Canad. Math. Bull. Vol. 21 (2), 1978

RUSSIAN DOLLS

BY
J. B. WILKER

1. Introduction. In an earlier number of this Bulletin, P. Erdos [1] posed the
following problem. “For each line € of the plane, A, is a segment of €. Show
that the set |J, A, contains the sides of a triangle.” One objective of this paper
is to prove a strengthened version of this result in N-dimensions. As usual R,
denotes the cardinality of the natural numbers and c, the cardinality of the real
numbers.

Tueorem 1. For each (N—1)-flat w of Euclidean N-space (N=2), let A, <w
be an (N—1)-dimensional open set. Then X = A, contains the boundary of
an N-simplex. In fact X contains the boundaries of ¢ dissimilar N-simplices.
Moreover these ¢ boundaries may be chosen so that each contains a dense nest of
Ro homothetic images of itself, all lying in X.

Theorem 1 is trivial if X has non-void interior. However an example due to
D. Hammond Smith shows that this need not be the case.

In [2], I attempted a solution to the origina! problem of Erdds, stated the
first part of Theorem 1 and mentioned the example. Unfortunately this
‘“solution” contains a fallacy: the fixed angles 6;,6, and 6; need not be
represented in smaller and smaller neighbourhoods of Q. In developing a
counterexample to show that this approach could not be repaired, I discovered
an interesting companion to Theorem 1.

Tueorem 2. In Euclidean N-space (N=2) it is possible to choose c different
directions and, perpendicular to each of these directions, c different (N —1)-flats
so that an (N—1)-ball of radius 1 may be lodged in each of the chosen
(N—1)-flats in such a way that no two of these (N—1)-balls intersect.

To contrast Theorem 2 with Theorem 1 note that if we take all the different
directions and, perpendicular to each direction, all the different (N —1)-flats
then we are taking every (N —1)-flat and Theorem 1 guarantees intersections
galore, even without a uniform bound on the size of the (N —1)-balls.

2. D. Hammond Smith’s example. The example which we will construct has
void interior, as was mentioned in §1, and in addition it is measurable, but
with arbitrarily small N-measure. If the set X={J A, is measurable, then it
must have positive N-measure. Just fix a direction d and note that for any
(N—1)-flat 7 perpendicular to d, XN 7> A, and therefore X N 7 has positive
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(N—1)-dimensional measure. To make X measurable but with arbitrarily small
N-measure we take it to be an open tubular neighbourhood of the coordinate
axes which tapers sufficiently quickly as we move away from the origin. Since
every (N—1)-flat 7 meets at least one of the coordinate axes, we may set
A,=7NX and then J, A, =X

We modify X to X’ so that X’ has the same N-measure as X but void
interior. Let Q denote the rational numbers. Then X, =X'—QN has void
interior. If the (N—1)-flat 7 is such that dimo(mNQN)<N-2 then AlL=
(mNX)— (7N QY) is an (N — 1)-dimensional open set. There are only counta-
bly many (N —1)-flats 7 such that dimg (7N Q~) = N—1. For the nth of these
we let A’ be any (N — 1)-dimensional ball in 7, — X and we set X, =J;;_, A’ . It
follows that X' = |J AL =X, UX, and hence X' has the same N-measure as X
but void interior.

3. Proof of Theorem 1. The proof depends on three lemmas. If d is a
direction in N-space we write wed if m is an (N—1)-flat in the pencil with
normal direction d.

Lemma 1. For each (N —1)-flat 7 of Euclidean N-space (N =2), let A, < 7 be
an (N—1)-dimensional open set. Then for each direction d there is an N-ball
B =B(d) with the property that the (N—1)-balls {rNB:mwed and wNB=
A, N B} are dense in B.

Proof. Let V be the (N—1)-dimensional subspace of RN which is perpen-
dicular to d. Then the points of R™ have a unique representation (u, ¢) where
u € R measures distance in direction d and $€ V.

Let {,},_, be a sequence which is dense in V. For each pair of positive
integers p and q let U,,={u:37e d such that A_ contains an (N —1)-ball of
radius =1/q with centre (u, §) satisfying ||3 —3,|=1/2q}.

Because the 9, are dense in V, each number u belongs to some U,, and it
follows that R=J,, U,,. Since this union is countable, the Baire Category
Theorem implies that there is a pair of integers p,, q, such that the closed set
ﬁMO contains an interval, [u,— 8, u,+8].

Let B = B(d) be the N-ball with centre (u, ?,,) and radius r =min {1/2q,, 8}.
It is clear that B has the required property.

