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MARKOV CHAINS CONDITIONED NEVER
TO WAIT TOO LONG AT THE ORIGIN

SAUL JACKA,∗ University of Warwick

Abstract

Motivated by Feller’s coin-tossing problem, we consider the problem of conditioning an
irreducible Markov chain never to wait too long at 0. Denoting by τ the first time that
the chain,X, waits for at least one unit of time at the origin, we consider conditioning the
chain on the event (τ > T ). We show that there is a weak limit as T → ∞ in the cases
where either the state space is finite or X is transient. We give sufficient conditions for
the existence of a weak limit in other cases and show that we have vague convergence to
a defective limit if the time to hit zero has a lighter tail than τ and τ is subexponential.
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1. Introduction and notation

1.1. Introduction

Feller [4, Section XIII.7] showed that if p(k)n is the probability that there is no run of heads
of length k or more in n tosses of a fair coin, then, for a suitable positive constant ck ,

p(k)n ∼ cks
n+1
k ,

where sk is the largest real root in (0,1) of the equation

xk −
k−1∑
j=0

2−(j+1)xk−1−j = 0. (1.1)

More generally, if the probability of a head is p = 1 − q, then the same asympotic formula
is valid, with (1.1) modified to become

xk − q

k−1∑
j=0

pjxk−1−j = 0,

and ck = (sk − p)/q((k + 1)sk − k).
The continuous-time analogue of this question is to seek the asymptotic behaviour of the

probability that Y , a Poisson process with rate r , has no interjump time exceeding one unit by

Received 1 September 2008; revision received 20 June 2009.
∗ Postal address: Department of Statistics, University of Warwick, Coventry CV4 7AL, UK.
Email address: s.d.jacka@warwick.ac.uk
I am grateful to an anonymous referee for many helpful suggestions on improving the presentation of this paper.

812

https://doi.org/10.1239/jap/1253279853 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279853


Limiting waiting at zero 813

time T . It follows, essentially from Theorem 1.2, that, denoting by τY the first time that Y waits
to jump longer than one unit of time,

P(τY > t) ∼ cre
−φr t

for a suitable constant cr , where φr = 1 if r = 1, otherwise φr is the root (other than r itself)
of the equation

xe−x = re−r . (1.2)

A natural extension is then to seek the tail behaviour of the distribution of τ ≡ τX, the first
time that a Markov chain, X, waits longer than one unit of time at a distinguished state, 0. In
general, there has also been much interest (see [1], [2], [3], [6], [7], [8], [9], [10], [11], [12],
[13], [14], and [15]) in conditioning an evanescent Markov processX on its survival time being
increasingly large and in seeing whether a weak limit exists.

1.2. Notation

We consider a continuous-time Markov chain X on a countable state space S, with a
distinguished state ∂ . We denote S \ {∂} by C. For convenience, and without loss of generality,
we assume henceforth that S = Z

+ or S = {0, . . . , n} and ∂ = 0 so that C = N or
C = {1, . . . , n}.

We assume that X is irreducible, and nonexplosive. We denote the transition semigroup of
X by {P(t); t ≥ 0} and its Q-matrix by Q = (qij ), and set qi = −qii . We define the process
X̃ asX killed on first hitting 0, and we shall usually assume that X̃ is also irreducible on C. We
denote the substochastic semigroup for X̃ by (P̃ (t))t≥0. We first define the return and departure
epochs as follows:

S0 = inf{t ≥ 0 : Xt = 0} and T0 = inf{t ≥ 0 : Xt �= 0},
and then, for n ≥ 1,

Tn = inf{t ≥ Sn : Xt �= 0}
and

Sn = inf{t ≥ Tn−1 : Xt = 0}.
We then define the successive holding and return times Hn

n≥0 and Rnn≥0 by

H 0 = T0 and R0 = S0,

and
Hn = Tn − Sn and Rn = Sn+1 − Tn for n ≥ 1.

Then we define the current holding time as follows:

Ht = t − Sn if Sn ≤ t < Tn for some n.

It will be convenient in what follows to define

Ht = ∅ if Xt �= 0.

