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ABSTRACT

This survey paper presents the basic concepts of cooperative game theory, at an
elementary level. Five examples, including three insurance applications, are
progressively developed throughout the paper. The characteristic function, the
core, the stable sets, the Shapley value, the Nash and Kalai-Smorodinsky
solutions are defined and computed for the different examples.

1. INTRODUCTION

Game theory is a collection of mathematical models to study situations of
conflict and/or cooperation. It attempts to abstract out those elements that are
common to many conflicting and/or cooperative encounters and to analyse
these mathematically. Its goal is to explain, or to provide a normative guide
for, rational behaviour of individuals confronted with strategic decisions or
involved in social interaction. The theory is concerned with optimal strategic
behaviour, equilibrium situations, stable outcomes, bargaining, coalition for-
mation, equitable allocations, and similar concepts related to resolving group
differences. The prevalence of competition in many human activities has made
game theory a fundamental modeling approach in such diversified areas as
economics, political science, operations research, and military planning.

In this survey paper, we will review the basic concepts of multiperson
cooperative game theory, with insurance applications in mind. The reader is
first invited to ponder the five following basic examples. Those examples will
progressively be developed throughout the paper, to introduce and illustrate
basic notions.

Example 1. United Nations Security Council

Fifteen nations belong to the United Nations Security Council: five permanent
members (China, France, the United Kingdom, the Soviet Union, and the
United States), and 10 nonpermanent members, on a rotating basis (in
November 1990: Canada, Colombia, Cuba, Ethiopia, Finland, the Ivory
Coast, Malaysia, Romania, Yemen, and Zaire). On substantive matters,
including the investigation of a dispute and the application of sanctions,
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decisions require an affirmative vote from at least nine members, including all
five permanent members. If one permanent member votes against, a resolution
does not pass. This is the famous "veto right" of the "big five," used
hundreds of times since 1945. This veto right obviously gives each permanent
member a much larger power than the nonpermanent members. But how much
larger? •

Example 2. Electoral representation in Nassau County [in LUCAS (1981)]

Nassau County, in the state of New York, has six municipalities, very unequal
in population. The County Government is headed by a Board of six Super-
visors, one from each municipality. In an effort to equalize citizen representa-
tion, Supervisors are given different numbers of votes. The following table
shows the situation in 1964.

District Population % No of Votes %

Hempstead 1 }
Hempstead 2 1
Oyster Bay
North Hempstead
Long Beach
Glen Cove

778,625

285,545
213,335

25,654
22,752

1,275,801

57.1

22.4
16.7
2.0
1.8

31
31
28
21
2
2

115

27.0
27.0
24.3
18.3
1.7
1.7

A simple majority of 58 out of 115 is needed to pass a measure. Do the citizens
of North Hempstead and Oyster Bay have the same political power in their
Government? •

Example 3. Management of ASTIN money [LEMAIRE (1983)]

The Treasurer of ASTIN (player 1) wishes to invest the amount of 1,800,000
Belgian Francs on a short term (3 months) basis. In Belgium, the annual
interest rate is a function of the sum invested.

Deposit Annual Interest Rate

0-1,000,000 7.75%
1,000,000-3,000,000 10.25%
3,000,000-5,000,000 12%

The ASTIN Treasurer contacts the Treasurers of the International Actuarial
Association (I.A.A. - player 2) and of the Brussels Association of Actuaries
(A.A.Br. - player 3). I.A.A. agrees to deposit 900,000 francs in the common
fund, A.A.Br. 300,000 francs. Hence the 3-million mark is reached and the
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interest rate will be 12%. How should the interests be split among the three
associations? The common practice in such situations is to award each
participant in the fund the same percentage (12%). Shouldn't ASTIN however
be entitled to a higher rate, on the grounds that it can achieve a yield of
10.25% on its own, and the others only 7.75%? •

Example 4. Managing retention groups [BORCH (1962)]

[For simplicity, several figures are rounded in this example]. Consider a group
of «, = 100 individuals. Each of them is exposed to a possible loss of 1, with a
probability qy = 0.1. Assume these persons decide to form a risk retention
group, a small insurance company, to cover themselves against that risk. The
premium charged will be such that the ruin probability of the group is less than
0.001. Assuming that the risks are independent, and using the normal
approximation of the binomial distribution, the group must have total funds
equal to

Pl = «!<?,+ 3V«i?iO-«i) = 10 + 9 = 19.

Hence each person will pay, in addition to the net premium of 0.10, a safety
loading of 0.09.

Another group consists of n2 = 100 persons exposed to a loss of 1 with a
probability q2 = 0.2. If they form their own retention group under the same
conditions, the total premium will be

P2 = n2q2 + 3^n2q2(\-q2) = 20+12 = 32.

Assume now that the two groups decide to join and form one single
company. In order to ensure that the ruin probability shall be less than 0.001,
this new company must have funds amounting to

pn = nlql+n2q2 + 1 ^Jnxqx(\

= 10 + 20+15

= 45.

