling approaches like MRP, multilevel calibration weights are estimated once and applied to

all survey outcomes, an important practical constraint in many survey settings.
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In some cases, however, multilevel calibration weighting alone may be insufficient to achieve

good covariate balance on all higher-order interactions, possibly leading to bias; or researchers

might only be focused on a single outcome of interest. For this, we propose double regressionwith
post-stratification (DRP), which combines multilevel calibration weights with outcome modeling,
taking advantage of flexible modern predictionmethods to estimate and correct for possible bias

from imperfect balance. When the weights alone achieve good balance on higher-order interac-

tions, the adjustment from the outcome model is minimal. When the higher-order imbalance is

large, however, the bias correction will also be large and the combined estimator will rely more

heavily on the outcome model. We characterize the numerical and statistical properties of both

multilevel calibration weighting and the combined DRP estimator.

With these tools in hand, we consider the question of the failure of state-level polls in the

2016 U.S. presidential election. Kennedy et al. (2018) show that many 2016 surveys failed to

accurately account for the shift in public opinion among white voters with no college education,

particularly in the Midwestern region of the country, indicating that failing to adjust for the

interactionbetweenkeyvariablesof education, race, andgeographic region resulted in substantial

bias. We evaluate whether accounting for this higher-order interaction of race, education level,

and geographic region can, retrospectively, improve public opinion estimates in the final publicly

available preelectionPewpoll.We show that themultilevelweights substantially improvebalance

in interactions relative to raking and ad hoc post-stratification and that further bias correction
through DRP canmeaningfully improve estimation.

Our proposed approach builds on two important advances in both modern survey methods

and in causal inference. First, there has been a renewedpush to find calibrationweights that allow

for approximate balance on covariates, rather than exact balance (Guggemos and Tillé 2010; Park
and Fuller 2009; Zubizarreta 2015). Second, several recent approaches combine suchweightswith

outcomemodeling, extending classical generalized regression estimators in survey sampling and

doubly robust estimation in causal inference (e.g., Chen et al. 2020; Hirshberg andWager 2021); we
view our proposed DRP approach as a particular implementation of such augmented balancing

weights. We give more detailed reviews in Sections 2.2 and 3.2.

The paper proceeds as follows: Section 2 describes the notation and estimands, and formally

describes various common survey weighting procedures such as raking and post-stratification.

Section 3 characterizes the estimation error for arbitrary weighting estimators to motivate our

multilevel calibration procedure, then describes the procedure. Section 4 proposes the DRP

estimator and analyzes its numerical and statistical properties. Section 5 uses these procedures in

the application. The methods we develop here are available in the multical R package.

1.1 2016 U.S. Presidential Election Polling
While national public opinion polls for the November 8, 2016 U.S. presidential election were, on

average, some of themost accurate in recent public opinion polling, state-level polls were notable

in their failure to accurately predict the winning candidate, particularly in the Upper Midwest.

These state-level errors in turn led public opinion researchers to incorrectly predict the winner

of the electoral college. Kennedy et al. (2018) attribute these errors to three main sources: (1) a
late swing among undecided voters toward Trump, (2) failure to account for non-response related

to education level, particularly among white voters, and (3) to a lesser degree, failure to properly

predict the composition of the electorate.

While all three of these concerns are important for survey practitioners, our analysis focuses on

addressing concern (2) by allowing for deep interactions among important covariates, including

race, education level, and region. To isolate this concern, we combine two high-quality surveys

from before and after the 2016 election. We begin with the October 16, 2016 Pew survey of 2,062
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Figure 1. Percentage of the population that is represented in the survey, beginning with education and suc-
cessively interacting with income, religion, race, a binary for self-reported female, age, party identification,
born-again Christian status, and region.

respondents, the final public release of Pew’s election polling (Pew Research Center 2016).1 The

primary outcome is respondents’ “intent to vote” for each major party. We combine this with the

44,909 respondents in the 2016 Congressional Cooperative Election Study (CCES) postelection

survey, a large, high-quality public opinion survey that accurately captures electoral outcomes at

the state level (see Ansolabehere and Schaffner 2017). Here, the primary outcome is respondents’

“retrospective” vote for eachmajor party candidate.2

The combined Pew and CCES observations form a “population” of size N = 46,971, where

observations from the Pew survey are coded as respondents and observations from the CCES

are coded as nonrespondents. Using this target, rather than the ground truth defined by the

actual electoral outcomes, helps to address concern (3) above. Specifically, the CCES validates

voters against Secretaries of State voter files, allowing us to use known voters for whom we have

measured auxiliary covariates to define our target population.

Our goal is to adjust the respondent sample for possible non-response bias from higher-order

interactions and assess whether the adjusted estimates are closer to the ground truth. Figure 1

shows the eight auxiliary variables we consider, measured in both the Pew and CCES surveys. All

eight variables are codedas discrete,with thenumber of possible levels ranging from two tonine.3

Ideally, wewould adjust for all possible interactions of these variables, via post-stratification. This

is infeasible, however; there are 12,347 possible combinations, far greater than the n = 2,062

respondents in our survey. Figure 1 shows the percentage of the population that is represented

in the survey as we progressively include—and fully interact—more covariates. With a single

covariate, education (six levels), each cell has at least one respondent. When including all eight

covariates, the non-empty cells in the sample represent less than a quarter of the population.

This motivates our search for alternative adjustment methods that account for higher-order

interactions in a parsimonious way, prioritizing adjustment for strong interactions.

2 Background and Setup

2.1 Notation and Estimands
We consider a finite population of N individuals indexed i = 1, . . . ,N . We observe the outcome

Yi for units that respond to the survey. Define a binary variable Ri that denotes inclusion in the

1 Since our survey is from mid-October, we cannot account for concern (1) above, a late break toward Trump among
undecided voters, which may contribute to remaining residual bias.

2 Data and code to replicate this analysis are available in Ben-Michael, Feller, and Hartman (2023).
3 These are (i) education (six levels), (ii) income (nine levels), (iii) race (four levels), (iv) a binary for self-reported female (two
levels), (v) age (four levels), (vi) party ID (three levels), (vii) born again Christian (two levels), and (viii) region (five levels).
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survey, where Ri = 1 indicates that unit i responds; n =
∑

i Ri is the total number of respondents.

