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EXACT DISTRIBUTIONS FOR REWARD
FUNCTIONS ON SEMI-MARKOV AND
MARKOV ADDITIVE PROCESSES
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Abstract

The distribution theory for reward functions on semi-Markov processes has been of
interest since the early 1960s. The relevant asymptotic distribution theory has been
satisfactorily developed. On the other hand, it has been noticed that it is difficult to find
exact distribution results which lead to the effective computation of such distributions.
Note that there is no satisfactory exact distribution result for rewards accumulated over
deterministic time intervals [0, t], even in the special case of continuous-time Markov
chains. The present paper provides neat general results which lead to explicit closed-
form expressions for the relevant Laplace transforms of general reward functions on
semi-Markov and Markov additive processes.
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1. Introduction

Markov chains, semi-Markov processes, and Markov additive processes are the stochastic
models most widely used in applications. Reward functions on such processes are of great
practical importance. We consider general reward functions on sample paths over deterministic
time intervals for semi-Markov and Markov additive processes. These involve rewards asso-
ciated with state transitions in their embedded Markov chains and linear rewards associated
with state sojourns. In the case of Markov additive processes, the reward functions also involve
linear rewards associated with state-indexed additive components. In particular, our reward
functions cover as special cases fundamental quantities such as (i) sojourns in subsets of states
(also called occupation times), (ii) weighted sojourns on the set of states (also called integral
functionals of a random process), and (iii) the number of visits to a subset of states, all during
a fixed time interval. The asymptotic theory for reward functions on Markov processes is very
well developed and is therefore not a subject of this paper. The exact distributions of reward
functions are of interest here. More specifically, of interest are those exact results which lead to
the effective computation of these distributions. Note that the availability of an explicit closed-
form expression for a Laplace transform of a function allows the effective computation of the
values of that function. Effective algorithms for numerical inversion of Laplace transforms,
including multidimensional ones, are available (see Choudhury et al. (1994) and Abate et al.
(1998)).
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There is a general, unifying approach for finding explicit closed-form expressions for the
Laplace transforms of distributions of rewards accumulated within certain passage times,
including the passage time from one state to another, or the same, state of the underlying
Markov chain. This approach follows from Stefanov’s (1995) results on semi-Markov and
Markov additive processes. More specifically, Stefanov (1995, Propositions 4.1 and 5.1) proved
in particular that the random quantities involved in the reward functions are components of
canonical statistics of general noncurved exponential families if the process is observed within
a first passage time from one state to another, or the same, state of the underlying Markov chain.
These results lead to an explicit closed-form expression for the joint Laplace transform of these
quantities (canonical statistics), based on basic analytical properties of exponential families of
distributions (see Barndorff-Nielsen (1978, p. 114)). Since both the first passage times between
states as well as the rewards accumulated within these passage times are linear functions of
these random quantities, we obtain an explicit closed-form expression for the joint Laplace
transform of any such first passage time, together with the accumulated reward within that
passage time. Stefanov (1995) assumed that the holding time distributions in the case of semi-
Markov processes belong to exponential families. The exponential families of distributions
cover most of the discrete and continuous distributions which are important from a practical
point of view. However, this restriction on the holding time distributions may be dropped, and
explicit closed-form solutions for the joint Laplace transforms of the aforementioned random
quantities follow from a method discussed in Stefanov (2000). The latter method is introduced
through a detailed solution of a related problem in the same reference.

The exact distribution theory for rewards accumulated within deterministic time intervals
has not been developed satisfactorily. For example, even for continuous-time Markov chains,
there is no satisfactory solution leading to the effective computation of cumulative probabilities
for reward functions. The literature on the exact distribution theory for reward functions is
wide ranging. We confine ourselves to mentioning some key early sources in the area. Note
that all available results on exact distributions usually involve matrix exponentials and/or other
quantities not easily computable. Very early results on special reward functions, for either semi-
Markov processes or Markov chains, can be found in Pyke (1961), Jewell (1963), McLean and
Neuts (1967), Darroch and Morris (1968), and Çinlar (1969). Integral functionals on Markov
processes were treated by Puri (1971), (1972). Sumita and Masuda (1987), Masuda and Sumita
(1987), (1991), and Masuda (1993) derived results on the Laplace transforms of general reward
functions. Sericola (1990), (2000) provided results on the exact distributions of sojourns and
occupation times for continuous-time Markov chains. More recently, Bladt et al. (2002) treated
a general reward function for continuous-time Markov chains.

