Li Abundance in Evolved Stars of NGC 6397

D.M. Allen¹, B.V. Castilho¹, L. Pasquini², B. Barbuy¹ and P. Molaro³

(1) Departamento de Astronomia, Instituto Astronômico e Geofísico, Universidade de São Paulo, Caixa Postal 3386, 01060-970, Brazil

(2) European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching bei München, Germany

(3) Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste, Italy

Abstract. Five giants and 11 subgiants of the metal-poor globular cluster NGC 6397 are analysed. In this Poster we present the lithium abundances derived. The present Li abundances and those of turnoff stars by Pasquini & Molaro (1996) are complementary in terms of stellar evolution stage, and show the Li abundances decreasing off the main sequence along the red giant branch.

1. Introduction

The globular cluster NGC 6397 is among the most metal-poor clusters in the Galaxy with [Fe/H] \approx -2.0 and it is the second nearest to us (2.2 kpc). We have gathered high-resolution (R \approx 30000) spectra for five giants and eleven subgiants, in the spectral range $\lambda\lambda$ 4800-7500 Å. The observations of the giants were carried out with the CASPEC spectrograph at the ESO-3.6 m telescope and the subgiants with the EMMI spectrograph at the ESO-NTT. We present a detailed analysis of the 16 stars, providing their atmospheric parameters (T_{eff}, log g, [Fe/H]) and lithium abundances.

In the present work, we derive temperatures using $H\alpha$, and several photometric systems and calibrations, and discuss the inferred metallicities. Li abundances are very sensitive to effective temperatures. A decrease of Li abundance with evolutionary stage is clearly shown.

2. Stellar Parameters

For the 5 cool giants we gathered in the literature available colours, including (B-V), (V-K) and (J-K). The temperatures were derived by using colourtemperature relations by Lejeune, Cuisinier, & Buser (1998), McWilliam (1990), Buser & Kurucz (1992), Blackwell, Lynas-Gray, & Petford (1991), and Gratton, Carretta, & Castelli (1996).

For the subgiants we used the H α profile, using both the ATLAS and MARCS models, as well as (b-y) Strömgren colours using calibrations by van-

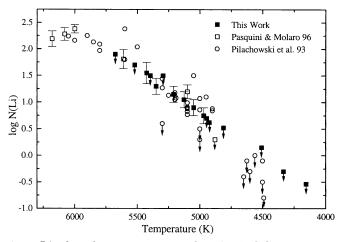


Figure 1. Li abundances vs. $T_{\rm eff}$ for the NGC 6397 stars (filled squares, this work; open squares, Pasquini & Molaro 1996), and a subsample of the field subgiants from Pilachowski et al. (1993) (open circles). The arrows mean upper limit values.

denBerg & Bell (1985), Bergbusch & vandenBerg (1992), and Gratton et al. (1996).

For the giants there is reasonable agreement between different colours (except B-V) and calibrations. However there is strong discrepancy between different methods for the subgiants. For the present calculations we have adopted a mean of the derived temperatures. We obtain a mean metallicity of [Fe/H] = -2.0.

3. Li Abundances and Conclusions

The lithium abundances are derived by fitting synthetic spectra to the observed LiI λ 6707.8 Å line.

A decrease of the Li abundance with effective temperature is clearly seen in Figure 1 as expected by internal mixing and consequent Li destruction.

References

Blackwell, D. E., Lynas-Gray, A. E., & Petford, A. D. 1991, A&A, 245, 567
Bergbusch, P. A., & vandenBerg, D. 1992, ApJS, 81, 163
Buser, R., & Kurucz, R. 1992, A&A, 264, 557
Gratton, R. G., Carretta, E., & Castelli, F. 1996, A&A, 314, 191
Lejeune, T., Cuisinier, F., & Buser, R. 1998, A&AS, 130, 65
McWilliam, A. 1990, ApJS, 74, 1075
Pasquini, L., & Molaro, P. 1996, A&A, 307, 761
vandenBerg, D., & Bell, R. A. 1985, ApJS, 58, 711
Pilachowski, C. A., Sneden, C., & Booth, J. 1993, ApJ, 407, 699