We denote the first time that X waits in 0 for time 1 by τ , i.e.

τ = inf{t : Ht ≥ 1},
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and denote the process X killed at time τ by X̂. We denote the state space augmented by the
current holding time in 0 by Ŝ := C ∪ {{0} × [0, 1)}. By a slight abuse of notation, we denote
the (substochastic) Markov chain (X̂t , Ht ) on the state space Ŝ by X̂ also. (Note that if X̂t �= 0
thenHt = ∅, so (X̂t , Ht ) = X̂t .) The associated semigroup is denoted (P̂ (t))t≥0. Throughout
the rest of the paper, we denote by Pi the probability on Skorokhod path space D(S, [0,∞)),
conditional on X̂0 = i, and the corresponding filtration by (Ft )t≥0. Finally, we denote a typical
hitting time of 0 from state i by τ (i)0 and its density by ρi . We denote the density of a typical
return time, R1, by ρ.

1.3. Convergence/decay parameters for evanescent chains

We recall (see, for example, [7]) that, if X∗ is a Markov chain on C, with substochastic
transition semigroup P ∗ and Q-matrix Q∗ = (q∗

ij )(i,j)∈C×C , then X∗ is said to be evanescent
if it is irreducible and dies with probability 1. In this case we define

αX∗ = α = inf

{
λ ≥ 0 :

∫ ∞

0
P ∗
ij (t)e

λt dt = ∞
}

for any i, j ∈ C, and (see, for example, [17]) X∗ is classified as α-recurrent or α-transient
depending on whether

∫ ∞
0 P ∗

ij (t)e
αt dt = ∞ or is finite. Moreover, X∗ is α-recurrent if and

only if
∫ ∞

0 f ∗
ii (t)e

αt dt = 1, where f ∗
ii is the defective density of the first return time to i

(starting in i).
In the α-recurrent case, X∗ is α-positive recurrent if∫ ∞

0
tf ∗
ii (t)e

αt dt < ∞,

otherwiseX∗ is α-null recurrent. Defining q∗
i = −q∗

ii , it is easy to see that α < q∗
i for all i ∈ N

and, hence,
0 ≤ α ≤ inf

i
q∗
i .

Thus, α measures the rate of decay of transition probabilities (in C). There is a second decay
parameter, µ∗, which measures the rate of dying.

We define τ ∗ as the death time of X∗, define s∗i (t) = ∑
j P

∗
ij (t) = Pi (τ ∗ > t), and set

µ∗ = inf

{
λ :

∫ ∞

0
s∗i (t)eλt dt = ∞

}
.

Note that µ∗ is independent of i by the usual irreducibility argument; moreover, since
1 ≥ s∗i (t) ≥ P ∗

ii (t), it follows that
0 ≤ µ∗ ≤ α∗.

Note that in our current setting, we shall take X∗ = X̃ and write τ ∗ = τ0, the first hitting
time of 0. We shall denote the rate of hitting 0, which is the death rate for X∗, by µC and α∗
by αC , and we shall denote the survival probabilities for X̃ by sC , so that sCi (t) = Pi (τ0 > t).

1.4. Doob h-transforms

Recall (see, for example, [19, Section III.49]) that we may form the h-transform of a
substochastic Markovian semigroup on S, (P (t))t≥0, if h : S → R

+ is P -superharmonic
(i.e. [P(t)h](x) ≤ h(x) for all x ∈ S and all t ≥ 0). The h-transform of P , Ph, is specified by
its transition kernel, which is given by

Ph(x, dy; t) := h(y)

h(x)
P (x, dy; t),
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so that if we consider the corresponding substochastic measures on path space, Px and Phx
(conditional on X0 = x), then

dPhx
dPx

∣∣∣∣
Ft

= h(Xt )

and Ph forms another substochastic Markovian semigroup. If h is actually space–time
P -superharmonic then appropriate changes need to be made to these definitions. In particular,
if h(x, t) = eφthx then

dPhx
dPx

∣∣∣∣
Ft

= eφthXt .

As shown in [7], in general, when a weak limit or a vague limit exists for the problem of interest,
it must be a Doob-h-transform of the original process, with the state augmented by the current
waiting time in state 0 in the case we study here.