In this paper we provide very neat identities linking relevant joint Laplace transforms
associated with reward functions accumulated within a deterministic time interval with joint
Laplace transforms associated with the counterparts of these reward functions accumulated
within passage times between the states of the underlying Markov chains. Explicit closed-form
expressions for the latter joint Laplace transforms (associated with such passage times) are
derivable using the approach discussed above. Also, our identities do not involve any unknown
quantities for the models considered. For example, in the case of a semi-Markov process,
these identities involve the Laplace transforms of the holding time distributions, which are
known. In the case of Markov additive processes they involve relevant Laplace transforms
associated with the one-dimensional distributions of their state-indexed additive components
(Lévy processes). The latter have simple explicit expressions if the additive components belong
to general exponential families of Lévy processes. It is worth mentioning that most Markov
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additive processes which are important from a practical point of view have additive components
from such families.

Finally, our results may be viewed in the spirit of other available results in the theory
of Markov processes which link Laplace transforms of transient characteristics with Laplace
transforms of first passage time characteristics. A good source of earlier results on the use of
transforms for analysis of Markov models is Howard (1971).

The paper is organized as follows. Markov renewal and semi-Markov processes are treated
in Section 2. Despite the equivalence between Markov renewal and semi-Markov processes, the
corresponding reward functions have to be treated individually because their time parameters
are different. Markov additive processes are treated in Section 3. To the best of the author’s
knowledge, the exact distribution theory for general reward functions on such processes has
not been treated in the literature. For simplicity of notation we often use the same symbol for
corresponding quantities in different Markov models. This will not confuse the reader because
each model is discussed in an individual section or subsection.

2. Markov renewal and semi-Markov processes

Consider a Markov renewal process (X, T ) = (X(n), T (n))n≥0, where X is a finite-state,
discrete-time Markov chain with state space {1, 2, . . . , m} and T is the so-called additive
component. It is assumed that 0 = T (0) < T (1) < · · · . The holding time in state j will
be identified by a random variable νj ; that is, the distribution of νj is equal to the conditional
distribution of T (n + 1) − T (n) given that X(n) = j . We assume that the Markov chain X

is irreducible. Let Y be the semi-Markov process associated with the Markov renewal process
(X, T ), that is,

Y (t) = X(n) if T (n) ≤ t < T (n + 1), t ∈ [0, ∞).

The following reward functions A(t) are of interest.

(i) For the semi-Markov process Y ,

A(t) =
m∑

i,j=1

ki,jNi,j (t) +
m∑

i=1

riTi(t), (2.1)

where Ni,j (t) is the number of one-step transitions from state i to state j of the semi-Markov pro-
cess Y (t) up to time t , Ti(t) is the sojourn time in state i up to time t (note that

∑m
i=1 Ti(t) = t),

and the ki,j and ri are real numbers. Without loss of generality, we will assume that the ri are
nonnegative numbers. More specifically, if we replace the ri above by ri − min1≤j≤m rj ,
then the new reward function, say Q(t), is related to A(t) through the identity Q(t) =
A(t) − t min1≤j≤m rj . The cumulative probabilities of Q(t) yield those of A(t), and vice
versa.

(ii) For the Markov renewal process (X, T ),

A(n) =
m∑

i,j=1

ki,jNi,j (n) +
m∑

i=1

riTi(n), (2.2)

where Ni,j (n) is the number of one-step transitions from state i to state j of the Markov
chain X within n steps, Ti(n) is the component of T (n) associated with the entries to state i

within n steps (with T (n) = ∑m
i=1 Ti(n)), and the ki,j and ri are real numbers. Again, without

loss of generality, the ri are assumed to be nonnegative numbers.
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Using the same notation Ni,j and Ti in both the Markov renewal case and the semi-Markov
case will not confuse the reader, since an integer argument n will be used in the Markov renewal
case and a continuous argument t will be used in the semi-Markov case.

Denote by L[f (x1, . . . , xd)] ≡ L[f ] the Laplace transform of a function f (x1, . . . , xd)

defined on R
d+, where R+ = [0, ∞), and by L[G(x1, . . . , xd)] ≡ L[G] the Laplace transform

of a probability measure G(x1, . . . , xd) on R
d , that is

L[f ](s1, . . . , sd) =
∫ ∞

0
· · ·

∫ ∞

0
exp

(
−

d∑
i=1

sixi

)
f (x1, . . . , xd) dx1 · · · dxd,

L[G](s1, . . . , sd) =
∫

Rd

exp

(
−

d∑
i=1

sixi

)
dG(x1, . . . , xd).