Since Pl2 = 45 < Px + P2 = 51, the merger results in a decrease of 6 of the
total safety loading. How should those savings be divided between the two
groups? A traditional actuarial approach would probably consist in dividing
the safety loading in proportion to the net premiums. This leads to premiums
of 15 and 30, respectively. The fairness of this rule is certainly open to
question, since it awards group 1 most of the gain accruing from the formation
of a single company. In any case the rule is completely arbitrary. •

Example 5. Risk exchange between two insurers

Insurance company C, owns a portfolio of risks, with a mean claim amount of
5 and a variance of 4. Company C2's portfolio has a mean of 10 and a variance
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of 8. The two companies decide to explore the possibility to conclude a risk
exchange agreement. Assume only linear risk exchanges are considered. Denote
by jcj and x2 the claim amounts before the exchange, and by yx and y2 the
claim amounts after the exchange. Then the most general form of a linear risk
exchange is

y2= <xxx+(\-P)x2-K

where K is a fixed (positive or negative) monetary amount. If K = 5 a - 10/?,
then E(yx) = E(xx) = 5 and E{y2) = E(x2) = 10. So the exchange does not
modify expected claims, and we only need to analyse variances. Assuming
independence,

Var(j,) = 4 ( l - a ) 2 + 8yff2

Var(j2) = 4<x2 + 8 ( l - / 0 2

If, for instance, a = 0.2 and /? = 0.3, Var (yx) = 3.28 < 4 and
Var (y2) = 4.08 < 8. Hence it is possible to improve the situation of both
partners (if we assume, in this simple example, that companies evaluate their
situation by means of the retained variance). Can we define " optimal" values
of a and /?? U

Those examples have several elements in common :

— Participants have some benefits to share (political power, savings, or
money).

— This opportunity to divide benefits results from cooperation of all partici-
pants or a sub-group of participants.

— Individuals are free to engage in negotiations, bargaining, coalition formation.
— Participants have conflicting objectives; each wants to secure the largest

part of the benefits for himself.

Cooperative game theory analyses those situations where participants'
objectives are partially cooperative and partially conflicting. It is in the
participants' interest to cooperate, in order to achieve the greatest possible total
benefits. When it comes to sharing the benefits of cooperation, however,
individuals have conflicting goals. Such situations are usually modeled as
n-person cooperative games in characteristic function form, defined and
illustrated in Section 2. Section 3 presents and discusses natural conditions, the
individual and collective rationality conditions, that narrow the set of possible
outcomes. Two concepts of solution are defined: the von Neumann-Morgen-
stern stable sets and the core. Section 4 is devoted to axiomatic approaches that
aim at selecting a unique outcome. The main solution concept is here the
Shapley value. Section 5 deals with two-person cooperative games without
transferable utilities. The Nash and Kalai-Smorodinsky solution concepts are
presented and applied to Example 5. A survey of some other solutions and
concluding remarks are to be found in Sections 6 and 7.
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2. CHARACTERISTIC FUNCTIONS

First, let us specify which situations will be considered in this paper, and some
implicit assumptions.

— Participants are authorized to freely cooperate, negotiate, bargain, collude,
make binding contracts with one another, form groups or subgroups, make
threats, or even withdraw from the group.

— All participants are fully informed about the rules of the game, the payoffs
under each possible situation, all strategies available,...

— Participants are negotiating about sharing a given commodity (such as
money or political power) which is fully transferable between players and
evaluated in the same way by everyone. This excludes for instance games
where participants evaluate their position by means of a concave utility
function; risk aversion is not considered. (In other words, it is assumed that
all individuals have linear utility functions). For this reason, the class of
games defined here is called " Cooperative games with transferable utili-
ties. " This major assumption will be relaxed in Section 5.

Definition 1: An n-person game in characteristic function form F is a pair
[N, v], where N = {1,2, ...,n} is a set of n players, v is a real valued
characteristic function on 2N, the set of all subsets S of N. v assigns a real
number v(S) to each subset S of TV, and v(<P) = 0.

Subsets S of N are called coalitions. The full set of players N is the grand
coalition. Intuitively, v(S) measures the worth or power that coalition S can
achieve when its members act together. Since cooperation creates savings, it is
assumed that v is superadditive, i.e., that

) ^ v(S) + v(T) for all T, S c TV such that SC\T= &.

Definition 2: Two n-person games F and F', of respective characteristic
functions v and v', are said to be strategically equivalent if there exists numbers
k > 0, cx,..., cn such that

v'(S) = kv(S) + Y, ci fo ra11 s E N-
ieS

The switch from v to v' only amounts to changing the monetary units and
awarding a subsidy c, to each player. Fundamentally, this operation doesn't
change anything. Hence we only need to study one game in each class of
strategically equivalent games. Therefore games are often normalized by
assuming that the worth of each player is zero, and that the worth of the grand
coalition is 1. [In the sequel expressions such as v({l,3}) will be abbreviated as

v(0 = 0 i = l,...,n v(N) = 1
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Example 1. (UN Security Council). Since a motion either passes or doesn't, we
can assign a worth of 1 to all winning coalitions, and 0 to all losing coalitions.
The game can thus be described by the characteristic function

v(S) = 1 for all S containing all five permanent members and at least 4
nonpermanent members

v(S) = 0 for all other S. •

Games such that v(S) can only be 0 or 1 are called simple games. One
interesting class of simple games is the class of weighted majority games.

Definition 3: A weighted majority game

r = [M; Wi,...,wn],

where W\,..., wn are nonnegative real numbers and

1 "

2 h

is the n-person cooperative game with characteristic function

v(S) =1 if £ w, > M

v(S) = 0 if l^ wt< M,
ieS

for all S ^ N. wt is the power of player / (such as the number of shares held in
a corporation). M is the required majority.