1.5. Main results

Denoting by P̂ (t) the substochastic transition semigroup for X̂, we define

si(t) := Pi (τ > t) = P̂ (i, Ŝ; t) for i ∈ Ŝ.
Our first result is as follows.

Theorem 1.1. Suppose that X is transient. Denote Pi (X never hits 0) by βi , and define � =∑
j∈C q0,j βj /q0. Set

p(0,0) := p0 = (1 − e−q0)�

e−q0 + (1 − e−q0)�
, (1.3)

p(0,u) = 1 − e−q0(1−u)

1 − e−q0
p0, (1.4)

and
pi = βi + (1 − βi)p0 for i ∈ C. (1.5)

Then
si(t) → pi as t → ∞ for all i ∈ Ŝ.

Hence, if we condition X on τ = ∞, we obtain a new Markov process, X∞, on Ŝ with honest
semigroup P∞ given by

P∞
i,j (t) = pj

pi
P̂i,j (t) for j ∈ C (1.6)

and
P∞
i ((0, du); t) = p(0,u)

pi
P̂i((0, du); t), (1.7)

so that X∞ looks like a Markov chain with Q-matrix given by q∞
i,j = (pj /pi)qi,j on C, whilst

X∞ has a holding time in 0 with density d given by

d(t) = e−q0t∫ 1
0 e−q0s ds

1{t<1}

and a time-homogeneous jump probability out of state 0 to state j of q0,jpj /q0p0.
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In the case where X is recurrent, it is clear that si(t) → 0 as t → ∞ for each i ∈ Ŝ.
Now let W := H 1 + R1 (so that W is the first return time of X to 0 from 0), and let g be

the (defective) density of W 1{H 1<1} on (0,∞). Our first result under these conditions is as
follows. It is a generalisation to our more complex setting of Seneta and Vere-Jones’ [17] result
in the α-positive case.

Theorem 1.2. Let

I (λ) :=
∫ ∞

0
eλtg(t) dt = EeλW 1{H 1<1} .

Then if
there exists a φ such that I (φ) = 1, and I ′(φ−) < ∞, (1.8)

then, for each i ∈ Ŝ,
eφt si(t) → pi > 0 as t → ∞,

where the function p is given by

p(0,0) = eφ−q0

φI ′(φ−) =: κ, (1.9)

p(0,u) =
∫ 1−u

0 e(φ−q0)s ds∫ 1
0 e(φ−q0)s ds

κ, (1.10)

and, for i �= 0,
pi = Fi,0(φ)κ, (1.11)

where

Fi,0(λ) := Eeλτ
(i)
0 =

∫ ∞

0
eλtρi(t) dt.

The following simple condition ensures that condition (1.8) holds.

Lemma 1.1. Suppose that X̃ is α-recurrent, and that both N0 := {i : qi,0 > 0} and N∗
0 :=

{i : q0,i > 0} are finite. Then (1.8) holds.

Corollary 1.1. LetXT denote the chain on Ŝ obtained by conditioning X̂ on the event (τ > T ).
Then, if condition (1.8) holds, for each s > 0, the restriction of the law of XT to Fs converges
weakly as T → ∞ to that of X∞ restricted to Fs , where the transition semigroup of X∞ is
given by (1.6) and (1.7).

In the case where I (φ) < 1 or I ′(φ−) = ∞, Theorems 3.1, 3.2, and 3.3, below, (may) apply,
giving some sufficient conditions for weak or vague convergence to take place. In Theorem 3.4
and Corollary 3.1, below, we give an application to the case of a recurrent birth-and-death
process conditioned not to wait too long in state 0.

2. Proofs of the transient and α-positive cases

To prove Theorem 1.1 is straightforward.

Proof of Theorem 1.1. It is trivial to establish the equations

pi = βi + (1 − βi)p0
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and
p0 = (1 − e−q0)

∑
j∈C

q0,j

q0
pi.

Equations (1.3)–(1.5) follow immediately. Then the conditioning result follows straightfor-
wardly.