This response variable can include respondents to a probability sample or a convenience sample.

These response variables Ri are the only random component of our setup, and all expectations,

variances, and probability statements will be with respect to the randomness in the response

variables. In addition, each individual is also associated with a set of d categorical covariates
Xi1, . . . ,Xid , where the �th covariate is categorical with J� levels, so that the vector of covariates is

Xi ∈ [J1] × · · · × [Jd ].4

Rather than consider these variables individually, we rewrite the vector Xi as a single categor-

ical covariate, the cell for unit i, Si ∈ [J ], where J ≤ J1 × · · · × Jd is the number of unique levels in

the target population.5 While we primarily consider a fixed population size N and total number of
distinct cells J, in Section C of the Supplementary Material, we extend this setup to an asymptotic
framework where both the population size and the number of cells can grow. With these cells,

we can summarize the covariate information. We denoteN P ∈ �J as the population count vector
with N P

s =
∑

i 1{Si = s}, and nR ∈ �J as the respondent count vector, with nR
s =

∑
i Ri1{Si = s}.

While the population count N P
s > 0 for every cell s, the respondent count nR

s may be equal to

zero. We assume that we have access to these cell counts for both the respondent sample and the

population.

Finally, for each cell s, we consider a set of binary vectorsD(k )
s that denote the cell in termsof its

kth order interactions, and collect the vectors into matricesD(k ) = [D(k )
1 . . .D

(k )
J ] ′, and into one

combined J × J designmatrixD = [D(1), . . . ,D(d )]. This is the usual design matrix for interaction

terms in linear models, with the rows corresponding to unique cells, rather than units. It can be

constructed using the model.matrix command in the R programming language. Figure A.1 in the
Supplementary Material shows an example ofDwith three covariates from our running example:

a binary for self-reported female, discretized age, and party identification.

Our goal is to estimate the population average outcome, which we can write as a cell-size
weighted average of the within-cell averages, that is,

μ ≡
1

N

N∑
i=1

Yi =
J∑

s=1

N P
s

N
μs , where μs ≡

1

N P
s

∑
Si=s

Yi . (1)

To estimate the population average, we rely on the average outcomesweobservewithin each cell.

For cell s, the responder average is

Ȳs ≡
1

nR
s

∑
Si=s

RiYi . (2)

We invoke the assumption of missingness at random within cells, so that the cell responder

averages are unbiased for the true cell averages (Rubin 1976).

ASSUMPTION 1 (Missing at randomwithin cells) For all cells s = 1, . . . , J , �
[
Ȳs | n

R
s

]
= μs .

We denote the propensity score as P (Ri = 1) ≡ πi and the probability of responding conditional

on being in cell s as π(s ) ≡ 1
N P
s

∑
Si=s πi . For a probability sample, πi denotes the joint probability

of both selection into the survey and responding. The analyst knows and controls the selection

probabilities but does not know the probability of response given selection. For a convenience

4 We focus on categorical covariates because it is common to only have population counts at this level, and continuous
covariates are often coarsened. However, our method can be adapted for continuous covariates by incorporating more
structure. For example, by considering a polynomial basis expansion to include higher-order moments, both marginally
and jointly for interactions.

5 Note that while there are atmost J1× · · ·× Jd levels, somemay never appear in the target population and sowe drop them
from the definition of the cell.
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sample, πi is the unknown probability of inclusion in the sample. For both cases, the overall

propensity score πi is unknown. We assume that this probability is nonzero for all cells.

ASSUMPTION 2. π(s ) > 0 for all s = 1, . . . , J .

These assumptions allow us to identify the overall population average using only the observed

data. However, in order for Assumption 1 to be plausible, we will need the cells to be very fine-

grained and have covariates that are quite predictive of nonresponse and the outcome. As we

will see below, this creates a trade-off between identification and estimation: the former becomes

moreplausiblewithmore fine-grained information,whereas the latter becomesmoredifficult (see

also D’Amour et al. 2020).

2.2 Review: Raking and Post-Stratification
We first consider estimating μ by taking a weighted average of the respondents’ outcomes, with

weights γ̂i for unit i. Because the cells are the most fine-grained information we have, we will
restrict theweights tobeconstantwithineachcell. Researchers typically facea trade-off,discussed

below, between feasibility of the cell-level estimator, known as post-stratification, and imposing

modeling assumptions to address sparsity concerns, such as through calibration weighting. Our

goal is to parsimoniously balance the feasibility advantage of calibration with the nonparametric

bias-reduction of post-stratification. In particular, we leverage the fact that first-order coefficients

typically explain more variation in outcome and response models than higher-order interactions

(Cox 1984), and so mitigating bias can be accomplished by enforcing balance on these first-order

terms and allowing approximate balance on higher-order interactions.

We start by denoting the estimatedweight for cell s as γ̂(s ) and estimate the population average
μ via

μ̂ (γ̂) ≡
1

N

N∑
i=1

Ri γ̂iYi =
1

N

∑
s

nR
s γ̂(s )Ȳs . (3)

If the individual probabilities of responding were known, we could choose to weight cell S by the
inverse of the propensity score, 1

π(s )
. Since the propensity score π(s ) is unknown, researchers can

estimate π(s ) via π̂(s ) and weight cell s by the inverse estimated propensity score γ̂(s ) = 1
π̂(s )

.

Post-stratificationweights estimate the propensity score as the proportion of the population in

cell s that responded, nRs
N P
s
, leading to γ̂ps(s ) =

N P
s

nRs
. Under Assumption 1, these post-stratification

weights give an unbiased estimator for the population average μ. However, in practice post-

stratification faces feasibility constraints due to sparsity—this estimator is only defined if there is at

least one responderwithin each cell, which is unlikelywith even amoderate number of covariates.