Example 1. It is easily verified that the UN Security Council's voting rule can
be modelled as a weighted majority game. Each permanent member is awarded
seven votes, each nonpermanent member one vote. The majority required to
pass a motion is 39 votes. A motion can only pass if all five permanent
members (35 votes) and at least four nonpermanent members (4 votes) are in
favor. Without the adhesion of all permanent members, the majority of
39 votes cannot be reached.

r= [39; 7,7,7,7,7,1,1,1,1,1,1,1,1,1,1]

Does this mean that the power of each permanent member is seven times the
power of nonpermanent members? •

Example 2. Nassau County's voting procedures form the weighted majority
game [58; 31,31,28,21,2,2]. It clearly shows that numerical voting weights do
not translate into political power. An inspection of all numerical possibilities
reveals that the three least-populated municipalities have no voting power at

https://doi.org/10.2143/AST.21.1.2005399 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005399


COOPERATIVE GAME THEORY AND ITS INSURANCE APPLICATIONS 23

all. Their combined total of 25 votes is never enough to tip the scales. To pass a
motion simply requires the adhesion of two of the three largest districts. So the
assigned voting weights might just as well be (31,31,28,0,0,0), or (1,1,1,0,0,0).
We need a better tool than the number of votes to evaluate participants'
strengths. •

Example 3. (ASTIN money). Straightforward calculations lead to the total
interest each coalition can secure

v(l)
v(2)
v(3)
v(12)
v(13)
v(23)
v(123)

= 46,125
= 17,437.5
= 5,812.5
= 69,187.5
= 53,812.5
= 30,750
= 90,000 •

Example 4. (Retention groups). This example differs from the others in the
sense that figures here represent costs (to minimise) and not earnings (to
maximise). Instead of a superadditive characteristic function v(S), a cost
function c(S) is introduced. Scale economies make c(S) a subadditive func-
tion

c(S U T) < c(S) + c(T) for all S,T^ N such that S fl T = <Z>

A "cost" game is equivalent to a "savings" game, of characteristic function

v(5)= 2, c-c(S).
ieS

In the case of the example, c(S) is the premium paid by each coalition

c(l) = 19
c(2) = 32
c(12) = 45 •

3. VON NEUMANN-MORGENSTERN STABLE SETS AND THE CORE

Example 3. (ASTIN money). If they agree on a way to subdivide the profits of
cooperation, the three Treasurers will have a total of 90,000 francs to share.
Denote a = (a,, a2, a3) the outcome (or payoff, or allocation): player i will
receive the amount a,. Obviously, the ASTIN Treasurer will only accept an
allocation that awards him at least 46,125 francs, the amount he can secure by
himself. This is the individual rationality condition. •

Definition 4: A payoff oe = (a,, a2,. . . , an) is individually rational if a, > v(i)
i = 1,...,n.
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Definition 5: An imputation for a game F = (N, v) is a payoff a = (<Xi,..., <xn)
such that

a, > v(0 i = \,...,n

An imputation is an individually rational payoff that allocates the maximum
amount. (This condition is also called "efficiency" or "Pareto-optimality").

Example 3. (ASTIN money). An imputation is any allocation such that

al + <x2 + a3 = 90,000
a, > 46,125
a2 > 17,437.5
a3 > 5,812.5 D

Example 4. (Retention groups). In this cost example, an imputation is any set
of premiums (oti, <x2) such that

a i + a2 = 45
a, < 19
a2 < 32

Let us now add a third group of «3 = 120 individual to this example, all
subject to a loss of 1 with a probability q3 = 0.3. A risk retention group with a
ruin probability of .001 would require a total premium of

— #3) = 36+15 = 51

If all three groups decide to merge to achieve a maximum reduction of the
safety loading, the total premium will be

3 VwttfiO

= 10 + 20 + 36 + 21

= 87

In this case an imputation is a payoff (0^, a2, a3) such that

a l + a2 + a3 = 87
a, < 19
a2 < 32
a3 < 51
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Are all those imputations acceptable to everybody? Consider the allocation
(17, 31, 39). It is an imputation. It will however never be accepted by the first
two groups. Indeed they are better off withdrawing from the grand coalition,
forming coalition (12), and agreeing for instance on a payoff (15.5, 29.5).
Player 3, the third group, cannot object to this secession since, left alone, he
will be stuck to a premium of 51. He will be forced to make a concession
during negotiations and accept a higher a3. a3 needs to be at least 42 to
prevent players 1 and 2 to secede. This is the collective rationality condition:
no coalition should have an incentive to quit the grand coalition. •

Definition 6: A payoff (a1, <x2, • • •, <xj is collectively rational if

«;> v(S) for all S <= N.
ieS

Definition 7: The core of the game is the set of all collectively rational
payoffs.

The core of a game can be empty. When it is not, it usually consists of several,
or an infinity, of points. It can also be defined using the notion of
dominance.

Definition 8: Imputation /? = (/?,, /?2 ,...,/?„) dominates imputation
a = (a, , a 2 , . . . , an) with respect to coalition S if

(i) S + 4>

(ii) Pi > a, for all i e S

(iii) v(S) > 2 , Pi
ieS

So there exists a non-void set of players S, that all prefer /? to a, and that has
the power to enforce this allocation.

Definition 9: Imputation ft dominates imputation a if there exists a coalition S
such that ft dominates a with respect to S.

Definition 7': The core is the set of all the undominated imputations.

Definitions 7 and 7' are equivalent.

Example 4. (Retention groups). The core is the set of all payoffs that allocate
the total premium of 87, while satisfying the 3 individual and 3 collective
rationality conditions.
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a i
a2

(Xi + a.2

LEMAIRE

-a3

a, +a3
a24

I upper

a, + a2

11.7 <
23.5 <
42 <

-a3

—

<
<
<
<
<

<

87
19
32
51
45
63.5
75.3

and lower

+ a
a,
a2

a3

3 =
<
<
<

= 87
19
32
51

So the core enables us to find upper and lower bounds for the premiums

An allocation that violates any inequality leads to the secession of one or two
groups. •

Example 3. (ASTIN money). The core consists of all payoffs such that

= 90,000
46,125 < a, < 59,250
17,437.5 < a2 < 36,187.5
5,812.5 < a3 < 20,812.5 •

Despite its intuitive appeal, the core was historically not the first concept
that attempted to reduce the set of acceptable payoffs with rationality
conditions. In their path-breaking work, VON NEUMANN and MORGEN-
STERN (1945) introduced the notion of stable sets.