Also, L[Z](s) = E(e−sZ) will denote the Laplace transform of a random variable Z. The quan-
tities of interest are the Laplace transforms of the cumulative distribution functions FA(t)(a) =
P(A(t) ≤ a) and FA(n)(a) = P(A(n) ≤ a), that is,

L[FA(t)(a)](s1, s2) =
∫ ∞

0

∫ ∞

0
e−s1t−s2aFA(t)(a) dt da,

L[FA(n)(a)](s1, s2) =
∞∑

n=0

∫ ∞

0
e−s1n−s2aFA(n)(a) da.

For the sake of brevity, Pi (C) will stand for the conditional probability of an event C given that
the initial state is i, that is, Pi (C) = P(C | X(0) = i) = P(C | Y (0) = i).

2.1. The semi-Markov case

We consider the semi-Markov case first.
Denote by τi,j the waiting time to move from state i to state j in the discrete-time Markov

chain X. If i = j then τj,j (which is greater than 0) denotes the first return time to state j .
Thus, T (τi,j ) is the waiting time for the semi-Markov process Y to move from state i to state j .
Denote by A(T (τi,j )) the accumulated reward within that waiting time and by µT,A(τi,j )

the joint probability measure of T (τi,j ) and A(T (τi,j )). Recall that an explicit closed-form
expression for the Laplace transform, L[µT,A(τi,j )], of the joint probability measure µT,A(τi,j )

is derivable for each semi-Markov model (see Section 1).

Theorem 2.1. Let Y be the semi-Markov process introduced at the beginning of Section 2
and let A(t) be the reward function introduced in (2.1). The following expression, where
pi = P(Y (0) = i), holds for the Laplace transform of FA(t)(a) in terms of the Laplace
transforms of the joint probability measures µT,A(τi,j ) and the Laplace transforms of the
holding times νj :

L[FA(t)(a)](s1, s2) =
m∑

i=1

pi

m∑
j=1, j �=i

(1 − L[νj ](s1 + s2rj ))L[µT,A(τi,j )](s1, s2)

s2(s1 + s2rj )(1 − L[µT,A(τj,j )](s1, s2))

+
m∑

j=1

pj

1 − L[νj ](s1 + s2rj )

s2(s1 + s2rj )(1 − L[µT,A(τj,j )](s1, s2))
. (2.3)
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Proof. For the cumulative distribution function of A(t) we have

FA(t)(a) =
m∑

i,j=1

Pi (A(t) ≤ a, Y (t) = j) P(Y (0) = i).

Let τ
(k)
j be the time of the kth entry into state j of the discrete-time Markov chain X with

τ
(0)
j = 0, that is,

τ
(k)
j = inf{n > τ

(k−1)
j : X(n) = j}.

Of course, T (τ
(k)
j ) is the time of the kth entry into state j of the semi-Markov process Y . Hence,

FA(t)(a) =
∞∑

k=0

Pi (A(t) ≤ a, T (τ
(k)
j ) ≤ t < T (τ

(k+1)
j ), Y (t) = j) P(Y (0) = i). (2.4)

For the sake of brevity, we write

b
(k)
i,j (t, a) = Pi (A(t) ≤ a, T (τ

(k)
j ) ≤ t < T (τ

(k+1)
j ), Y (t) = j),

and note that

b
(k)
i,j (t, a) = Pi (A(T (τ

(k)
j )) ≤ a − rj (t − T (τ

(k)
j )), T (τ

(k)
j ) ≤ t < T (τ

(k+1)
j ), Y (t) = j)

since
A(t) = A(T (τ

(k)
j )) + rj (t − T (τ

(k)
j ))

if Y (s) = j for s ∈ [T (τ
(k)
j ), t]. Furthermore, denoting by ν

(k)
j the holding time in state j at

the kth visit to that state by the semi-Markov process Y , we note that, for k ≥ 1,

b
(k)
i,j (t, a) = Pi (A(T (τ

(k)
j )) ≤ a − rj (t − T (τ

(k)
j )), T (τ

(k)
j ) ≤ t, ν

(k)
j > t − T (τ

(k)
j ))