For example, in Figure 1, cells corresponding to nearly one quarter of the population are empty

when post-stratifying on only five of our eight covariates.6

An alternative, calibration, chooses weights so that the weighted distribution of covariates
exactly matches that of the full population, which identifies the population average under a

modeling assumption called linear ignorability (Hartman, Hazlett, and Sterbenz 2021). A com-

mon implementation, raking on margins, matches the marginal distribution by solving a con-
vex optimization problem that finds the minimally “disperse” weights that satisfy this balance

constraint (Deming and Stephan 1940; Deville and Särndal 1992; Deville, Särndal, and Sautory

1993). For example, raking on the margins ensures that the percentage of female, the percentage

6 Researchers can partly address this by coarsening covariates, although how to do so is not straightforward while still
meeting Assumption 1, and the problem persists with even a moderate number of coarsened covariates. Researchers can
also redefine the target population to only include those cells represented in the sample, however, thismay greatly change
the interpretation of the results depending on the response pattern.
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of Democrats, Independents, and Republicans, and so forth for our eight covariates all match

the target population; however, it would not ensure that the pairwise interactions are matched.

Bias is mitigated so long as these higher-order interactions are not important to the outcome or

response model. Calibration thus addresses feasibility concerns by focusing on balancing lower-

order interactions, which are less likely to contain empty cells. For example, in Figure 1, focusing

on three-way interactions and below would retain nearly the whole population.

Specifically, starting with baseline weights q (s ) for cell s, calibration finds weights that solve

min
γ

∑
s

nR
s f (γ(s ),q (s ))

subject to
∑
s

D(1)
s nR

s γ(s ) =
∑
s

D(1)
s N P

s

L ≤ γ(s ) ≤ U � s = 1, . . . , J ,

(4)

where the function f :�×�→�+, in the first equation, is ameasureofdissimilarity. Somechoices

include the scaled and squared distance f (γ(s ),q (s )) = 1
2q (s )

(γ(s )− q (s ))2 and the KL divergence

f (γ(s ),q (s ))= γ(s ) log γ(s )
q (s )

. Commonchoices for baselineweights, q (s ), includeprobabilityweights

when they are known (e.g., Deville and Särndal 1992), or estimated inverse propensity weights.

Below we will use uniform weights q (s ) = N
n , for which the dissimilarity measures reduce to

standard notions of the spread of the weights: the scaled and squared distance becomes the

variance of the weights and the KL divergence becomes the entropy of the weights. As we will

see below, the variance of theweights is directly related to the variance of theweighting estimate,
and so is a natural choice of penalty.

The secondequationencodes the calibration constraints, or theweighted surveymoments that

must exactly match the target population. In addition to the dispersion penalty in the objective,

in the third equation, we constrain the weights to be between a lower bound L = 0 and an upper

boundU =∞, which restricts the normalized cell weights, 1
N γ(s )nR

s to be in the J −1 simplex. This

ensures that the imputed cell averages are in the convex hull of the respondents’ values and so

do not extrapolate, and that the resulting estimator μ̂(γ̂) is between the minimum and maximum

sample outcomes.7

Note that the general calibration procedure can also include exact constraints on higher-order

interaction terms, and including all interactions recovers the post-stratification weights. We use

the raking and post-stratification nomenclature to distinguish between calibrationweightingwith
first-order margins and with all interactions. Several papers have proposed “soft” or “penalized”

calibration approaches to relax the exact calibration constraint in Equation (4), allowing for

approximate balance in some covariates (see, e.g., Rao and Singh 1997; Park and Fuller 2009;

Guggemos and Tillé 2010; Gao, Yang, and Kim 2023). Our multilevel calibration approach below

can be seen as adapting the soft calibration approach to full post-stratification.

Before turning to our proposal for balancing higher-order interactions, we briefly describe

some additional approaches. Chen, Valliant, and Elliott (2019) and McConville et al. (2017) discuss
model-assisted calibration approaches which rely on the LASSO for variable selection. Caughey

and Hartman (2017) select higher-order interactions to balance using the LASSO. Hartman et al.
(2021) provide a kernel balancing method for matching joint covariate distributions between

non-probability samples and a target population. Linzer (2011) provides a latent class model for

estimating cell probabilities andmarginal effects in highly-stratified data.

Finally, in Section 4, we also discuss outcome modeling strategies as well as approaches that

combine calibration weights and outcome modeling. A small number of papers have previously

7 If we allow unbounded extrapolation and set L = −∞ and U = ∞, the resulting estimator will be equivalent to linear
regression weights from a linear regression of the outcome on first-order indicatorsD (1) (Ben-Michael et al. 2021).

Eli Ben-Michael et al. � Political Analysis 70

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
3.

9 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2023.9


explored this combination for non-probability samples. Closest to our setup is Chen et al. (2020),
who combine inverse propensity score weights with a linear outcome model and show that the

resulting estimator is doubly robust. Related examples include Yang, Kim, and Song (2020), who

give high-dimensional results for a related setting; and Si et al. (2020), who combine weighting
and outcomemodeling in a Bayesian framework.

3 Multilevel Calibration: Approximate Post-Stratification

We now proposemultilevel calibration weights, which bridge the gap between post-stratification
and raking on themargins. First, we inspect the finite-sample estimation error andmean squared

error (MSE) of theweighting estimator μ̂(γ̂) for a set ofweights γ̂ that are deterministic functions of

the cell counts nR , differentiating the impact of imbalance in lower- and higher-order terms on the

bias. Importantly, we note that first-order terms typically explain more variation in the outcome

and response process than higher-order terms. We then use our decomposition to find weights

that control the components of the MSE by approximately post-stratifying while maintaining
raking on the margins, thus leveraging the advantages of both raking and post-stratification.

