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//-SIMPLE //-MODULE ALGEBRAS 

BY 

MIRIAM COHEN 

ABSTRACT. Let A be an //-simple commutative //-module algebra, 
with AH = k and dim* H < dim* A < o°. We show that this implies that 
A # H is isomorphic to Mn{k), a central simple algebra. We apply this to 
characterize certain group graded algebras, algebras acted upon by a group 
as automorphisms, or by a nilpotent Lie algebra as derivations. 

Let k be a field, H a Hopf algebra over k and A an //-module algebra over k. The 
smash product of A by H, A # / / , is the generalization of the classical crossed product 
A * G, where G is a group of automorphisms of A. If A is a Galois extension of /:, then 
it is well known that A * G is simple [1]. This result was extended by S weedier to smash 
products of field extensions A, by certain "Galois" Hopf algebras [6, Thm. 10.1.1]. In 
this note we extend S weedier's result from fields to //-simple commutative algebras, 
using a similar method of proof. 

We apply the theorem to characterize finite dimensional commutative algebras A 
acted upon by either: 

(a) H = kG, G acting as automorphisms on A. 
(b) H = (kG)*, that is, A is G-graded. 
(c) / / = u(L), the restricted enveloping algebra of a nilpotent Lie algebra L, acting 

as derivations on A. 
where dim* H < dim* A, and AH = k. 

Let us recall that 

AH = {a E A\h-a = e(h)a, all h EH}, 

and that A is //-simple (//-semiprime) if A contains no nonzero //-stable ideals (//-
stable nilpotent ideals). 

THEOREM. Let H be a finite-dimensional Hopf algebra (not necessarily with an 
antipode), and A, a commutative n-dimensional, H-simple, H-module algebra such 
that AH = k and dim* H < n, then'. 

(a) dim* H = dim* A = n 
(b) A # H is a central simple algebra (isomorphic to M„(k)). 
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PROOF. Consider A (x)kA and A # H as A -modules via left multiplication. Further­
more, A is a left A # H module by: (a # h)-b = a(h-b). Define/: A ® A —» 
Hom^A # / / , A) by: 

(/(* ® *))(c # h) = flc(A't) = a((c # A)-ft). 

Since A is commutative, f(a ® £) is indeed an A-module map. Now, 

dim (Hoirie x (A # / / , A)) = dim // dim A < rc2, 
it * * 

and dim*(A ® A) = n2. Thus, if we prove that/is injective, it follows that dim* H = 
n (thus proving part (a)), and that/ is surjective. 

Knowing that/is surjective implies that A is a faithful A # //-module. To see this, 
let 0 j= x = 2c ; # hi E A # / / , where {/*,} is a &-basis for //; and c,w ^ 0 for some 
ra. Let g be the projection map to the m-th coefficient, then g E Hom^A # / / , A), and 
g(x) -=h 0. Since/is surjective, g = /(2/tf,- ® £,-), for some So,- ® bj E A ® A, and, 

0 * $(*) = / ( E <Z,;® bj)(2 Cx # h,). 
J ' 

Thus, for some / 

fia, ® *,)(S cf- # A,-) # 0. 

but this implies that at{x-bt) = a,(Se, # hi)-bt) =£ 0. We have shown that if x ^ 0 
then x-A =£ 0, that is, A is a faithful A # //-module. This in turn implies that A # // 
is isomorphic to a subalgebra of End*(A). But now, since dim* A # // = 
dim* End*A = A2, we deduce that A # H = End*(A) = M„(k), proving part (b). 

We prove now that/ is injective. Let 2a, ® bj E Ker/, let s E A and g E // , we 
show that 2a/ ® *(£•£,) E Ker/. Let c # A E A # // then, 

/ ( 2 */ ® *te-*/))](c # A) = 2 mch-isg-bi) 

= S X aic(hrs)(h2g-bi) 

= 1 l/fefl/®*/ 
(A) / 

(cA,-5 # A2g) - 0. 