Example 2.1. We take a transient nearest-neighbour random walk with reflection at 0 and an
up-jump rate of b and a down-jump rate of d . Note that 1 − β is the minimal positive solution
to P(t)h = h with h(0) = 1, and that 1 − βi = (d/b)i .

The main tool in the proof of Theorem 1.2 is the renewal theorem.

Proof of Theorem 1.2. Recall that state (0, u) denotes that the killed chain is at 0 and its
current holding time is u. First note that s(0,0) satisfies the renewal equation

s(0,0)(t) =
(

1 −
∫ ∞

0
g(u) du

)
1{t<1} +

∫ ∞

t

g(u) du+
∫ t

0
g(u)s(0,0)(t − u) du. (2.1)

If we define
f (t) = eφt s(0,0)(t),

it follows immediately from (2.1) that

f (t) = eφt
((

1 −
∫ ∞

0
g(u) du

)
1{t<1} +

∫ ∞

t

g(u) du

)
+

∫ t

0
g̃(u)f (t − u) du,

where g̃(t) := eφtg(t). Now, it is easy to check that the conditions of Feller’s alternative
formulation of the renewal theorem (see [5, Section XI.1]) are satisfied, so we conclude that

f (t) → µ−1
∫ ∞

0
eφt

(((
1 −

∫ ∞

0
g(u) du

)
1{t<1}

)
+

∫ ∞

t

g(u) du

)
dt as t → ∞,

where

µ =
∫ ∞

0
t g̃(t) dt = I ′(φ−).

It is trivial to establish, by changing the order of integration, that

∫ ∞

0
eφt

∫ ∞

t

g(u) du dt =
∫ ∞

0
g(u)

∫ u

0
eφt dt du

= I (φ)− ∫ ∞
0 g(u) du

φ

= 1 − ∫ 1
0 q0e−q0u du

φ

= e−q0

φ
,

and, hence, (1.9) follows.
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To establish (1.11), note that (by conditioning on the time of the first hit of 0),

si(t) =
∫ ∞

t

ρi(u) du+
∫ t

0
ρi(u)s(0,0)(t − u) du,

and so, denoting eφt si(t) by fi(t), we obtain

fi(t) = eφt
∫ ∞

t

ρi(u) du+
∫ t

0
ρ̃i (u)f (t − u) du,

where ρ̃i (t) := eφtρi(t). Now f is continuous and converges to κ so, by the dominated
convergence theorem,

∫ t

0
ρ̃i (u)f (t − u) du →

∫ ∞

0
κρ̃i(u) du = κFi,0(φ) as t → ∞.

Moreover, since Fi,0(φ) = ∫ ∞
0 ρ̃i (u) du < ∞, it follows that

eφt
∫ ∞

t

ρi(u) du ≤
∫ ∞

t

ρ̃i (u) du → 0 as t → ∞,

and, hence,

fi(t) → κFi,0(φ) as t → ∞,

as required.
To establish (1.10), observe that

s(0,u)(t) = e−q0t 1{t<1−u} +
∫ t

0

∫ (1−u)∧v

0
q0e−q0vρ(w − v)s(0,0)(t − w) dv dw,

and, hence,

f(0,u)(t) := eφt s(0,u)(t)

= e(φ−q0)t 1{t<1−u} +
∫ t

w=0

∫ (1−u)∧w

v=0
q0e(φ−q0)vρ̃(w − v)f (t − w) dv dw,

and, hence, by the dominated convergence theorem,

f(0,u)(t) → κ

∫ ∞

0

∫ w∧(1−u)

0
q0e(φ−q0)vρ̃(w − v) dv dw (t → ∞)

= κ

∫ ∞

0
ρ̃(t) dt

∫ 1−u

0
q0e(φ−q0)v dv

= κ

∫ 1−u
0 e(φ−q0)s ds∫ 1

0 e(φ−q0)s ds
,

as required.
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Remark 2.1. Note that the case mentioned in the introduction, where Y is a Poisson(r) process
and we let τY be the first time that an interjump time is one or larger, can be addressed using
the proof of Theorem 1.2. In this case, if we consider that the chain ‘returns directly to 0’ at
each jump time Y then

I (λ) =
∫ 1

0
re(λ−r)t dt,

and so φ satisfies r(eφ−r − 1)/(φ − r) = 1, which establishes (1.2), and

eφtP(τ > t) → eφ−r

φI ′(φ−) = φ − r

r(φ − 1)
as t → ∞

for r �= 1. The case in which r = 1 gives φ = 1 and c1 = 2.