3.1 Estimation Error
We begin by inspecting the estimation error μ̂(γ)−μ for weights γ. Define the residual for unit i as
εi ≡Yi − μSi , and the average respondent residual in cell s as ε̄s =

1
nRs

∑
Si=s Ri εi . The estimation

error decomposes into a term due to imbalance in the cell distributions and a term due to

idiosyncratic variation within cells:

μ̂ (γ̂)−μ =
1

N

∑
s

(
nR
s γ̂(s )−N P

s

)
×μs︸�����������������������������︷︷�����������������������������︸

imbalance in cell distribution

+
1

N

∑
s

nR
s γ̂(s )ε̄s︸��������������︷︷��������������︸

idiosyncratic error

. (5)

By Assumption 1, which states that outcomes aremissing at randomwithin cells, the idiosyncratic

error will be zero on average, and so the bias will be due to imbalance in the cell distribution. By

Hölder’s inequality, we can see that the MSE, given the number of respondents in each cell, is

�
[
(μ̂ (γ̂)−μ)2 | nR

]
=

1

N 2

(∑
s

(
nR
s γ̂(s )−N P

s

)
μs

)2
︸��������������������������������︷︷��������������������������������︸

bias2

+
∑
s

(
nR
s

N

)2
γ̂(s )2σ2

s︸�����������������︷︷�����������������︸
variance

≤
1

N 2

∑
s

μ2s ×
∑
s

(
nR
s γ̂(s )−N P

s

)2
︸�������������������︷︷�������������������︸
imbalance in cell distribution

+σ2
∑
s

(
nR
s

N

)2
γ̂(s )2︸������������������︷︷������������������︸

noise

,

(6)

whereσ2
s = Var(Ȳs | n

R ) andσ2 =maxs σ
2
s . We therefore have two competing objectives if wewant

to control the MSE for any given realization of our survey. To minimize the bias, we want to find

weights that control the imbalance between the true and weighted proportions within each cell.

Tominimize the variance,wewant to find “diffuse”weights so that the sumof the squaredweights

is small.

The decomposition above holds for imbalance measures across all of the strata, without

taking into account their multilevel structure. In practice, we expect cells that share features to

have similar outcomes on average. We can therefore have finer-grained control by leveraging

our representation of the cells into their first-order marginals D(1)
s and interactions of order
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k,D(k )
s . To do this, consider the infeasible population regression using theD(k )

s representation as

regressors,

min
η

N∑
i=1

(
Yi −

d∑
k=1

D(k )
Si

·ηk

)2
. (7)

With the solution to this regression, η∗ = (η∗
1, . . . ,η

∗
d ), we can decompose the population average

in cell s based on the interactions between the covariates, μs =
∑d

k=1D
(k )
s ·η∗

k .
8

This decomposition in terms of the multilevel structure allows us to understand the role of

imbalance in lower- and higher-order interactions on the bias. Plugging this decomposition into

Equation (6), we see that the bias term in the conditional MSE further decomposes into the level

of imbalance for the kth-order interactions weighted by the strength of the interactions:

�
[
(μ̂ (γ̂)−μ)2 | nR

]
=

1

N 2

(
d∑

k=1

η∗
k ·

∑
s

(
nR
s γ̂(s )−N P

s

)
D(k )

s

)2
+

∑
s

(
nR
s

N

)2
γ̂(s )2σ2

s

≤
1

N 2

(
d∑

k=1

��η∗
k

��
2

�����∑
s

(
nR
s γ̂(s )−Ns

)
D(k )

s

�����
2

)2
+σ2

∑
s

(
nR
s

N

)2
γ̂(s )2.

(8)

Equation (8) formalizes the benefits of raking on the margins as in Equation (4). If there is an

additive functional form with no influence from higher-order interaction terms—so η∗
k = 0 for all

k ≥ 2—then rakingwill yieldanunbiasedestimator. Even if the “maineffects” are stronger thanany

of the interaction terms and so the coefficients on the first-order terms, ‖η∗
1‖2, are large relative to

the coefficients for higher-order terms, raking can remove a large amount of the bias and so it is

often seen as a good approximation (Mercer, Lau, and Kennedy 2018). However, ignoring higher-

order interactions entirely can lead to bias. We therefore propose to find weights that prioritize

main effects while still minimizing imbalance in interaction terms when feasible.

3.2 Multilevel Calibration
Wenowdesigna convexoptimizationproblemthat controls the conditionalMSEon the right-hand

side of Equation (8). To do this, we apply the ideas and approaches developed for approximate

balancing weights (e.g., Hirshberg, Maleki, and Zubizarreta 2019; Ning, Sida, and Imai 2020; Wang

andZubizarreta 2020; Xu and Yang 2022; Zubizarreta 2015) to theproblemof controlling for higher-

order interactions, using our MSE decomposition as a guide. We find weights that control the

imbalance in all interactions in order to control the bias, while penalizing the sum of the squared

weights to control the variance. Specifically, we solve the following optimization problem:

min
γ∈�J

d∑
k=2

1

λk

�����∑
s

D(k )
s nR

s γ(s )−D(k )
s N P

s

�����
2

2︸������������������������������������������︷︷������������������������������������������︸
approximate higher-order balance

+
∑
s

nR
s

(
γ(s )−

N

n

)2
︸������������������︷︷������������������︸

variance penalty

subject to
∑
s

D(1)
s nR

s γ(s ) =
∑
s

D(1)
s N P

s︸���������������������������������︷︷���������������������������������︸
raking constraint

L ≤ γ(s ) ≤ U �s = 1, . . . J ,

(9)

8 As we describe above, if we consider up to three-way interactions of age, gender, and educational attainment, the
coefficients capture the main effects and the pair-wise second- and third-order interactions in explaining vote choice.
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where the λk are hyper-parameters. Note that the optimization problem is on the scale of the

population counts rather than the population proportions. This follows the bound on the bias in

Equation (8); categories and interactionswith larger population countsD(k )′N P contributemore

to the bias. With a common hyper-parameter, thismeans that higher-order interactions or smaller

categories—which have lower population counts—will have less weight by design.