Hence Sa, ® s(g-£,) E Ker/. If Ker/ # 0, let 0 * 2r
i=, a, ® b, E Ker/of shortest 

length with {a,} linearly independent. Let 

r 

a\®y+^cij® rrij E Ker/ 
7 = 2 

/ = W 

By the above, / is a nonzero //-stable ideal of A, which now equals A, since A is 
//-simple. Thus, we may assume that b\ = 1. Let /* E / / , then by the above, 
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2/= i a( 0 (h - e(h)) • bj E Kerf. This element is of shorter length since b\ = 1, and 
thus (/* - e(h))-bj = 0. So, (/z - e(h))-bj = 0 for each / and each h E H. That is, 
Z?z GAw = i for all /. Thus r = 1, and O ^ a 0 1 G Ker/. This is impossible however, 
for 

0 = [f(a ® 1)](1 # 1) = a * 0. 

Hence Ker/ = 0, and we are done. 
As an application we get: 

COROLLARY 2. Let G be a finite group acting as automorphisms on a \G \-torsion 
free, commutative, n-dimensional algebra with AG — k, and \G\ ^ n. Then the 
following are equivalent: 

(a) A is kG-semiprime 
(b) A is kG-simple 
(c)\G\ = n and A # kG = Mn(k) 
(d) A is semisimple 
(e) A is a direct sum of m fields, m < n. 

PROOF, (a) -> (b) If / ï 0 is a G-stable ideal then / H AG ï 0 by [3], but since 
AG — k, I must equal A. (b) —» (c) by the theorem, (c) —» (d) the Jacobson radical of 
A, 7(A), is a G-stable ideal, and hence J(A) # kG is an ideal of the simple ring 
A # kG. Thus J (A) — 0. (d) —» (e) since A is commutative and finite-dimensional, 
(e) —» (a) is obvious. 

If G is a finite group then A is G-graded if and only if A is a (&G)*-module algebra 
[4]. So saying that A is graded-simple (semiprime) means it is (&G)*-simple (semi-
prime), that is, A has non-trivial graded ideals (graded nilpotent ideals). Here AH = A,. 

COROLLARY 3. Lef G be a finite group, and A a commutative, n-dimensional, 
G-graded algebra with A, — k and \G\ ^ n. Then the following are equivalent: 

(a) A is graded-semiprime 
(b) A is graded-simple 
(c) \G\ = n and A # (kG)* = M„(k) 
(d) A = k*G (the classical crossed product), and G is abelian. 

PROOF, (a) => (b) by [5] and the fact that A, = k. (b) =$> (c) by the theorem, (c) => 
(d). Since A # (kG)* is simple, A is A # (kG)*—faithful (for AnnA#ikG)* (A) is an ideal 
of A # (kG)*). Hence, for each g E G, pg-A ± 0. This means that Ag i= 0 for each 
g EG. Hence by [5, Prop. 1.11] A = k*G. (d) => (a) is obvious. 

REMARK. A = k*G is semisimple if and only if A is |G|-torsion free. However, no 
such assumption is necessary for Corollary 3 to hold (unlike corollary 2). 

If L is a Lie algebra of derivations of A then AL = {a E A\£-a = 0, all ( E L}, and 
the Hopf algebra acting on A is U(L), the universal enveloping algebra of L. If 
ch(k) = /? and L is a restricted Lie algebra, then H = w(L), the restricted enveloping 
algebra. 
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COROLLARY 4. Let ch(k) = p, and let L be a nilpotent m-dimensional restricted Lie 
algebra acting as derivations on a commutative, n-dimensional algebra with AL = k 
and pm < n. Then the following are equivalent: 

(a) A is L-semiprime, 
(b) A is L-simple 
(c) pm = n and A # u(L) is simple. 

PROOF, (a) 4> (b) by [2, Cor. 1.9]. The rest follows as before. 
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