Proof of Lemma 1.1. It follows from Theorem 3.3.2 of [8] that ifN0 is finite then αC = µC .
Now, since X̃ is α-recurrent, it follows that∫ ∞

0
eλt P̃ii (t) dt < ∞ if and only if λ < αC.

Since sCi (t) ≥ P̃ii (t), it follows that
∫ ∞

0
eλt sCi (t) dt = ∞ if λ ≥ αC.

Conversely, since αC = µC , we see that∫ ∞

0
eλt sCi (t) dt < ∞ if λ < αC,

and so we conclude that∫ ∞

0
eλt sCi (t) dt < ∞ if and only if λ < αC.

Now

I (λ) =
∫ ∞

0
eλtg(t) dt

=
∫ 1

0
e(λ−q0)t dt

( ∑
i∈N∗

0

q0,iFi,0(λ)

)

=
∫ 1

0
e(λ−q0)t dt

( ∑
i∈N∗

0

q0,i

(
Fi,0(λ)− 1

λ

))
.

Now Fi,0(λ) < ∞ if and only if λ < αC and so, since N∗
0 is finite by assumption, I (λ) < ∞

if and only if λ < αC . It now follows trivially that φ < αC and that (1.8) is satisfied.

Proof of Corollary 1.1. This follows immediately from Theorem 1.2 and Theorem 4.1.1 of
[7] provided that we can show that h, given by h : (i, t) 
→ eφtpi , is P̂ -harmonic. This is
easy to check by considering the chain at the epochs when it leaves and returns to 0, i.e. we
show that, defining σ as the first exit time from 0, E(0,u)h(X̂t∧σ , t ∧ σ) = h((0, u), 0) and
Eih(X̂t∧τ0 , t ∧ τ0) = h(i, 0) for i ∈ C. This is sufficient since X̂ is nonexplosive.
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3. The α-transient case

We now seek to consider the α-transient case. In particular, we shall focus on the case where
φ = 0. This is not so specific as one might think since one can (at the cost of a slight extra
difficulty) reduce the general case to that where φ = 0.

3.1. Reducing to the case where φ = 0

We discuss briefly how to transform the problem to this case.
The essential technique is to note that if, for any λ ≤ φ, we h-transform P̂ using the

space–time P̂ -superharmonic function hλ given by

hλ(i, t) = Fi,0(λ)e
λt for i ∈ C

and

hλ((0, u), t) =
(

1 − I (λ)
J λ(u)

J λ(1)

)
e−(λ−q0)ueλt for u ∈ [0, 1),

where

Jλ(x) :=
∫ x

0
e(λ−q0)v dv,

then we obtain a new chain X on Ŝ, with φX = φ − λ and satisfying gX(t) = eλtg(t), which
dies only from state (0, 1−).

The proof of this result uses the standard result that hλ is space–time harmonic for P̂ off
{0}× [0, 1), while, since I (λ) < 1, it is easy to see that hλ is superharmonic on {0}× [0, 1), by
conditioning on the time of first exit from 0. Now it is easy to check thatX dies only from state
(0, 1−) and dies on a visit to 0 with probability 1 − I (λ), so the result follows immediately.

Remark 3.1. Note that, in the α-null recurrent case, where I (φ) = 1 but I ′(φ−) = ∞, the
above transform produces a null recurrent h-transform when λ = φ, whereas the transform is
still evanescent in the α-transient case.

It will follow from l’Hôpital’s theorem in the α-transient cases that if ψi denotes the density
(on (1,∞)) of τ when starting from state i, then, if ψi(t − v)/ψj (t) has a limit as t → ∞, it is
the common limit of

si(t − v)

sj (t)
=

∫ ∞
t−v ψi(u) du∫ ∞
t
ψj (u) du

and
h
φ
i

h
φ
j

sh
φ

i (t − v)

sh
φ

j (t)
=

∫ ∞
t−v eφuψi(u) du∫ ∞
t

eφuψj (u) du
.