We can view this optimization problemas adding an additional objective optimizing for higher-

order balance to the usual raking estimator in Equation (4) with the scaled squared dissimilarity

function and uniform baseline weights. As with the raking estimator, the multilevel calibration

weights are constrained to exactly balance first-order margins. Subject to this exact marginal
constraint, theweights thenminimize the imbalance in kth-order interactions for all k = 2, . . . ,d . In

this way, the multilevel calibration weights approximately post-stratify by optimizing for balance

in higher-order interactions rather than requiring exact balance in all interactions as the post-

stratificationweights do. Following the bias–variance decomposition in Equations (6) and (8), this

objective is penalized by the sumof the squaredweights. Aswith the raking estimator, we can also

replace the variance penalty with a different penalty function, including penalizing deviations

from known sampling weights following Deville and Särndal (1992). A benefit of the variance

penalty is that Equation (9) is a quadratic program (QP) that can be solved efficiently via first-

order methods (Boyd et al. 2010). We use OSQP, an efficient first-order method developed by
Stellato et al. (2020).
Variations on themeasure of approximate higher-order balance are also possible. Equation (8)

uses the Cauchy–Schwarz inequality to relate the sum of the squared imbalances in kth-order
interactions to thebias.Wecan insteaduseHölder’s inequality to relate themaximal imbalancevia
the L∞ norm. Using this measure in Equation (9) would find weights that minimize the imbalance

in the worst-balanced kth-order interaction, related to the proposal from Wang and Zubizarreta

(2020). We could also solve a variant of Equation (9) without the multilevel structure encoded by

theD(k )
s variables. This would treat cells as entirely distinct and perform no aggregation across

cells while approximately post-stratifying. From our discussion in Section 3.1, this would ignore

the potential bias gains from directly leveraging the multilevel structure. Finally, in Section B of

the Supplementary Material, we inspect the Lagrangian dual of this optimization problem and

show that the weights are a form of propensity score weights with a multilevel GLM propensity

score model.

An important component of the optimization problem are the hyper-parameters λk for k =

2, . . . ,d . They control the relative priority that balancing the higher-order interactions receives in

the objective in an inverse relationship, and define a bias–variance trade-off. If λk is large, then

the weights will be more regularized and the kth-order interaction terms will be less prioritized.
In the limit as all λk →∞, no weight is placed on any interaction terms, and Equation (9) reduces

to raking on the margins. Conversely, if λk is small, more importance will be placed on balancing

kth-order interactions. For example, if λ2 = 0, then the optimization problemwill rake onmargins

and second-order interactions. As all λk → 0, we recover post-stratification weights, if they exist.

The trade-off between bias and variance can be viewed as one between balance and effective

sample size. Improving the balance decreases the bias, but comes at the expense of increasing

variance by decreasing the effective sample size. In practice, we suggest explicitly tracing out this

trade-off. For a sequence of potential hyper-parameter values λ(1),λ(2), . . ., set all of the hyper-

parameters to be λk = λ(j ). We can then look at the two components of the objective in Equation

(9), plotting the level of imbalance
∑d

k=2

���∑s D
(k )
s nR

s γ(s )−D(k )
s N P

s

���2
2
against the effective sample

size neff =
(
∑

s n
R
s γ̂(s ))

2∑
s n

R
s γ̂(s )

2 . After fully understanding this trade-off, practitioners can choose a common

λ somewhere along the curve. For example, in our analysis in Section 5, we choose λ to achieve

95% of the potential balance improvement in higher-order terms of λ = 0 relative to raking.
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4 Double Regression with Post-Stratification

So far we have focused on multilevel calibration, with weights that exactly match the first-order

marginals between the weighted sample and the full population, while approximately balancing

higher-order interactions. This approach is independent of the outcomes and sowe can use a sin-

gle set of weights to estimate the population average formultiple different outcomes. However, in

somecases, itmaynot bepossible to achieve goodcovariate balanceonhigher-order interactions,

meaning that our estimatesmay still be biased. We can address this by specializing to a particular

outcome and by explicitly using outcome information to estimate and correct for the bias.

Outcome models for adjustment are widely used in the study of public opinion in Political

Science. Multilevel regression with post-stratification (MRP), in particular, is often used to obtain

subnational estimates of public opinion on issues such as climate change (e.g., Howe et al. 2015)
and support for gay rights (e.g., Lax and Phillips 2009) and for the study of policy responsiveness

(e.g., Tausanovitch and Warshaw 2014). We begin by reviewing outcome modeling and then

propose DRP.

4.1 Using an Outcome Model for Bias Correction
A common alternative to the weighting approach above is to estimate the population average μ

using an outcome regression modelm(xi ) to predict the outcome given the covariates, averaging

over the predictions m̂(xi ). When observations are in discrete cells, this is equivalent to taking the

modeled regression estimates of the cell averages, μ̂s , and post-stratifying them to the population

totals as (Gelman and Little 1997):

μ̂omp =
1

N

∑
i

m̂(xi ) =
1

N

∑
s

N P
s μ̂s , (10)

where μ̂s = 1/ns
∑

i :Si=s m̂(xi ) is the cell-level average prediction, and where “omp” denotes

outcome modeling and post-stratification. For example, we could obtain a prediction from our

model of vote choice in each eight-way interacted cell in our running example, and obtain an

overall estimate for vote choice by weighting these by the population proportion in each cell. By

smoothing estimates across cells, outcome modeling gives estimates of μ̂s even for cells with no

respondents, thus sidestepping the primary feasibility problem of post-stratification. We discuss

particular choices of outcome regression model in Section 4.2.

Heuristically, for weights γ̂, we can use an outcome regression model to estimate the bias

(conditional on the cell counts) due to imbalance in higher-order interactions by taking the

difference between the outcome regressionmodel estimate for the population and a hypothetical

estimate with population cell counts nR
s γ̂(s ):

b̂ias = μ̂omp−
1

N

∑
s

nR
s γ̂(s )μ̂s =

1

N

∑
s

μ̂s ×
(
N P

s −nR
s γ̂(s )

)
. (11)

This uses the outcome model to collapse the imbalance in the J cells into a single diagnostic.
Our main proposal is to use this diagnostic to correct for any remaining bias from the multilevel

calibrationweights.We refer to theestimator asDRP, as it incorporates two formsof “regression”—
a regression of the outcome μ̂(s ) and a regression of response γ̂(s ) through the dual problem, as

we discuss in Section B of the Supplementary Material. We construct the estimator using weights

γ̂(s ) and cell estimates μ̂s as
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μ̂drp (γ̂) = μ̂ (γ̂) +
1

N

∑
s

μ̂s ×
(
N P

s −nR
s γ̂(s )

)
︸�������������︷︷�������������︸
imbalance in cell s

= μ̂omp +
1

N

∑
s

nR
s γ̂(s )× (Ȳs − μ̂s )︸���︷︷���︸

error in cell s

.