since {T (τ
(k)
j ) ≤ t, ν

(k)
j > t − T (τ

(k)
j )} = {T (τ

(k)
j ) ≤ t < T (τ

(k+1)
j ), Y (t) = j}. For k = 0,

we have
b

(0)
i,j (t, a) = Pi (A(T (0)) ≤ a − ri t, T (τ

(1)
j ) > t, Y (t) = j),

that is,

b
(0)
i,j (t, a) =

{
P(νj > t)1[0,∞)(a − rj t) if i = j ,

0 otherwise,

where 1[0,∞)(·) is the indicator function of the set [0, ∞). Conditioning on

(T (τ
(k)
j ), A(T (τ

(k)
j ))),

and bearing in mind that ν
(k)
j is independent of (T (τ

(k)
j ), A(T (τ

(k)
j ))), for k ≥ 1 we obtain

b
(k)
i,j (t, a) =

∫
P(ν

(k)
j > t − u1)1[0,∞)(t − u1)1[0,∞)(a − u2 − rj (t − u1))

× dµ
T (τ

(k)
j ),A(T (τ

(k)
j ))

(u1, u2), (2.5)
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where µ
T (τ

(k)
j ),A(T (τ

(k)
j ))

is the joint probability distribution of T (τ
(k)
j ) and A(T (τ

(k)
j )). Letting

ϕj (x, y) = P(νj > x)1[0,∞)(x)1[0,∞)(y − rj x), x, y ∈ R+,

we note that (2.5) can be written as

b
(k)
i,j (t, a) =

∫
ϕj (t − u1, a − u2) dµ

T (τ
(k)
j ),A(T (τ

(k)
j ))

(u1, u2),

that is, for k ≥ 1, b
(k)
i,j (t, a) is equal to the convolution of ϕj (t, a) and the probability measure

µ
T (τ

(k)
j ),A(T (τ

k)
j ))

. Therefore, for the Laplace transform,

L[b(k)
i,j ](s1, s2) =

∫ ∞

0

∫ ∞

0
e−s1t−s2ab

(k)
i,j (t, a) dt da,

of b
(k)
i,j (t, a) we obtain the following identity:

L[b(k)
i,j ](s1, s2) = L[ϕj ](s1, s2)L

[
µ

T (τ
(k)
j ),A(T (τ

(k)
j ))

]
(s1, s2).

It is a straightforward exercise to show that

L[ϕj (x, y)](s1, s2) = L[1 − Fνj
](s1 + s2rj )

s2
,

where Fνj
is the cumulative distribution function of νj , the holding time in state j . From basic

operational properties of Laplace transforms (see Brychkov et al. (1992, p. 98)) we find that
the Laplace transform, L[1 − Fνj

](s), of 1 − Fνj
is equal to (1 − L[νj ](s))/s, where L[νj ] is

the Laplace transform of the holding time νj , that is, L[νj ] = ∫ ∞
0 e−st dFνj

(t). Thus,

L[ϕj ](s1, s2) = 1 − L[νj ](s1 + s2rj )

s2(s1 + s2rj )
. (2.6)

Since the consecutive entry times to a fixed state form a sequence of regeneration times, for
k ≥ 1 we obtain

L
[
µ

T (τ
(k)
j ),A(T (τ

(k)
j ))

]
(s1, s2) = (L[µT,A(τj,j )](s1, s2))

k

if the initial state is j , and

L
[
µ

T (τ
(k)
j ),A(T (τ

(k)
j ))

]
(s1, s2) = L[µT,A(τi,j )](s1, s2)(L[µT,A(τj,j )](s1, s2))

k−1

if the initial state is i. Recall that τi,j is the first passage time from state i to state j in the
discrete-time Markov chain X. (Also recall the definition of µT,A(τi,j ) given prior to the
statement of Theorem 2.1.)
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Therefore (see (2.4) and recall the expression for b
(0)
i,j (t, a)), we obtain the following expres-

sion for the Laplace transform of FA(t)(a):

L[FA(t)(a)] =
m∑

i,j=1

∞∑
k=0

L[b(k)
i,j (t, a)] P(Y (0) = i)

=
m∑

i,j=1, i �=j

∞∑
k=1

L[ϕj ]L[µT,A(τi,j )](L[µT,A(τj,j )])k−1 P(Y (0) = i)

+
m∑

j=1

∞∑
k=0

L[ϕj ](L[µT,A(τj,j )])k P(Y (0) = j)

=
m∑

i,j=1, i �=j

L[ϕj ]L[µT,A(τi,j )]
1 − L[µT,A(τj,j )] P(Y (0) = i)

+
m∑

j=1

L[ϕj ]
1 − L[µT,A(τj,j )] P(Y (0) = j). (2.7)

Equation (2.3) is then derived by substituting into (2.7) the expression for L[ϕj ] found in (2.6).
The proof of Theorem 2.1 is thus complete.