In the α-null recurrent case we see that this is not of much help. It is not hard to generalise
Lemma 3.3.3 of [15] to prove that in this case (i, t) 
→ eφthφi is the unique P̂ -superharmonic
function of the form eλt ki and so gives the only possible weak or vague limit.

3.2. Heavy and subexponential tails

All the results quoted in this subsection, apart from the last, are taken from [18].
Recall first that a random variable (normally taking values in R

+) Z, with distribution
function FZ , is said to be heavy tailed, or to have a heavy tail, if

FZ(t + s)

FZ(t)
→ 1 as t → ∞ for all s ≥ 0,

where FZ := 1 − FZ is the complementary distribution function.
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Denoting the n-fold convolution of FZ by FnZ , Z is said to have a subexponential tail, or just
to be subexponential, if

FnZ(t)

FZ(t)
→ n as t → ∞ for all n, (3.1)

and (3.1) holds if and only if

lim sup
t→∞

FnZ(t)

FZ(t)
≤ n for some n ≥ 2. (3.2)

A subexponential random variable always has a heavy tail.
Two random variables,X and Y , are said to have comparable tails, or to be tail equivalent, if

FY (t) ∼ cFX(t) for some c > 0.

The random variable Y is said to have a lighter tail than X if

FY (t)

FX(t)
→ 0 as t → ∞.

Lemma 3.1. IfX andY are independent, Y is lighter tailed thanX, andX has a subexponential
tail, then X + Y has a subexponential tail and

FX+Y (t) ∼ FX(t).

Lemma 3.2. If X and Y are independent, subexponential, and tail equivalent with

FY (t) ∼ cFX(t),

then X + Y is subexponential and

FX+Y (t) ∼ (1 + c)FX(t).

This generalises to the following random case.

Lemma 3.3. Suppose that X1, . . . are independent and identically distributed with common
distribution function F , which is subexponential, and that N is an independent geometric
random variable. Then, if

S :=
N∑
1

Xi,

S is subexponential and
FS(t) ∼ (EN)FX(t).

Finally, we have the following lemma.

Lemma 3.4. Suppose that X1, . . . are independent and tail equivalent with

FXi := Fi,

and that J is an independent random variable taking values in N. Let

Y = XJ

https://doi.org/10.1239/jap/1253279853 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1253279853


822 S. JACKA

(so that Y is a mixture of the Xis), and denote its distribution function by F (so F(t) =∑
i∈N

P(J = i)Fi(t)).
Now suppose that

Fi(t) ∼ aiF1(t).

If the collection {FJ (t)/F1(t); t ≥ 0} is uniformly integrable (u.i.) then

F(t) ∼ (EaJ )F1(t). (3.3)

In particular, if J is a bounded random variable then (3.3) holds.

Proof. It follows from the assumptions that

FJ (t)

F1(t)
→ aJ almost surely as t → ∞.

Thus, if the collection is u.i. then convergence is also in L1 and so, since EFJ (t) = F(t), we
see that

F(t)

F1(t)
→ EaJ as t → ∞.

In particular, if J ≤ n almost surely then

lim sup
t→∞

FJ (t)

F1(t)
≤ max

1≤i≤n ai almost surely,

and so the collection is indeed u.i.

3.3. Results for heavy tails

Suppose first that 0 = φ < µC .

Theorem 3.1. If 0 = φ < µC and τ is subexponential, then si(t − v)/sj (t) → 1 as t → ∞
for all v ≥ 0 and s(0,u)(t − v)/s(0,0)(t) → (1 − e−q0(1−u))/(1 − e−q0) as t → ∞.

Proof. Note first that, since µC > 0, Pi (τ0 > t) ≤ kie−µCt/2, so that τ (i)0 has a lighter tail
than τ and, by Lemma 3.1,

si(t − v) = P(0,0)(τ
(i)
0 + τ > t − v) ∼ P(0,0)(τ > t − v) ∼ P(0,0)(τ > t) = s(0,0)(t).