Definition 10: A von Neumann-Morgenstern stable set of a game F = (N, v) is
a set L of imputations that satisfy the two following conditions

(i) (External stability) To each imputation a <£ L corresponds an imputation
P e L that dominates a.

(ii) (Internal stability) No imputation of L dominates another imputation of L.

Stable sets are however usually very difficult to compute.
The main drawback of the core and the stable sets seems to be that, in most

cases, they contain an infinity of allocations. For instance, the core and the
stable set of all 2-person games simply consist of all imputations. It would be
preferable to be able to single out a unique, " fair " payoff for each game. This
is what the Shapley value achieves.
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4. THE SHAPLEY VALUE

Example 3. (ASTIN money). Assume the ASTIN Treasurer decides to initiate
the coalition formation process. Playing alone, he would make v(l) = 46,125.
If player 2 decides to join, coalition (12) will make v( 12) = 69,187.5. Assume
player 1 agrees to award player 2 the entire benefits of cooperation; player 2
receives his entire admission value v(12) — v(l) = 23,062.5. Player 3 joins in a
second stage, and increases the total gain to 90,000. If he is allowed to keep his
entire admission value v(123)-v(12) = 20,812.5, we obtain the payoff

[46,125; 23,062.5; 20,812.5]

This allocation of course depends on the order of formation of the grand
coalition. If player 1 joins first, then player 3, and finally player 2, and if
everyone keeps his entire admission value, the following payoff results

[46,125; 36,187.5; 7,687.5]

The four other player permutations [(213), (231), (312), (321)] lead to the
respective payoffs

[51,750;
[59,250;

[48,000;

[59,250;

17,437.5;
17,437.5;

36,187.5;

24,937.5;

20,812.5]
13,312.5]

5,812.5]

5,812.5]

Assume we now decide to take the average of those six payoffs, to obtain the
final allocation

[51,750; 25,875 ; 12,375 ]

We have in fact computed the Shapley value of the game, the expected
admission value when all player permutations are equiprobable. •

The Shapley value is the only outcome that satisfies the following set of three
axioms [SHAPLEY, 1953)].

Axiom 1 (Symmetry). For all permutations 77 of players such that
v[77(S)] = v(S) for all S, am) = a,.

A symmetric problem has a symmetric solution. If there are two players that
cannot be distinguished by the characteristic function, that contribute the same
amount to each coalition, they should be awarded the same payoff. This axiom
is sometimes also called anonymity; it implies that the selected allocation only
depends on the characteristic function, and not, for instance, on the numbering
of the players.

Axiom 2 (Dummy players). If, for a player /, v(S) = v(<S\/) + v(r) for each
coalition to which he can belong, then a, = v(/).
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A dummy player does not contribute any scale economy to any coalition. The
worth of any coalition only increases by v(i) when he joins. Such an inessential
player cannot claim to receive any share of the benefits of cooperation.

Axiom 3 (Additivity). Let F = (N, v) and F' = (N, v') be two games, and a(v)
and a'(v) their respective payoffs. Then a(v+ v') = a(v) + a(v') for all
players.

a, = v(l)
INDIVIDUAL RATIONALITY
FOR PLAYER 1

+ a2 = v(12)
^CHARACTERISTIC FUNCTION

SHAPLEY VALUE

CORE

STABLE SET

= v(2)

DISAGREEMENT
POINT

INDIVIDUAL RATIONALITY
FOR PLAYER 2

FIGURE 1. Two-person cooperative game with transferable utilities.
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Payoffs resulting from two distinct games should be added. While the first two
axioms seem quite justified, the latter has been criticized. It rules out all
interactions between the two games, for instance.

Shapley has shown that one and only one allocation satisfies the three
axioms

( 7 / ! ) £ ( 1)! ( ) \ [(S) (S\i)] i= 1,...,«

where s is the number of members of a coalition S.
The Shapley value can be interpreted as the mathematical expectation of the

admission value, when all orders of formation of the grand coalition are
equiprobable. In computing the value, one can assume, for convenience, that
all players enter the grand coalition one by one, each of them receiving the
entire benefits he brings to the coalition formed just before him. All orders of
formation of N are considered and intervene with the same weight 1/n! in the
computation. The combinatorial coefficient results from the fact that there are
(s-l)\(n — s)\ ways for a player to be the last to enter coalition S: the s — 1
other players of S and the n — s players of TVX̂S1 can be permuted without
affecting r's position.

In a two-player game, the Shapley value is

a, =

a2 =

It is the middle of the segment a, + a2 = v(12), <x{ > v(l), a2 S: v(2). This is
illustrated in Figure 1.

Example 1. (UN Security Council). In a weighted majority game, the admission
value of a player is either 0 or 1. One simply has to compute the probability
that a player clinches victory for a motion. In the UN Security Council game,
the power of a nonpermanent member / is the probability that he enters ninth
in any coalition that already includes the five permanent members. It is

a,- (5/15) (4/14) (3/13) (2/12) (1/11) (9/10) (8/9) (7/8) (1/7)
^ / ^ i I

v v 4-
all five permanent before i 3 of the i then

nonpermanent enters
before i

= 0.1865%

By symmetry, the power for each permanent member is

a, = 19.62%

So permanent nations are 100 times more powerful than nonpermanent
nations. [Note: in practice a permanent member may abstain without impair-
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ing the validity of an affirmative vote. While this rule complicates the analysis
of the game, it only changes the second decimal of the Shapley value]. •

Example 2. (Nassau County). The Shapley value of the districts is (1/3, 1/3, 1/3,
0, 0, 0). This analysis led the County authorities to change the voting rules by
increasing the required majority from 58 to 63. There are now no more dummy
players, and the new power indices are [0.283, 0.283, 0.217, 0.117, 0.050, 0.050].
This is certainly much closer to the original intention. •

Example 4. (Retention groups). In the two-company version of this game, the
Shapley value is [16,29]. In the three-company version, the value is [14.5, 26.9,
45.6]. The traditional pro rata approach leads to [13.2, 26.4, 47.4]. It does not
take into account the savings each member brings to the grand coalition, or its
threat possibilities. It is unfair to the third group, because it fails to give proper
credit to the important reduction (10) of the total safety loading it brings to the
grand coalition. •

The Shapley value may lie outside the core. In the important subclass of
convex games, however, it will always be in the core.