(12)

The two lines in Equation (12) give two equivalent perspectives on how the DRP estimator adjusts

for imbalance. The first line begins with the multilevel calibration estimate μ̂(γ̂) and then adjusts

for the estimate of the bias using the outcomemodel 1
N

∑
s μ̂s (N

P
S
−nR

s γ̂(s )). If the population and

re-weighted cell counts are substantially different in important cells, the adjustment from theDRP

estimator will be large. On the other hand, if the population and re-weighted sample counts are

close in all cells then μ̂drp(γ̂) will be close to μ̂(γ̂). In the limiting case of post-stratification where

all the counts are equal, the two estimators will be equivalent, μ̂drp(γ̂ps) = μ̂(γ̂ps). The second line

instead starts with the outcome regression estimate, μ̂omp, and adjusts the estimate based on the

error within each cell. If the outcome model has poor fit in cells that have large weight, then the

adjustment will be large. This estimator is a special case of augmented approximate balancing

weightsestimators (e.g.,HirshbergandWager2021) and is closely related togeneralized regression

estimators (Cassel, Sarndal, andWretman 1976), augmented IPWestimators (Chenetal.2020), and
bias-corrected matching estimators (Rubin 1976).

This DRP approach uses outcome information to reduce bias by adjusting for imbalance

remaining after weighting. To see this, we can again inspect the estimation error. Analogous

to Equation (5), the difference between the DRP estimator and the true population average is

μ̂drp (γ̂)−μ =
1

N

∑
s

(
nR
s γ̂(s )−N P

s

)
︸�������������︷︷�������������︸
imbalance in cell s

× (μ̂s −μs )︸���︷︷���︸
error in cell s

+
1

N

s∑
s=1

nR
s γ̂(s )ε̄s︸��������������︷︷��������������︸

noise

. (13)

Comparing to Equation (5), where the estimation error depends solely on the imbalance and

the true cell averages, we see that the estimation error for DRP depends on the product of the
imbalance from the weights and the estimation error from the outcome model. Therefore, if the

model is a reasonable predictor for the true cell averages, the estimation error will decrease.

In Section C of the Supplementary Material, we formalize this intuition via finite-population

asymptotic theory. We find that as long as the modeled cell averages estimate the true cell

averages well enough, the model and the calibration weights combine to ensure that the bias

will be small enough to conduct normal-basedasymptotic inference. Furthermore, the asymptotic

variance will depend on the variance of the residualsεi , which we expect to have much lower
variance than the raw outcomes. So asymptotically, the DRP estimator will also have lower

variance than the oracle Horvitz–Thompson estimator that uses the true response probabilities,

similar to other model-assisted estimators (Breidt and Opsomer 2017). We construct confidence

intervals for the population total μ based on these asymptotic results. First, we start with a plug-in

estimate for the variance,

V̂ =
1

N 2

n∑
i=1

Ri γ̂(Si )
2(Yi − μ̂Si )

2. (14)

We then construct approximate level α confidence intervals via μ̂drp(γ̂)± z1−α/2
√
V̂ , where z1−α/2

is the 1−α/2 quantile of a standard normal distribution.
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4.2 Choosing an Outcome Model for Bias Correction
The choice of outcomemodel is crucial for bias correction. As we discussed in Section 3, we often

believe that the strata have important hierarchical structure where main effects and lower-order

interactions aremore predictive than higher-order interactions. We consider two broad classes of

outcome model that accommodate this structure: multilevel regression outcome models, which

explicitly regularize higher-order interactions; and tree-based regressionmodels, which implicitly

regularize higher-order interactions. Section C of the Supplementary Material gives technical

conditions on the outcome regression model under the finite-population asymptotic framework

above. We require these regularized models to estimate the true relationship sufficiently well—

that is, the regression error of the cell-level estimates
∑

s (μs − μ̂s )
2 must decrease to zero at a

particular rate as the population and sample size increases—depending on how the total number

of cells and the population size relate.

4.2.1 Multilevel OutcomeModel. We first considermultilevelmodels, which have a linear form as μ̂mrs =

η̂mr ·Ds , where η̂
mr are the estimated regression coefficients (Gelman and Little 1997; Ghitza and

Gelman 2013). MRP directly post-stratifies thesemodel estimates, using the coefficients to predict

the value in the population:

μ̂mrp = η̂mr ·
1

N

∑
s

N P
s Ds .

This is closely related to the multilevel calibration approach in Section 3.2. If we set L = −∞ and

U = ∞ in Equation (9)—and so allow for unbounded extrapolation—the resulting estimator will

be equivalent to using themaximuma posteriori (MAP) estimate of η̂mr, with regularization hyper-
parameters λ(k ) (Ben-Michael et al. 2021). In contrast, the DRP estimator only uses the coefficients
to adjust for any remaining imbalance after weighting,

μ̂drp(γ̂) = μ̂(γ̂)+ η̂mr ·

(
1

N

∑
s

Ds

(
N P

s −nR
s γ̂(s )

))
.

This performs bias correction. When we use the MAP estimate of a multilevel outcomemodel, the

corresponding DRP estimator is itself a weighting estimator where the outcome regressionmodel

directly adjusts the weights:

γ̃(s ) = γ̂(s )+
(
N P −diag(nR )γ̂

) ′
D

(
D′diag(nR )D+Q

)−1
Ds ,

whereQ is the prior covariancematrix associatedwith themultilevel model (Breidt and Opsomer

2017). While the multilevel calibration weights γ̂ are constrained to be nonnegative, DRP weights

allow for extrapolation outside the support of the data (Ben-Michael et al. 2021).

4.2.2 Trees and General Weighting Methods. More generally, we can consider an outcome regression

model that smooths out the cell averages, using a weighting function between cells s and s ′,

W (s, s ′), to estimate the population cell average, μ̂s =
∑

s ′W (s, s ′)nR
s ′Ȳs ′ . A multilevel model is a

special case that smooths the cell averages bypartially pooling together cellswith the same lower-

order features. In general, theDRPestimator is again aweighting estimator,with adjustedweights

γ̃(s ) = γ̂(s )+
∑
s ′

W (s, s ′)(N P
s ′ −nR

s ′ γ̂(s
′)).