Lemma 2. Let B; with centre P, and radius r, (i € I) be a collection of ¢ N-balls
in Euclidean N-space. Then there exists an N-ball B* which lies in the interior of
¢ of the given N-balls.

Proof. For eachpositive integer m let I, ={ie I:r,=1/m}. Since I = U ,.I, is
a countable union while card I = c it follows that one of the sets, I, satisfies
card I, =c.
The set of ¢ points {P;:i€ I, } has a c-accumulation point Q. This means that
every neighbourhood of Q contains ¢ of these points.
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Let B* be the N-ball with centre Q and radius 1/2m,. Then B* lies in the
interior of the ¢ balls {B;: ie I, and dist (P, Q)<1/2m}

Lemma 3. The c directions corresponding to positions on the moment curve
d=@ 1 ...,1N), 0<t=<1, have the property that any N of them are linearly
independent. It follows that any N+ 1 of them can be normals to the faces of an
N-simplex.

Proof. The independence of d(t), d(t,),...,d(ty) when t;<t,<-- <ty is
immediate from the non-vanishing of the Vandermonde determinant
V(t, b, . . ,tn)-

Now the lemmas may be applied in succession to prove Theorem 1. Let d(t)
be a direction from the moment curve and apply Lemma 1 to obtain an N-ball
B, = B(d(t)). Apply Lemma 2 to the ¢ N-balls B, 0<t=1 to obtain an N-ball
B*. There are ¢ directions of the form d(¢) such that B* is densely stratified by
sets 7N B*=A_NB* with e J(t). Since these directions come from the
moment curve, Lemma 3 assures us that any (N+1) of them can serve as
normals to the faces of an N-simplex.

Let d,, d,,...,dn+: be any N+1 of our ¢ special directions. Let 'rrietfi
(i=1,2,...,N+1) determine an N-simplex S which contains the centre Q of
B* and lies entirely inside of B*. Then for each i (i=1,2,...,N+1) the dense
set of (N—1)-flats 7 e d, which lie between Q and m; and satisfy # N\ B*=
A_NB* may be used to construct a dense nest of N-simplex boundaries
homothetic to S and lying in X.

4. Proof of Theorem 2. In dimension N =2, Theorem 2 reduces to the
assertion that it is possible to choose c line segments of length 2 in each of ¢
directions with no two line segments intersecting. Theorem 2 is actually
equivalent to this special case because a 2-dimensional configuration may be
extended into an orthogonal (N —2)-space without creating intersections.

We may try to build a suitable 2-dimensional configuration by considering
line segments which join the point (t—f(t),— 1) to the point (¢+f(¢),1) where
f:[0,1]— R is a suitable function. These line segments are of length =2 and
they will be non-intersecting provided f satisfies the Lipschitz condition |f(,)—
f(t)|=<|t;—t,. To ensure that ¢ directions occur a total of ¢ times each we
require that ¢ values should be attained by f a total of ¢ times each. The proof
of Theorem 2 is completed by Lemma 4.

LemmMA 4. There is a Lipschitz function f: [0, 1]— Rwhich assumes c different
values a total of c times each.

Proof. Let F be the set of t€[0, 1] which have an expansion t=.t,t,t;--* in
the scale of 3 which does not use the digit 2. F is a closed set and after we have
defined f on F we will extend f to [0,1] by making it linear on the open
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intervals of [0, 1]\ F. For convenience we define 1€ F and associate with it the
expansion .000--- of its fractional part.

Each t in F gives us a sequence of 0’s and 1’s and we begin by defining the
auxiliary function g(t) =.t, t; t5 - - - where .t; t; t5 - - - is interpreted as a number
in the scale of 10, i.e. an ordinary decimal. If we know ¢ to 2n —1 places in the
scale of 3 then we know g(t) to n places in the scale of 10. This leads to the
inequality |Ag|<10™ if 372"*V<|Atf{=372". For n sufficiently large
(n>2[log; 1) and therefore |At| sufficiently small (|Af]=37loss009T)  ye
have n/2(n+1) log; 10>1 and we may rewrite the inequality for |Ag| as

IAg| < 10-—n =3"n log,10 3—2(n+1)-[n/2(n+1)]~log410< |At|

This proves that Ag/At is bounded. It follows that there exists a number k with
0< k<1 such that f= kg satisfies the Lipschitz condition, |Af|<|At|, on F.

The ¢ values which f assumes on F are each assumed c different times
because of the freedom of ¢ in its digits t,, &, &, * - - . Moreover, the Lipschitz
property of f is preserved when it is extended by linear interpolation from F to
the rest of [0, 1].
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