Definition 11. A game is convex if, for all S ̂  T Q N, for all i$ T,

v(TUi)-v(T)>v(S\Ji)-v(S).

A game is convex when it produces large economies of scale; a " snow-balling "
effect makes it increasingly interesting to enter a coalition as its number of
members increases. In particular, it is always preferable to be the last to enter
the grand coalition N. The core of convex games is always non-void.
Furthermore, it coincides with the unique von Neumann-Morgenstern stable
set. It is a compact convex polyhedron, of dimension at most n -1. The
Shapley value lies in the center of the core, in the sense that it is the center of
gravity of the core's external points.

5. TWO-PERSON GAMES WITHOUT TRANSFERABLE UTILITIES

Example 5. (Risk exchange). As shown in the presentation of the example,
selecting a = 0.2 and /? = 0.3 results in a decrease of Var (yx) of 0.72, and a
decrease of Var (y2) of 3.92. This risk exchange treaty is represented as point 1
in Figure 2.

In this figure the axes measure the respective variance reductions, px and p2 •
Point 2 corresponds to a = /? = 0.4. It dominates point 1, since it leads to a
greater variance reduction for both companies. Point 3 is a = 0.53, /? = 0.47; it
dominates points 1 and 2. It can be shown that no point can dominate point 3,
and that all treaties such that a+/? = 1 neither dominate nor are dominated by
point 3. For instance, point 4 (a = 0.7, /? = 0.3) will be preferred to point 3 by
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P» =
VARIANCE

REDUCTION
FOR Cx

8
IDEAL POINT b

v(12) = PARETO
PTIMAL CURVE

KALAI-SMORODINSKY SOLUTION

NASH SOLUTION

DISAGREEMENT
POINT

= VARIANCE
REDUCTION
FOR C1

FIGURE 2. Two-person cooperative game without transferable utilities.

C|. However C2 will prefer point 3 to point 4. Hence neither point dominates
the other. The set of all treaties such that a+fj=\ forms curve v(12), the
Pareto-optimal surface. Points to the north-east of v(12) cannot be attained.
All points to the south-west of v(12) correspond to a given selection of a and /?.
The convex set of all attainable points, including the boundary v(12), is called
the game space M. That space is limited by the Pareto-optimal curve and the
two axes. The axes represent the two individual rationality conditions: no
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company will accept a treaty that results in a variance increase. For instance
point 5 (a = 0.35, /? = 0.65) will not be accepted by Cx. While each point in
the game space is attainable, it is in both companies' interest to cooperate to
reach the Pareto-optimal curve. Any point that does not lie on the north-east
boundary is dominated by a Pareto-optimal point. Once the curve is reached,
however, the players' interests become conflicting. Cx will negotiate to reach a
point as far east as possible, while C2 will attempt to move the final treaty
north. If the players cannot reach an agreement, no risk exchange will take
place. The disagreement point results in no variance reduction.

Hence all the elements of a two-player game are present in this simplified
risk exchange example. In fact, Figure 2 closely resembles Figure 1, with an
important difference: the Pareto-optimal set of treaties v(12) is a curve in
Figure 2, while the characteristic function v(12) in Figure 1 is a straight line.
This is due to the non-transferability of utilities in the risk exchange example.
The players are "trading" variances, but an increase of 1 of Var (>>,) results in
a decrease of Var(j>2) that is not equal to 1. Example 5 is a two-person
cooperative game without transferable utility. •

Definition 12. A two-person cooperative game without transferable utilities is a
couple (M, d), where d = (dx, d2) is the disagreement point (the initial utilities
of the players). M, the game space, is a convex compact set in the two-
dimensional space E2 of the players' utilities; it represents all the payoffs that
can be achieved.

Such a game is often called a two-person bargaining game. Let B be the set
of all pairs (M, d). Since no player will accept a final payoff that does not
satisfy the individual rationality condition, M can be limited to the set of
points (px ,p2) such that px > dx and p2> d2. Our goal is to select a unique
payoff in M.

Definition 13. A solution (or a value) is a rule that associates to each bargaining
game a payoff in M. It is thus a mapping / : B -> E2 such that f(M, d) is a
point P = {P\,Pi) of M for all (M,d)eB; fl(M,d) = pl and
MM,d)=p2.

The first solution concept for bargaining games was developed in 1950 by
Nash. The Nash solution satisfies the four following axioms.

Axiom 1. Independence of linear transformations

The solution cannot be affected by linear transformations performed on the
players' utilities. For all (M, d) and all real numbers a, > 0 and bt, let (M', d')
be the game defined by d[ = a,-</, + £,• (i = 1, 2) and M' = {q e E2\3p e M such
that qt = ciiPi+b,}. Then/-(AT, d') = aJ^M, d) + bt i= 1,2.

This axiom is hard to argue with. It only reflects the information contained
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in utility functions. Since utilities are only defined up to linear transformations,
it should be the same for solutions.