Here the weights are adjusted by a smoothed average of the imbalance in similar cells. In the

extreme case, where the weightmatrix is diagonal with elements 1
nR
, the DRP estimate reduces to

the post-stratification estimate, as above.
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One important special case is tree-based methods such as those considered by Montgomery

andOlivella (2018) andBisbee (2019). Thesemethods estimate the outcome via bagged regression

trees, such as random forests, gradient boosted trees, or Bayesian additive regression trees. These

approaches can be viewed as data-adaptive weighting estimators where the weight for cell s and
s ′,W (s, s ′), is proportional to the fraction of trees where cells s and s ′ share a leaf node (Athey,

Tibshirani, and Wager 2019). Therefore, the DRP estimator will smooth the weights by adjusting

them to correct for the imbalance in cells that share many leaf nodes.

4.2.3 Bias–Variance Trade-Off. The key difference between OMP and DRP is what role the outcome

model plays, and how one chooses the model to negotiate the bias–variance trade-off. Because

outcome model-style estimators only use the outcome model, the performance of the outcome
model completely determines the performance of the estimator. For example, in a multilevel

model,wewant to includehigher-order interaction terms inorder to reduce thebias.However, this

can increase the variance to an unacceptable degree, so we choose a model with lower variance

and higher bias.

In contrast, with DRP, the role of the model is to correct for any potential bias remaining after

multilevel calibration. Becausewe can only approximately post-stratify, this bias-correction is key.
It also means that DRP is less reliant on the outcomemodel, which only needs to adequately per-

form bias correction. Therefore, the bias–variance trade-off is different for DRP, and we prioritize

bias over variance. By including higher-order interactions or deeper trees, the model will be able

to adjust for any remaining imbalance in higher-order interactions after weighting.

5 2016 U.S. Presidential Election Polls

Wenow turn to evaluating the proposed estimators in the context of 2016U.S. presidential polling,

as described in Section 1.1. We begin by showing balance gains from the multilevel calibration

procedure and inspecting how bias correction through DRP affects both the point estimates and

confidence intervals. We then evaluate the performance of multilevel calibration and DRP when

predicting state-specific vote counts from the national preelection survey of vote intention. In

Section E of the Supplementary Material, we conduct simulations calibrated to our application

and show that there are sizeable reductions in RMSE due to multilevel calibration over raking on

the margins, and that bias reduction can provide large improvements.

We compute population cell counts N P
s from the post-2016 election CCES poll, limiting to

those who voted in the election as indicated by a flag for a verified voter from the Secretaries of

State files, and weighting according to provided CCES survey weights. We consider the balance

of three different weighting estimators. First, we rake on margins for eight variables measured in

both surveys, equivalent to solving (9) with λk → ∞ for k ≥ 2 and L = 0,U = ∞. Next, we create

post-stratification weights. Due to the number of empty cells, we limit to post-stratifying on four

variables, collapsed intocoarser cells.9 Last,webalanceup to sixth-order interaction terms, setting

a common hyper-parameter λk = λ for k = 2, . . . ,6 and λk → ∞ for k = 7,8.10 To select λ, we

solve (9) for a series of 40 potential values, equally spaced on the log scale, tracing out the bias–

variance trade-off in Figure 2.Ona2020 Intel-basedMacBookPro, finding theweights across these

40 λ values takes 2.5 minutes, warm-starting the optimization for each value of lambda with the

optimalweightsat thepreviousvalue.We find thatavalueofλ =12.8achieves95%of thepotential

imbalance reduction while having an effective sample size 30% larger than the least-regularized

solution. We also consider bias-correcting themultilevel weights with DRP with (a) a fourth-order

ridge regression model and (b) gradient boosted trees, both tuned with cross validation.

9 We collapse income and age to three levels, education to a binary indicator for greater than a high school degree, and race
to a binary indicator for white.

10 Seventh- and eighth-order interactions are unlikely to be meaningful given the lower-order interactions, but including
them substantially increases the memory and time complexity of solving (9).
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Figure 2.Differencebetween the re-weighted sample and thepopulation,measured as the square root of the
sumof squared imbalances for interactions k = 1, . . . ,6, versus the effective sample size. Imbalancemeasures
are scaled as the percent reduction in imbalance relative to raking onmargins.

Figure 3. Distribution of covariate imbalance for interactions up to order 4, measured as the difference
between the weighted and target counts, divided by the target count.

Figure 3 shows the imbalance when weighting by these three approaches for interactions up

to order 4. To place the balance on the same scale, we divide the difference between the re-

weighted sample and the population in the jth interaction of order k by the population count,���∑s D
(k )
sj
(nRs γ̂(s )−N

P )
���∑

s D
(k )
sj

N P
s

. By design, both the raking and multilevel calibration weights exactly balance

first-ordermargins; however, post-stratifying on a limited set of collapsed cells does not guarantee

balance on themargins of the uncollapsed cells, due tomissing values. Themultilevel calibration

weights achieve significantly better balance on second-order interactions than do the raking

weights or thepost-stratificationweights. For higher-order interactions, these gains are still visible

but less stark, as it becomes more difficult to achieve good balance.

This improvement in balance comes at some cost to variance. Figure 4a shows the empirical

CDF of the respondent weights for the three approaches. The multilevel calibration weights that

balance higher-order interactions have a greater proportion of large weights, with a longer tail
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Figure 4. (a) Distribution of weights. Dashed line indicates a uniform adjustment N
n . (b) Point estimates and

approximate 95% confidence intervals. Thick dashed line is theweighted CCES estimate, and thinner dashed
lines indicate the lower and upper 95% confidence limits.

than raking or collapsed post-stratification. These largeweights lead to a smaller effective sample

size. Themultilevel calibrationweights yield an effective sample size of 1,099 for a design effect of

1.87, while raking and the collapsed post-stratification weights have effective sample sizes of 1,431

and 1,482, respectively.