In particular, from Theorem 2.1 we obtain the following corollary for the case of a continuous-
time Markov chain, that is, if the holding times at states are exponentially distributed with
holding time parameters λj ; recall that, in this case, L[νj ](s) = λj/(λj + s).

Corollary 2.1. The following identity holds if the underlying model (the semi-Markov pro-
cess Y ) is a finite-state, continuous-time Markov chain:

L[FA(t)(a)](s1, s2) =
m∑

i=1

pi

m∑
j=1, j �=i

L[µT,A(τi,j )](s1, s2)

s2(λj + s1 + s2rj )(1 − L[µT,A(τj,j )](s1, s2))

+
m∑

j=1

pj

1

s2(λj + s1 + s2rj )(1 − L[µT,A(τj,j )](s1, s2))
.

Here pi = P(Y (0) = i) and µT,A(τi,j ) is the joint probability measure of the waiting time
for the continuous-time Markov chain Y to move from state i to state j and the accumulated
reward within that waiting time.

Remark 2.1. (Discrete-time semi-Markov process.) Note that the statement of Theorem 2.1
also holds if the semi-Markov process considered has a discrete time parameter. That is, the
holding time distributions are discrete on the set of the nonnegative integers. To see this, just
replace the above integrals with respect to the time parameter with corresponding sums, and
notice that all the expressions derived above also apply in this case.

2.2. The Markov renewal case

Now consider the cumulative distribution function of A(n) for the Markov renewal case (ii).
We have

FA(n)(a) = P(A(n) ≤ a) =
m∑

i,j=1

Pi (A(n) ≤ a, X(n) = j) P(X(0) = i)

https://doi.org/10.1239/jap/1165505207 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505207


1060 V. T. STEFANOV

and, for each j ,

Pj (A(n) ≤ a, X(n) = j) =
∞∑
i=0

Pj (A(n) ≤ a, τ
(i)
j ≤ n < τ

(i+1)
j , X(n) = j),

where τ
(i)
j is again the ith entry time into state j by the discrete-time Markov chain X. In

analogy with the case considered in Subsection 2.1, we write

b
(i)
j (n, a) = Pj (A(n) ≤ a, τ

(i)
j ≤ n < τ

(i+1)
j , X(n) = j).

Note that

b
(i)
j (n, a) = Pj (A(τ

(i)
j ) ≤ a − rj (n − τ

(i)
j ), τ

(i)
j ≤ n < τ

(i+1)
j , X(n) = j)

= Pj (A(τ
(i)
j ) ≤ a − rj (n − τ

(i)
j ), τ

(i)
j ≤ n, h

(i)
j > n − τ

(i)
j ),

where h
(i)
j is the time spent in state j at the ith visit to that state by the discrete-time Markov

chain X. Conditioning on (τ
(i)
j , A(τ

(i)
j )), we obtain

b
(i)
j (n, a) =

∫
P(h

(i)
j > n−u1)1[0,∞)(n−u1)1[0,∞)(a−u2−rj (n−u1)) dµ

τ
(i)
j ,A(τ

(i)
j )

(u1, u2),

where µ
τ

(i)
j ,A(τ

(i)
j )

is the joint probability distribution of τ
(i)
j and A(τ

(i)
j ). In further analogy

with the preceding case, we write

ϕj (n, y) = P(h
(i)
j > n)1[0,∞)(y − rjn), n = 0, 1, . . . , y ∈ R+,

and note that

b
(i)
j (n, a) =

∫
ϕj (n − u1, a − u2) dµ

τ
(i)
j ,A(τ

(i)
j )

(u1, u2). (2.8)

For a function f (n, y), n ∈ {0, 1, . . .}, y ∈ R+, the Laplace transform is

L[f ](s1, s2) =
∞∑

n=0

∫ ∞

0
e−s1n−s2yf (n, y) dy.

In view of (2.8), for the Laplace transform L[b(i)
j ] = ∑∞

n=0

∫ ∞
0 e−s1n−s2ab

(i)
j (n, a) da we

obtain
L[b(i)

j ](s1, s2) = L[ϕj ](s1, s2)L
[
µ

τ
(i)
j ,A(τ

(i)
j )

]
(s1, s2).