Axiom 2. Symmetry

All symmetric games have a symmetric solution. A game is symmetric if
dx = d2 and (pi,p2)e M => (p2,pl)e M. The axiom requires that, in this case,
fx{M,d) =f2(M,d).

Like axiom 1, axiom 2 requires that the solution only depends on the
information contained in the model. A permutation of the two players should
not modify the solution, if they cannot be differentiated by the rules of the
game. Two players with the same utility function and the same initial wealth
should receive the same payoff if the game space is symmetric.

Axiom 3. Pareto-optimality

The solution should be on the Pareto-optimal curve. For all (M, d) e B, if p
and qeM are such that qt > pt (i = 1,2), then p cannot be the solution:
f(M, d) * p.

Axiom 4. Independence of irrelevant alternatives

The solution does not change if we remove from the game space any point
other than the disagreement point and the solution itself. Let (M, d) and
(M', d) be two games such that M' contains M and/ fM' , d) is an element of
M. Then f(M, d) = f (M1, d).

This axiom formalizes the negotiation procedure. It requires that the
solution, which by axiom 3 must lie on the upper boundary of the game space,
depends on the shape of this boundary only in its neighbourhood, and not on
distant points. It expresses the fact that, during negotiations, the set of the
alternatives likely to be selected is progressively reduced. At the end, the
solution only competes with very close points, and not with proposals already
eliminated during the first phases of the discussion. Nash's axioms thus model
a bargaining procedure that proceeds by narrowing down the set of acceptable
points. Each player makes concessions until the final point is selected.

NASH (1950) has shown that one and only one point satisfies the four
axioms. It is the point that maximizes the product of the two players' utility
gains. Nash's solution is the function /, defined by f(M, d) = p, such that
p > d and (/?, - dx) (p2 -d2) > (qt- dx) (q2 - d2), for all q =h p e M.

Example 5. (Risk exchange). In this example, the players' objective is to reduce
the variance of their claims. Hence d = (0, 0): if the companies cannot agree
on a risk exchange treaty, they will keep their original portfolio, with no
improvement. The players' variance reductions are
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Pl = 4-4(1-<z)2-8y?2

Maximising the product pxp2, under the condition a+/? = 1, leads to the Nash
solution

a = 0.613
fi = 0.387
Pi = 2.203
p2 = 3.491 •

Nash's axiom 4 has been criticised by KALAI and SMORODINSKY (1975), who
proved that Nash's solution does not satisfy a monotonicity condition.
Consider the two games represented in Figure 3. The space of game 1 is the
four-sided figure whose vertices are at d, A, B, D. The Nash solution is B. The
space of game 2 is the figure whose vertices are at d, A, C, D. From the second
player's point of view, game 2 seems more attractive, since he stands to gain
more if the first player's payoff is between E and D. So one would expect the
second player's payoff to be larger in game 2. This is not the case, since the
Nash solution of game 2 is C.

Px

FIGURE 3. Non-monotonicity of Nash's solution.
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Axiom 5. Monotonicity. Let b (M) = (bl, b2) the " ideal" point formed by the
maximum possible payoffs (see Figure 2): Z>, = max {/>,|(/>, ,p2) e M}
(i = 1, 2). If (M, d) and (M1, d) are two games such that M contains M' and
b(M) = b(M'), then/(M, d) > f(M',d).

KALAI and SMORODINSKY have shown that one and only one point satisfies
axioms 1, 2, 3, and 5. It is situated at the intersection of the Pareto-optimal
curve and the straight line linking the disagreement point and the ideal
point.

Example 5. It is easily verified that the equation of the Pareto-optimal curve is
\J%-pi +\j4-p2 = 12. Since the ideal point is (4,8), the line joining d and b
has equation/^ = 2/7x. Kalai-Smorodinsky's solution point, at the intersection, is

a = 0.5858
P = 0.4142
Pi = 1.9413
p2 = 3.8821

It is slightly more favourable to player 2 than Nash's solution. •

6. OTHER SOLUTION CONCEPTS - OVERVIEW OF LITERATURE

Stable sets and the core are the most important solution concepts of game
theory that attempt to reduce the number of acceptable allocations by
introducing intuitive conditions. Both notions however can be criticized.

Stable sets are difficult to compute. Some games have no stable sets. Some
others have several. Moreover, the dominance relation is neither antisymmetric
nor transitive. It is for instance possible that an imputation /? dominates an
imputation a with respect to one coalition, while a dominates /? with respect to
another coalition. Therefore an imputation inside a stable set may be domi-
nated by an imputation outside.

The concept of core is appealing, because it satisfies very intuitive rationality
conditions. However, there exists vast classes of games that have an empty
core: the rationality conditions are conflicting. Moreover, several examples
have been built for which the core provides a counter-intuitive payoff, as
shown in Example 6.

Example 6. A pair of shoes

Player 1 owns a left shoe. Players 2 and 3 each own a right shoe. A pair can be
sold for $ 100. How much should 1 receive if the pair is sold? Surprisingly, the
core totally fails to catch the threat possibilities of coalition (23) and selects the
paradoxical allotment (100, 0, 0). Any payoff that awards a positive amount to
2 or 3 is dominated; for instance (99,1,0) is dominated by (99.5,0,0.5).
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Moreover, the paradox remains if we assume that there are 999 left shoes and
1000 right shoes. The game is now nearly symmetrical, but the owners of right
shoes still receive nothing. The Shapley value is (662A, I6V3, 162A), definitely a
much better representation of the power of each player than the core. •

Many researchers feel that the core is too static a concept, that it does not
take into account the real dynamics of the bargaining process. In addition,
laboratory experiments consistently produce payoffs that lie outside the core.
This led AUMANN and MASCHLER (1964) to define the bargaining set. This set
explicitly recognizes the fact that a negotiation process is a multi-criteria
situation. Players definitely attempt to maximise their payoff, but also try to
enter into a "safe" or "stable" coalition. Very often, it is observed that
players willingly give up some of their profits to join a coalition that they think
has fewer chances to fall apart. This behaviour is modelled through a dynamic
process of " threats " and " counter-threats." A payoff is then considered stable
if all objections against it can be answered by counter-objections.

