Groups of infinite rank in which every subgroup is either normal or contranormal are characterised in terms of their subgroups of infinite rank.

Keywords and phrases: infinite rank, contranormal subgroup, locally graded group.

1. Introduction

A group G is said to have finite (Prüfer) rank r if every finitely generated subgroup of G can be generated by at most r elements, and r is the least positive integer with this property; if such an r does not exist, we will say that the group G has infinite rank. The investigation of the influence on a (generalised) soluble group of the behaviour of its subgroups of infinite rank has been developed in a series of recent papers (see, for instance, [2–5, 7, 8]). The aim of this paper is to provide some new contributions to this topic, by considering groups G in which every subgroup of infinite rank is either normal or contranormal. A subgroup H of G is said to be contranormal in G if it is not contained in a proper normal subgroup of G, that is, if $H^G = G$ (see, for instance, [13]). Groups satisfying this property will be called \mathcal{AN}_∞-groups, in analogy with the symbol \mathcal{AN} used to denote the class of groups in which every nonnormal subgroup is contranormal. The structure of \mathcal{AN}-groups has been studied in [14].

We will work within the universe of strongly locally graded groups, a class of generalised soluble groups that can be defined as follows. Recall that a group G is locally graded if every finitely generated nontrivial subgroup of G contains a proper subgroup of finite index. Let \mathfrak{G} be the class of all periodic locally graded groups, and let \mathfrak{D} be the closure of \mathfrak{G} by the operators $\tilde{P}, \tilde{P}, R, L$ (we use the first chapter of the monograph [12] as a general reference for definitions and properties of closure operations on group classes). It is easy to prove that any \mathfrak{D}-group is locally graded, any

\[\text{doi:10.1017/S0004972715001355} \]

\[\text{https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972715001355} \]
Groups of infinite rank with normality conditions

locally (soluble-by-finite) group is a \mathcal{D}-group and the class \mathcal{D} is closed with respect to forming subgroups. Moreover, Černikov proved that every \mathcal{D}-group of finite rank contains a locally soluble subgroup of finite index. Obviously, all residually finite groups belong to \mathcal{D}, and hence the consideration of any free nonabelian group shows that the class \mathcal{D} is not closed with respect to homomorphic images. For this reason, it is better in some cases to replace \mathcal{D}-groups by strongly locally graded groups, that is, groups in which every section belongs to \mathcal{D}. The class of strongly locally graded groups has been introduced in [5]. Most of our notation is standard and can be found in [11].

2. \mathcal{AN}_∞-groups

As in many problems concerning groups of infinite rank, the existence of a proper normal subgroup of infinite rank plays a crucial role. Recall that a group G is said to be a Dedekind group if all its subgroups are normal.

Lemma 2.1. Let G be a strongly locally graded \mathcal{AN}_∞-group and let N be a proper normal subgroup of infinite rank of G. Then every subgroup of N is normal in G.

Proof. Every subgroup of infinite rank of N is normal in G so, in particular, N is a Dedekind group (see [8, Theorem C]). Let L be a subgroup of finite rank of N. Since N is nilpotent, it contains a direct product $A_1 \times A_2$ such that both the subgroups A_1 and A_2 have infinite rank and $L \cap (A_1 \times A_2) = \{1\}$ (see [10]). Clearly the subgroups A_1 and A_2 are normal in G. Hence the subgroups of infinite rank LA_1 and LA_2 are normal in G, and $L = LA_1 \cap LA_2$ is normal in G. \square

Our next lemma shows, in particular, that any strongly locally graded group of infinite rank whose proper normal subgroups have finite rank must admit a simple homomorphic image of infinite rank.

Lemma 2.2. Let G be a strongly locally graded group. Then every proper normal subgroup of G has finite rank if and only if the subgroup generated by all proper normal subgroups of G has finite rank.

Proof. Suppose that G has infinite rank but all its proper normal subgroups have finite rank. Clearly G is perfect and so it is not locally nilpotent, by [1, Lemma 2.3]. Hence G contains a proper normal subgroup N such that G/N is a simple group of infinite rank (see [5, Lemma 2.4]). Therefore N has finite rank. Let H be any proper normal subgroup of G. Since H has finite rank, HN also has finite rank and so it is a proper subgroup of G. Then $HN = N$ and it follows that $H \leq N$ so that N is the subgroup generated by all proper normal subgroups of G. \square

The following result will be often used in our proofs.

Lemma 2.3. Let G be a group containing an abelian subgroup A of infinite rank and let H be a subgroup of G such that H^G has finite rank. Then there exists a subgroup B of A such that B has infinite rank and $H^G B$ is a proper subgroup of G.

Downloaded from https://www.cambridge.org/core. IP address: 35.160.27.221, on 28 Apr 2022 at 23:28:34, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50004972715001355
Proof. Since H^G is a proper subgroup of G, we can take an element $x \in G \setminus H^G$. Then A contains a direct product $B \times C$ such that the subgroups B and C both have infinite rank and $BC \cap H^G \langle x \rangle = \{1\}$. Now

$$H^G B \cap H^G \langle x \rangle = H^G (B \cap H^G \langle x \rangle) = H^G,$$

so $x \notin H^G B$, and hence $H^G B$ is a proper subgroup of G. □

Proposition 2.4. Let G be a strongly locally graded \mathcal{AN}_∞-group. If G contains a proper normal subgroup of infinite rank, then G is an \mathcal{AN}-group.