It is a simple exercise to see that

L[ϕj ](s1, s2) = 1

s2

∞∑
n=0

e−(s1+s2rj )n P(hj > n) = 1 − L[hj ](s1 + s2rj )

s2(1 − e−(s1+s2rj ))
, (2.9)

where hj is the time spent at state j , at a visit to it, by the discrete-time Markov chain X and
L[hj ](s) = ∑∞

n=0 e−sn P(hj = n) is its Laplace transform. Noting that the distribution of
hj is geometric with support {1, 2, . . .} and probability of ‘success’ 1 − pj,j , where pj,j is
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the one-step transition probability from state j to itself in the discrete-time Markov chain X,
from (2.9) we obtain

L[ϕj ](s1, s2) = 1

s2(1 − pj,j e−s1−s2rj )
.

Therefore, in analogy with the preceding case and denoting by µτi,j ,A(τi,j ) the joint proba-
bility measure of τi,j and A(τi,j ), we arrive at the following result.

Theorem 2.2. Let (X, T ) be the Markov renewal process introduced at the beginning of
Section 2 and let A(n) be the reward function given in (2.2). The following identity holds
for the Laplace transform of FA(n)(a):

L[FA(n)(a)](s1, s2) =
m∑

i=1

pi

m∑
j=1, j �=i

L[µτi,j ,A(τi,j )](s1, s2)

s2(1 − pj,j e−s1−s2rj )(1 − L[µτj,j ,A(τj,j )](s1, s2))

+
m∑

j=1

pj

1

s2(1 − pj,j e−s1−s2rj )(1 − L[µτj,j ,A(τj,j )](s1, s2))
.

Here pi = P(X(0) = i) and µτi,j ,A(τi,j ) is the joint probability measure of the waiting time for
the discrete-time Markov chain X to move from state i to state j and the accumulated reward
within that waiting time.

Again recall that a general method for the derivation of explicit closed-form expressions for
the Laplace transforms L[µτi,j A(τi,j )] was discussed in Section 1 .

3. Markov additive processes

A Markov additive process is a two-dimensional Markov process (Z(t), V (t))t≥0 (t is a
continuous time parameter) on the state space I × R (I = {1, 2, . . . , m}), with the following
properties.

(a) The increments V (t1) − V (0), V (t2) − V (t1), . . . , V (tn) − V (tn−1), where t1 < t2 <

· · · < tn, are conditionally independent given Z(t1), . . . , Z(tn).

(b) The conditional distribution ofV (tk)−V (tk−1)given that bothZ(tk−1) = i andZ(tk) = j

depends only on tk − tk−1, i, and j .

We will assume that V (0) = 0. The process {Z(t)}t≥0 is a finite-state, continuous-time
Markov process and the process {V (t)}t≥0 is usually called the additive component of the
Markov additive process (Z, V ). Let

Vj (t) =
∫ t

0
1{Z(s)=j} dV (s), j = 1, 2, . . . , m,

where 1{Z(s)=j} is the indicator function of the event {Z(s) = j}. For an alternative and
equivalent definition of the Vj (t), see Stefanov (1995, p. 1088). Of course, V (t) = ∑m

j=1 Vj (t).
Also, the Vj are Lévy processes and the additive component V evolves as Vj during sojourns
of Z at state j (see Asmussen (2003, p. 310)). The finite-dimensional distributions of the Lévy
process Vj are determined by the distribution of the increment random variable Vj (t). We will
assume that the processes Vj are nonnegative, that is, 0 ≤ V (s) ≤ V (t) if s < t .
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The reward function of interest has the following general form:

A(t) =
m∑

i,j=1

ki,jNi,j (t) +
m∑

i=1

riSi(t) +
m∑

i=1

viVi(t).

Here Ni,j (t) is the number of one-step transitions from state i to state j of the Markov
process Z(t) up to time t , Si(t) is the sojourn time in state i of the Markov process Z(t)

up to time t , the vi are nonnegative numbers, and the ki,j and ri are real numbers. As in the
preceding cases we will assume, without loss of generality, that the ri are nonnegative numbers.