Figure 4b plots the point estimates and approximate 95% confidence intervals for the mul-

tilevel calibration and DRP approaches, along with the estimated Republican vote share from

the weighted CCES sample. Confidence intervals are computed as μ̂drp(γ̂)± z1−0.025
√
V̂ , with the

standard error estimate from Equation (14). The different weights result in different predictions of

the vote share, ranging from a point estimate of 42.5% for raking to 47.5% for post-stratification.

Additionally, the somewhat smaller effective sample size formultilevel calibrationmanifests itself

in the standard error, leading to slightly larger confidence intervals. The DRP estimators, bias

correcting with either ridge regression or gradient boosted trees, have similar point estimates

to multilevel calibration alone. This indicates that the remaining imbalances in higher-order

interactionsafterweighting inFigure3donot lead to largeestimatedbiases.However, by including

an outcomemodel the DRP estimators significantly reduce the standard errors.

To empirically validate the role of balancing higher-order interactions, we use the national

preelection Pew survey to predict Republican vote sharewithin each state. The preelection survey

was designed as a national survey and so there are substantial differences between the sample
and the state-level totals. For each state, we compute the population count vector N P from the

weighted CCES, subsetted to the state of interest. Here, we use a common λ = 1. We impute the

Republican vote share for that state via weighting alone and DRP with gradient boosted trees,

balancing interactions up to order 6; we also include OMP estimates using gradient boosted

trees for the outcome model. We consider both restricting the sample respondents to be in the

same region as the state and including all sample respondents. Figure 5 shows the absolute

bias and RMSE across the 50 states as the order increases from raking on first-order margins to

approximately balancing sixth-order interactions. There are substantial gains to bias-correction

through DRP when raking on the margins in terms of both bias and variance. Balancing higher-

order interactions also improves estimation over raking alone. And, while the relative improve-

ment of DRP overmultilevel calibration diminishes aswe balance higher-order interactions, these

gains are still apparent, though small. This indicates that the additional bias-correction from

gradient-boosted trees has less impact than balancing higher-order interactions does. Finally,

while not restricting respondents by region results in lower bias across the 50 states, the higher

RMSE indicates the estimates of state vote share are poor but averaging out. In Figure A.2 in the
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Figure 5. Absolute bias and MSE when imputing Republican vote share in 50 states from the national Pew
survey, using multilevel calibration weights and DRP with gradient boosted trees, balancing margins up
to sixth-order interactions, restricting to respondents in the same region and unrestricted by region. Blue
dashed lines show the bias and RMSE for an OMP using gradient boosted trees for comparison.

Supplementary Material, we show the individual DRP estimates of state-level Republican vote

share balancing up to sixth-order interactions and using gradient boosted trees, with respondents

restricted to the same region. We see that DRP is biased in the negative direction, somewhat

underestimating Republican vote share in the majority of states.

6 Discussion

As recent public opinion polling has shown, differential non-response across groups defined by

fine-grained higher-order interactions of covariates can lead to substantial bias. While, ideally, we

would address such nonresponse by post-stratifying on all interactions of important covariates

simultaneously, the cost of collecting the necessary sample size is prohibitive, especially with low

response rates. In practice, analysts circumvent this via ad hoc approaches, such as only adjusting
for first-order marginal characteristics or collapsing cells together.

In this paper, we provide two alternative approaches, multilevel calibration weighting and
DRP, which provide principled ways to combine fine-grained calibration weighting and modern
machine-learning prediction techniques. The multilevel calibration weights improve on existing

practice by approximately post-stratifying in a data-driven way, while at least ensuring exact

raking on first-order margins. DRP then takes advantage of flexible regression methods to further

adjust for differences in fine-grained cells in a parsimonious way. For groups where the weights

successfully adjust for differences in response rates, the DRP estimate is driven by the weights;

for groups that remain over- or under-represented, DRP instead relies on a flexible regression

model to estimate and adjust for remaining non-response bias. Through theoretical, numerical,

and simulation results, we find that these approaches can significantly improve estimation.

Specifically, adjusting for higher-order interactions with multilevel calibration has much lower

bias than ignoring them by only raking on the first-order margins. Incorporating flexible outcome

estimators such as multilevel regression or tree-based approaches in our DRP estimator further

improves upon weighting alone.

However, our proposal is certainly not a panacea, and important questions remain. First, while

we choose the value of the hyper-parameters by tracing out the bias–variance trade-off, it might

be preferable to select them via data-adaptive measures. For example, Wang and Zubizarreta
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(2020) propose a cross-validation style approach that takes advantage of the Lagrangian dual

formulation. It may be possible to use such approaches in this setting.

Second, the key assumption is that outcomes are missing at random within cells. While we

never expect this tobe entirely true, it allowsus tomakeprogress onestimation, andwith granular

enough groups, we may hope that this assumption is approximately true. It is important then to

characterize how our conclusions would change if this assumption is violated, and the response

and the outcome are correlated even within cells. Hartman and Huang (2022) discuss this form

of sensitivity analysis for survey weights that is readily adaptable to this context. In a similar vein,
some covariates (or their interactions)may be irrelevant to the response probability, inwhich case

enforcing balance on themwould lead to decreased precision with no reduction in bias. To avoid

this, researchers can combine our proposals with a covariate selection procedure (e.g., Egami and

Hartman 2021) that can reduce the number of covariates to balance.

Third,withmanyhigher-order interactions, it is difficult to find good informationonpopulation

targets. Wemay have to combine various data sources collected in different manners, or estimate

unknown cells in the target population (Kuriwaki et al. 2021), and uncertainty in the population
targets can also lead to increased variance (see Caughey et al. (2020) for a recent review). Fourth,
during the survey process, we can obtain very detailed auxiliary information on survey respon-

dents thatwecannotobtain for thepopulation, evenmarginally. Incorporating this sortof auxiliary

information into the estimation procedure will be important to future work.

Finally, non-responsebias is far from theonly difficultywithmodern surveys.We therefore view

multilevel calibration and DRP as only one part of the analyst’s toolkit, supplementing design and

data considerations.
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