Similarly,

s(0,u)(t − v) =
∫ 1−u

0
q0e−q0wP(R1 + τ > t − v − w) dw

∼ (1 − e−q0(1−u))P(R1 + τ > t),

and so s(0,u)(t − v)/s(0,0)(t) converges to the desired limit.

It is easy to see that h, defined by hi = 1 for i ∈ C and h(0,u) = (1− e−q0(1−u))/(1− e−q0),
is strictly P̂ -superharmonic and is harmonic on C; Theorem 3.2, below, then follows easily
from a mild adaptation of Theorem 4.1.1 of [7].

Theorem 3.2. Under the conditions of Theorem 3.1, the restriction of the law of X̃T to Fs
converges vaguely to that ofX∞ restricted to Fs , where P∞ is the (substochastic) h-transform
of P̃ (which dies from state (0, u) with hazard rate λ(u) = q0e−q0/(1 − e−q0(1−u))).
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Example 3.1. Consider the case where
∑
j∈C q0,jFj,0(λ) = ∞ for all λ > 0 but µC > 0.

For example, we may take the nearest-neighbour random walk on N with up-jump rate b and
down-jump rate d (with b < d) and then set

q0 = 1, q0,i = 6

π2i2
for i ∈ N.

It is well known that
µC = b + d − 2

√
bd

and
Fi,0(λ) = γ iλ,

where

γλ = b + d − λ− √
(b + d − λ)2 − 4bd

2b
> 1 for 0 < λ ≤ µC.

So, for any λ > 0,
∑
i∈N

q0,iFi,0(λ) = EeλR
1 = ∞ and, hence, φ = 0.

Now we consider the case where µC = 0 (and, hence, φ = 0 also).

Theorem 3.3. Denote by τ (i) a generic random variable having the distribution of τ conditional
on X0 = i. Suppose that the τ (i)s have comparable heavy tails, so that

P(τ (i) > t) = Pi (τ > t) ∼ ciP(τ
(0) > t) = ciP(0,0)(τ > t)

and Pi (τ > t + s)/Pi (τ > t) → 1 as t → ∞. Then, defining

hi = ci for i ∈ S
and

h(0,u) = 1 − e−q0(1−u)

1 − e−q0
,

sj (t − v)

si(t)
→ cj

ci
as t → ∞ for all v ≥ 0 and all i, j ∈ Ŝ. (3.4)

In particular, if the τ (i)0 s have comparable subexponential tails, with

P(τ (i)0 > t) = Pi (τ0 > t) ∼ aiP(τ
(1)
0 > t) = aiP1(τ0 > t)

and
q0,i = 0 for i > n,

then, defining a0 = 0, m = ∑
i∈C q0,iai/q0,

hi = 1 + ai

(eq0 − 1)m
for i ∈ S,

and

h(0,u) = 1 − e−q0(1−u)

1 − e−q0
,

we have
sj (t − v)

si(t)
→ hj

hi
as t → ∞ for all v ≥ 0 and all i, j ∈ Ŝ.

In general, the vector a must be P̃ -superharmonic. If a is P̃ -harmonic then h is P̂ -harmonic,
so that, in this case, the restriction of the law of X̃T to Fs converges weakly to that of X∞
restricted to Fs , where P∞ is the (stochastic) h-transform of P̃ .
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Proof. The first claim is essentially a restatement of the conditions for convergence in (3.4).
To prove the second statement, first note that we may write

τ (i) = τ
(i)
0 + 1 +

N∑
n=1

(H̃ n + Rn),

where (H̃ n)n≥1 is a sequence of independent and identically distributed random variables with
distribution equal to that of the holding time in 0 conditioned on its lying in (0,1), N is a
geometric(e−q0 ) random variable and the Rns are as in Section 2 and are all independent.

Now each Rn is a mixture of τ (i)0 s, so, by Lemma 3.4,

P(Rn ≥ t) =
∑
i∈C

q0,i

q0
P(τ (i)0 ≥ t) ∼

∑
i∈C

q0,i

q0
aiP(τ

(1)
0 ≥ t) = mP(τ (1)0 ≥ t).