Example 7. Consider the three-person game

v(l) = v(2) = v(3) = 0
v(12) = v(13) = 100
v(23) = 50

The core of this game is empty. For instance, the players will not agree on an
allocation like [75, 25, 0], because it is dominated by [76, 0, 24]. Bargaining set
theory, on the other hand, claims that such a payoff is stable. If player 1
threatens 2 of a payoff [76,0,24], this objection can be met with the
counter-objection [0, 25, 25]. Player 2 shows that, without the help of player 1,
he can protect his payoff of 25, while player 3 receives more in the
counter-objection than in the objection. Similarly, objection [0,27,23] of
player 2 against [75,25,0] can be counter-objected by [75,0,25]. So, if a
proposal [75, 25, 0] arises during the bargaining process, it is probable that it
will be selected as final payoff. Any objection, by either player 1 or player 2,
can be countered by the other. On the other hand, a proposal like [80, 20, 0] is
unstable. Player 2 can object that he and player 3 will get more in [0, 21, 29].
Player 1 has no counter-objection, because he cannot keep his 80 while offering
player 3 at least 29.

Thus, in addition to all undominated payoffs (the core), the bargaining set
also contains all payoffs against which there exists objections, providing they
can be met by counter-objections. The bargaining set for this example consists
of the four points

[ 0, 0, o]
[75, 0, 25]
[75, 25, 0]
[ 0, 25, 25] •
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The bargaining set is never empty. It always contains the core. For more
details, consult OWEN (1968, 1982) or AUMANN and MASCHLER (1964).

In 1965, DAVIS and MASCHLER defined the kernel of a game, a subset of the
bargaining set. In 1969, SCHMEIDLER introduced the nucleolus, a unique
payoff, included in the kernel. It is defined as the allocation that minimises
successively the largest coalitional excesses

e(<x,S) = v ( S ) - 2 , «.-

The excess is the difference between a payoff a coalition can achieve and the
proposed allocation. Hence it measures the amount ("the size of the com-
plaint ") by which coalition S as a group falls short of its potential v (S) in
allocation a. If the excess is positive, the payoff is outside the core (and so the
nucleolus exists even when the core is empty). If the excess is negative, the
proposed allocation is acceptable, but the coalition nevertheless has interest in
obtaining the smallest possible e (a, S). The nucleolus is the imputation that
minimises (lexicographically) the maximal excess. Since it is as far away as
possible of the rationality conditions, it lies in the middle of the core. It is
computed by solving a finite sequence of linear programs. Variants of the
nucleolus, like the proportional and the disruptive nucleolus, are surveyed
among others in LEMAIRE (1983). The proportional nucleolus, for instance,
results when the excesses are defined as

v(S) - £ <x,l/v(S)
lieS

Since it consists of a single point, the nucleolus (also called the lexicographic
center) provides an alternative to the Shapley value. The Shapley value has
been subjected to some criticisms, mainly focussing on the additivity axiom and
the fact that people joining a coalition receive their full admission value.

Example 3. (ASTIN money). The Shapley value, computed in Section 4, is

[51,750; 25,875; 12,375]

It awards an interest of 11.5% to ASTIN and I.A.A., and 16.5% to A.A.Br.
This allocation is much too generous towards A.A.Br.'s Treasurer, who takes a
great advantage from the fact that he is essential to reach the 3-million mark.
His admission value is extremely high (in proportion to the funds supplied)
when he comes in last. The nucleolus is

[52,687.5; 24,937.5; 12,375]

or, in percentages

[11.71; 11.08; 16.5]

https://doi.org/10.2143/AST.21.1.2005399 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005399


38 JEAN LEMAIRE

It recognises the better bargaining position of ASTIN versus I.A.A., but still
favours A.A.Br. Both the Shapley value and the nucleolus, defined in an
additive way, fail in this multiplicative problem. The proportional nucleolus
suggests

[54,000; 27,000; 9,000]

or, in percentages,

[12; 12; 12],

thereby justifying common practice. •

Only the case of the two-person games without transferable utilities has been
reviewed in Section 5. A book by ROTH (1980) is devoted entirely to this case.
It provides a thorough analysis of Nash's and Kalai-Smorodinsky's solutions.
The generalisation of those models to the n-person case has proved to be very
difficult. In the two-person case, the disagreement point is well defined: if the
players don't agree, they are left alone. In the n-person case, if a general
agreement in the grand coalition cannot be reached, sub-coalitions may form.
Also, some players may wish to explore other avenues, like possible business
partners outside the closed circle of the n players. This is an objection against
modeling market situations as non-transferable n-person games. Such games
ignore external opportunities, such as competitive outside elements. See
SHAPLEY (1964) and LEMAIRE (1974, 1979) for definitions of values in the
n-player case.

Though somewhat dated by now, the book by LUCE and RAIFFA (1957) is
still an excellent introduction to game theory and utility theory. It provides an
insightful critical analysis of the most important concepts. An excellent book
that surveys recent developments is OWEN (1968, 1982, especially the second
edition). A booklet edited by LUCAS (1981) provides an interesting, simple,
abundantly illustrated analysis of the basics of cooperative and non-coopera-
tive game theory. Finally, the proceedings of a conference on applied game
theory [BRAMS, SCHOTTER, SCHWODIAUER (1979)] provide a fascinating over-
view (from a strategic analysis of the Bible to the mating of crabs) of
applications of the theory.