Let
b

(k)
i,j (t, a) = Pi (A(t) ≤ a, ρ

(k)
j ≤ t < ρ

(k+1)
j , Z(t) = j),

where ρ
(k)
j is the time of the kth entry to state j by the Markov process Z(t), and Pi (·) =

P(· | Z(0) = i). Note that

b
(k)
i,j (t, a)

= Pi (A(ρ
(k)
j ) ≤ a − rj (t − ρ

(k)
j ) − vj (Vj (t) − Vj (ρ

(k)
j )), ρ

(k)
j ≤ t < ρ

(k+1)
j , Z(t) = j)

since A(t) = A(ρ
(k)
j )+ rj (t −ρ

(k)
j )+vj (Vj (t)−Vj (ρ

(k)
j )) if Z(s) = j for s ∈ [ρ(k)

j , t]. Also,
denoting by ν

(k)
j the holding time in state j at the kth visit to that state by the continuous-time

Markov chain Z, note that, for k ≥ 1,

b
(k)
i,j (t, a) = Pi (A(ρ

(k)
j ) ≤ a − rj (t − ρ

(k)
j ) − vj (Vj (t) − Vj (ρ

(k)
j )), ρ

(k)
j ≤ t, ν

(k)
j > t − ρ

(k)
j )

since
{ρ(k)

j ≤ t, ν
(k)
j > t − ρ

(k)
j } = {ρ(k)

j ≤ t < ρ
(k+1)
j , Z(t) = j}.

Now, by conditioning on (ρ
(k)
j , A(ρ

(k)
j )), for k ≥ 1 we obtain

b
(k)
i,j (t, a) =

∫
H1[0,∞)(t − u1) dµ

ρ
(k)
j ,A(ρ

(k)
j )

(u1, u2), (3.1)

where

H = P

(
ν

(k)
j > t − u1, Vj (t) − Vj (ρ

(k)
j ) ≤ a − u2 − rj (t − u1)

vj

∣∣∣∣ ρ
(k)
j = u1, A(ρ

(k)
j ) = u2

)

(we assume here that vj > 0; for the case where vj = 0, see the comment made prior to the
statement of Theorem 3.1 below) and µ

ρ
(k)
j ,A(ρ

(k)
j )

is the joint probability distribution of ρ
(k)
j

and A(ρ
(k)
j ). Furthermore, note that

H = (1 − F
ν

(k)
j

(t − u1))FVj (t−u1)

(
a − u2 − rj (t − u1)

vj

)
(3.2)

(recall that by FX we denote the cumulative distribution function of a random variable X)
because the conditional distribution of the increment Vj (t) − Vj (ρ

(k)
j ) given that ρ

(k)
j = u1,

and assuming that ν
(k)
j > t − ρ

(k)
j (that is, Z(s) = j on the time interval [ρ(k)

j , t]), is equal to
the one-dimensional distribution of the Lévy process Vj at time t − u1, and ν

(k)
j is independent

of ρ
(k)
j and A(ρ

(k)
j ).
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Therefore, in view of (3.1) and (3.2), we find that

b
(k)
i,j (t, a) =

∫
ϕj (t − u1, a − u2) dµ

ρ
(k)
j ,A(ρ

(k)
j )

(u1, u2),

where

ϕj (t, a) = (1 − F
ν

(k)
j

(t))FVj (t)

(
a − rj t

vj

)
, t, a ∈ R+.

Recalling that ν
(k)
j is exponentially distributed with parameter λj , since the process Z is a

continuous-time Markov chain, we obtain

ϕj (t, a) = e−λj tFVj (t)

(
a − rj t

vj

)
. (3.3)

Thus,
L[b(k)

i,j (t, a)] = L[ϕj (t, a)]L[
µ

ρ
(k)
j ,A(ρ

(k)
j )

]
. (3.4)

Denote by ρi,j the waiting time for the Markov chain Z to move from state i to state j . In
analogy with the preceding cases, since the ρ

(k)
j form a sequence of regeneration times, we find

that

L
[
µ

ρ
(k)
j ,A(ρ

(k)
j )

] =
{

(L[µρj,j ,A])k if Z(0) = j ,

L[µρi,j ,A](L[µρj,j ,A])k−1 if Z(0) = i �= j ,
(3.5)

where µρi,j ,A is the joint probability measure of ρi,j and the reward accumulated within that
waiting time.