Now it follows from Lemma 3.1 that (H̃ n+Rn) is tail equivalent toRn and is subexponential.
Then we deduce, from Lemmas 3.2 and 3.3, that

P(τ (i) > t) ∼ (ai +m(eq0 − 1))P(τ (1)0 ≥ t) = m(eq0 − 1)hiP(τ
(1)
0 ≥ t).

The last statement follows from the fact that X̃ is nonexplosive, and it is then easy to check (by
considering the chain at the epochs when it leaves and returns to 0) that h is then P̂ -harmonic
if a is P̃ -harmonic

Theorem 3.4. Suppose that X̃ is a recurrent birth-and-death process on Z
+ and that, for

some i, τ (i)0 is subexponential. Then P(τ (j)0 > t) ∼ (βj /βi)P(τ
(i)
0 > t), where β is the unique

P̃ harmonic function on N with β1 = 1.

Proof. Note that, since τ (i)0 is subexponential, it follows that µC = 0 and, hence, by
Theorem 5.1.1 of [8], there is a unique P̃ -harmonic β. It follows that, for any n, σn, the
first exit time of X from the set {1, . . . , n − 1}, has an exponential tail (i.e. its tail decreases
to 0 at an exponential rate) and the exit is to n with probability βi/βn if X starts in i.

It follows that, for each j ≤ i,

P(τ (j)0 > t) ∼ βj

βi
P(τ (i)0 > t).

Similarly, for i < n, τ (i)0 = σn + 1A τ
(n)
0 , where A =(X exits {1, . . . , n− 1} to n), so that

P(τ (i)0 > t) ∼ P(A)P(τ (n)0 > t) = βi

βn
P(τ (n)0 > t).

The following corollary is an immediate consequence of Theorems 3.3 and 3.4.

Corollary 3.1. If X̃ is a birth-and-death process on Z
+ and, for some i, τ (i)0 is subexponential,

and, for some n, q0,j = 0 for j > n, then the conclusion of Theorem 3.3 holds.

Remark 3.2. If µC = 0 and the process conditioned on not hitting 0 until time T converges
vaguely, then the τ (i)0 s must have comparable heavy tails. If, in fact, the convergence is weak
(i.e. to an honest process) then the vector a must be harmonic for P̃ .
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Remark 3.3. Suppose that X is a birth-and-death process, with birth rates bi equal to the
corresponding death rates. If the rates are decreasing in i then τ (1)0 is subexponential.

To see this, first observe that, by conditioning on the first jump we obtain

P(τ (1)0 > t) = 1
2 P(E1 > t)+ 1

2 P(E1 + τ
(2)
0 > t),

where E1 is the first waiting time in state 1. Now, since

τ
(2)
0 = τ

(2)
1 + τ

(1)
0

and since τ (2)1 stochastically dominates τ (1)0 , we obtain the desired result that

lim sup
t→∞

F (2)(t)

F (t)
≤ 2,

where F is the distribution function of τ (1)0 . The result now follows by (3.2).

4. Some concluding remarks

Sigman [18] provided some conditions which ensure that a random variable has a subexpo-
nential tail.

Many obvious examples exist of the α-recurrent case. We have exhibited a few examples in
the α-transient case, always assuming that C is irreducible. If it is not then in principle we can
divide C into communicating classes {Cl : l ∈ L}, where L is some countable or finite index
set. It is easy to show that

φ ≤ inf
l∈Lµ

Cl .

By adapting the proof of Theorem 3.1, it is easy to see that if τ is subexponential, but µCl > 0
for some l ∈ L, then si(t − v)/sj (t) → 1 as t → ∞ for i, j ∈ Cl ∪ {{0} × [0, 1), and so, as
in Theorem 3.2, weak convergence of the conditioned chains is not possible if each µCl > 0.
Conversely, if minl∈L µCl = µCl∗ and X restricted to Cl∗ is α-recurrent, then φ = µCl∗ and a
suitably adapted version of Theorem 1.2 and Corollary 1.1 will apply.
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