7. CONCLUSIONS

Game theory solutions have been effectively implemented in numerous situa-
tions. A few of those applications are

— allocating taxes among the divisions of McDonnell-Douglas Corporation
— subdividing renting costs of WATS telephone lines at Cornell University
— allocating tree logs after transportation between the Finnish pulp and paper

companies
— sharing maintenance costs of the Houston medical library
— financing large water resource development projects in Tennessee
— sharing construction costs of multipurpose reservoirs in the United States
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— subdividing costs of building an 80-kilometer water supply tunnel in
Sweden

— setting landing fees at Birmingham Airport
— allotting water among agricultural communities in Japan
— subsidising public transportation in Bogota

Cooperative game theory deals with competition, cooperation, conflicts,
negotiations, coalition formation, allocation of profits. Consequently one
would expect numerous applications of the theory in insurance, where compe-
titive and conflicting situations abound. It has definitely not been the case. The
first article mentioning game theory in the ASTIN Bulletin was authored by
BORCH (1960a). In subsequent papers, BORCH (1960b, 1963) progressively
developed his celebrated risk exchange model, which in fact is an n-person
cooperative game without transferable utilities. This model has further been
developed by in the 1970s by Lemaire and several of his students [BATON and
LEMAIRE (1981a, 1981b), BRIEGLEB and LEMAIRE (1982), LEMAIRE (1977,
1979)]. The ASTIN Bulletin has yet to find a third author attracted by game
theory! It is hoped that this survey paper will contribute to disseminate some
knowledge about the situations game theory models, so that the risk exchange
model will not stand for a long time as its lone actuarial application.

REFERENCES

AUMANN, R. and MASCHLER, M. (1964) The Bargaining Set for Cooperative Games. Advances in
Game Theory, 443-476. Annals of Math. Studies 52, Princeton University Press.
BATON, B. and LEMAIRE, J. (1981a) The Core of a Reinsurance Market. ASTIN Bulletin 12,
57-71.
BATON, B. and LEMAIRE, J. (1981b) The Bargaining Set of a Reinsurance Market. ASTIN Bulletin
12, 101-114.
BORCH, K. (1960a) Reciprocal Reinsurance Treaties. ASTIN Bulletin 1, 171-191.
BORCH, K. (1960b) Reciprocal Reinsurance Treaties Seen as a Two-person Cooperative Game.
Skandinavisk Aktuarietidskrift 43, 29-58.
BORCH, K. (1962) Application of Game Theory to So'me Problems in Automobile Insurance. ASTIN
Bulletin 2, 208-221.
BORCH, K. (1963) Recent Developments in Economic Theory and Their Application to Insurance.
ASTIN Bulletin 2, 322-341.
BRAMS, S., SCHOTTER, A. and SCHWODIAUER, G., Eds. (1979) Applied Game Theory. IHS-studies 1,
Physica-Verlag, 1979.
BRIEGLEB, D. and LEMAIRE, J. (1982) Calcul des primes et marchandage. ASTIN Bulletin 13,
115-131.
DAVIS, M. and MASCHLER, M. (1965) The Kernel of a Cooperative Game. Naval Research Logistics
Quarterly 12, 223-259.
KALAI, E. and SMORODINSKY, M. (1975) Other Solutions to the Nash Bargaining Problem.
Econometrica 43, 513-518.
LEMAIRE, J. (1974) A New Concept of Value for Games Without Transferable Utilities. Interna-
tionalJ. of Game Theory 1, 205-213.
LEMAIRE, J. (1977) Echange de risques entre assureurs et theorie des jeux. ASTIN Bulletin 9,
155-180.
LEMAIRE, J. (1979) A Non Symmetrical Value For Games Without Transferable Utilities.
Application to Reinsurance. ASTIN Bulletin 10, 195-214.
LEMAIRE, J. (1983) An Application of Game Theory: Cost Allocation. ASTIN Bulletin 14,
61-81.

https://doi.org/10.2143/AST.21.1.2005399 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005399


40 JEAN LEMAIRE

LUCAS, W. (1981) Game Theory and Its Applications. Proceedings of Symposia in Applied Maths,
American Math. Society Vol 24, Providence, Rhode Island.
LUCE, R. and RAIFFA, H. (1957) Games and Decisions. John Wiley, New York.
NASH, J. (1950) The Bargaining Problem. Econometrica 18, 155-162.
OWEN, G. (1968, 1982) Game Theory. W. Saunders, Philadelphia (first edition). Academic Press,
New York (second edition).
ROTH, A. (1980) Axiomatic Models of Bargaining. Springer Verlag, Berlin.
SHAPLEY, L. (1953) A Value for n-person Games. Contributions to the Theory of Games Vol II,
307—317. Annals of Mathematics Studies 28, Princeton University Press.
SHAPLEY, L. (1964) Utility Comparisons and the Theory of Games. La decision, CNRS, 251-263.
SCHMEIDLER, D. (1969) The Nucleolus of a Characteristic Function Game. SIAM J. Applied Maths.,
1163-1170.
VON NEUMANN, J. and MORGENSTERN, O. (1944) Theory of Games and Economic Behaviour.
Princeton University Press.

JEAN LEMAIRE
Department of Insurance and Risk Management, Wharton School,
3641 Locust Walk, University of Pennsylvania, Philadelphia, PA 19104-6218.

https://doi.org/10.2143/AST.21.1.2005399 Published online by Cambridge University Press

https://doi.org/10.2143/AST.21.1.2005399