It is not a difficult exercise to find the Laplace transform of ϕj (t, a). More specifically, by
applying basic operational properties of Laplace transforms in the case where the distribution
of Vj (t) is continuous, we obtain

L[ϕj (t, a)](s1, s2) =
∫ ∞

0

∫ ∞

0
e−s1t−s2ae−λj tFVj (t)

(
a − rj t

vj

)
da dt

=
∫ ∞

0
e−s1t−s2rj te−λj tL[FVj (t)(a/vj )](s2) dt

=
∫ ∞

0
vj e−s1t−s2rj te−λj tL[FVj (t)(a)](s2) dt

=
∫ ∞

0

vj e−s1t−s2rj te−λj t

s2
L[Vj (t)](s2) dt

= vjL[L[Vj (t)](s2)](λj + s1 + s2rj )

s2
, (3.6)

where L[Vj (t)](s2) is the Laplace transform of the random variable Vj (t) and L[L[Vj (t)](s2)]
is the Laplace transform of L[Vj (t)](s2), the latter viewed as a function of t with s2 fixed. If
the distribution of Vj (t) is discrete and its state space is the set of nonnegative integers, we
can easily recover the same expression as (3.6). Furthermore, it is easy to see that, in the case
k = 0, for the b

(k)
i,j (t, a) we obtain

b
(0)
i,j (t, a) =

⎧⎨
⎩e−λj tFVj (t)

(
a − rj t

vj

)
if i = j ,

0 otherwise.
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Note that b
(0)
i,j (t, a) = ϕj (t, a) (see (3.3)). Therefore, in view of (3.4) and (3.5), for each i

and j we have

L[b(k)
i,j (t, a)] =

{
L[ϕj (t, a)](L[µρj,j ,A])k, i = j, k ≥ 0,

L[ϕj (t, a)]L[µρi,j ,A](L[µρj,j ,A])k−1, i �= j, k ≥ 1.

At a certain stage we assumed that vj > 0. Note that, for vj = 0 this case reduces to that of
a continuous-time Markov chain. Therefore, we arrive at the following theorem.

Theorem 3.1. Let A(t) be the reward function introduced at the beginning of this section. For
each i and each j such that vj > 0, the following identities hold:

Pi (A(t) ≤ a, Z(t) = j)

= L−1
[
vjL[L[Vj (t)](s2)](λj + s1 + s2rj )L[µρi,j ,A](s1, s2)

s2(1 − L[µρj,j ,A](s1, s2))

]
(t, a), i �= j,

Pj (A(t) ≤ a, Z(t) = j)

= L−1
[
vjL[L[Vj (t)](s2)](λj + s1 + s2rj )

s2(1 − L[µρj,j ,A](s1, s2))

]
(t, a).

Here L−1 denotes the inverse Laplace transform, the Laplace transform L[L[Vj (t)](s2)] is as
introduced in (3.6), and, recall, µρi,j ,A denotes the joint distribution of the first waiting time ρi,j

and the accumulated reward within that waiting time. Furthermore, for each i and each j such
that vj = 0, the following identities hold:

Pi (A(t) ≤ a, Z(t) = j) = L−1
[

L[µρi,j ,A](s1, s2)

s2(λj + s1 + s2rj )(1 − L[µρj,j ,A](s1, s2))

]
(t, a),

i �= j,

Pj (A(t) ≤ a, Z(t) = j) = L−1
[

1

s2(λj + s1 + s2rj )(1 − L[µρj,j ,A](s1, s2))

]
(t, a).

Recall that a general method, based on Stefanov (1995), was discussed in Section 1 for the
derivation of explicit closed-form expressions for the Laplace transforms L[µρi,j ,A].

If, for each j , the Lévy process Vj is a member of a natural exponential family of Lévy
processes (for a formal definition of these families, see Küchler and Sørensen (1997, p. 7)), then
the Laplace transform L[L[Vj (t)](s2)](s) has an explicit simple expression. More specifically,
let the process Vj belong to such a family. That is, for each t , assume that the distribution of
the random variable Vj (t) has a density, with respect to a σ -finite measure, of the form

fVj (t)(x) = exp(θj x − tkj (θj )),

where θj is a parameter called the natural parameter of this exponential family of densities and
kj (θj ) is usually called either a cumulant transform (Küchler and Sørensen (1997, p. 8)) or a
log Laplace transform (Brown (1986, p. 1)). From the basic properties of exponential families,
we have L[Vj (t)](s) = exp(t[kj (θj − s) − kj (θj )]). Thus, we find that

L[L[Vj (t)](s2)](λj + s1 + s2rj ) =
∫ ∞

0
exp(−t[λj + s1 + s2rj + kj (θj ) − kj (θj − s2)]) dt

= 1

λj + s1 + s2rj + kj (θj ) − kj (θj − s2)
.
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For example, if the process Vj is a Poisson process with a rate parameter λ, then the natural
parameter is θj = ln λ and the cumulant transform is given by kj (θj ) = eθj − 1 (see Küchler
and Sørensen (1997, p. 9)).
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