Proof. Let N be a proper normal subgroup of infinite rank of G. By Lemma 2.1, every subgroup of N is normal in G and so N is a Dedekind group. Let H be any subgroup of finite rank of G which is not contranormal, so that H^G is a proper normal subgroup of G. If H^G has infinite rank, then every subgroup of H^G is normal in G (by Lemma 2.1) and so H is normal in G. Suppose now that H^G has finite rank. Since N is a Dedekind group, it contains an abelian subgroup A of infinite rank. By Lemma 2.3, there exists $B \leq A$ of infinite rank such that $H^G B$ is a proper normal subgroup of G. Therefore H is normal in G (by Lemma 2.1) and G is an \mathcal{AN}-group. □

It is now easy to prove the main result of this section.

Theorem 2.5. Let G be a locally soluble \mathcal{AN}_∞-group. Then G is an \mathcal{AN}-group.

Proof. Since G is locally soluble, G contains a proper normal subgroup of infinite rank. Therefore G is an \mathcal{AN}-group, by Proposition 2.4. □

3. \mathcal{SC}_∞-groups

In this section we will consider groups G in which every subgroup of infinite rank is either subnormal or contranormal. Groups satisfying this property will be called \mathcal{SC}_∞-groups, in analogy with the symbol \mathcal{SC} used to denote the class of groups in which every nonsubnormal subgroup is contranormal. This class is a natural extension of the class of \mathcal{AN}-groups, where the normality is replaced by subnormality. The structure of \mathcal{SC}-groups has been studied in [6]. We need the following elementary property.

Lemma 3.1. Let G be a locally (soluble-by-finite) \mathcal{SC}_∞-group and let K be a proper subnormal subgroup of infinite rank of G. Then every subgroup of infinite rank of K is subnormal in G.

In particular, it follows that every proper subnormal subgroup of infinite rank of a \mathcal{SC}_∞-group is soluble (see [9, Theorem 2]).

Theorem 3.2. Let G be a torsion-free locally (soluble-by-finite) \mathcal{SC}_∞-group. If G contains a proper normal subgroup of infinite rank, then G is an \mathcal{SC}-group.
Proof. Let N be a proper normal subgroup of G of infinite rank. Then N is soluble, by Lemma 3.1. Let H be any subgroup of G of finite rank such that H is not contranormal in G. Then H^G is a proper normal subgroup of G. Clearly, there exists a proper subnormal subgroup K of G, of infinite rank, which contains H. In fact, if H^G has infinite rank, we can put $K = H^G$; if H^G has finite rank, since N contains an abelian subgroup A of infinite rank, by Lemma 2.3 there exists $B \leq A$ of infinite rank such that H^GB is a proper subnormal subgroup of G and in this case we can chose $K = H^GB$. By Lemma 3.1, all subgroups of infinite rank of K are subnormal in G and hence K is nilpotent (by [9, Theorem 3]), so that H is subnormal in G. □

Recall that the periodic radical of a group G is the largest periodic normal subgroup of G. Moreover, G is a Baer group if all its cyclic subgroups are subnormal. The following lemma will be used to prove the last theorem of the paper.

Lemma 3.3. Let G be a locally (soluble-by-finite) SC_∞-group containing a proper normal subgroup N of infinite rank. If the periodic radical of G has infinite rank, then every subgroup of N is subnormal in G.

Proof. By Lemma 3.1, every subgroup of infinite rank of N is subnormal in G. So N is soluble and, in particular, a Baer group (see [9, Theorem 2]). Let H be any subgroup of finite rank of N. We can suppose that the largest periodic subgroup K of N has finite rank (otherwise H is subnormal in G, by [9, Theorem 5]). Denote by T the periodic radical of G and consider the subgroup NT. If NT is a proper normal subgroup of G, then all subgroups of infinite rank of NT are subnormal in G and, since T has infinite rank, H is subnormal in NT (by [9, Theorem 5]), and so it is subnormal in G.

Suppose that $G = NT$. Clearly, K is a periodic normal subgroup of G and hence it is contained in T. On the other hand, $T \cap N$ is contained in K, so $T \cap N = K$. Hence

$$\frac{N}{T \cap N} \cong \frac{NT}{T} = \frac{G}{T}$$

is a torsion-free group and so T is the set of all elements of finite order of G.

Now G/T has infinite rank and all its subgroups of infinite rank are subnormal, so (by [9, Theorem 3]) it is nilpotent. Hence HT is a proper subnormal subgroup of G. By Lemma 3.1, every subgroup of infinite rank of HT is subnormal, but T has infinite rank and so H is subnormal in HT, by [9, Theorem 5]. Therefore H is subnormal in G. □

Theorem 3.4. Let G be a locally (soluble-by-finite) SC_∞-group containing a proper normal subgroup of infinite rank. If the periodic radical of G has infinite rank, then G is an SC-group.

Proof. Let H be any subgroup of G of finite rank which is not contranormal in G. Then H^G is a proper normal subgroup of G. If H^G has infinite rank, then H is subnormal in G by Lemma 3.3. Suppose now that H^G has finite rank. If N is a proper normal
subgroup of G of infinite rank, then N is soluble (by Lemma 3.1), and so it contains an abelian subgroup A of infinite rank. By Lemma 2.3, there exists $B \leq A$ of infinite rank such that $H^G B$ is a proper subgroup of G. Therefore $H^G B$ is subnormal in G and, by Lemma 3.1, all its subgroups of infinite rank are subnormal in G, so that H is subnormal in G, by Lemma 3.3. This completes the proof of the theorem. □

The hypotheses of Theorems 3.2 and 3.4 cannot be weakened. Kurdachenko and Smith have proved the existence of a metabelian locally nilpotent group of infinite rank such that the largest periodic subgroup has finite rank and all subgroups of infinite rank are subnormal, but there exists a nonsubnormal subgroup of finite rank (see [9, Theorem 4]). Obviously, this subgroup cannot even be contranormal.

References

ANNA VALENTINA DE LUCA,
Dipartimento di Matematica e Applicazioni,
Università di Napoli Federico II,
Complesso Universitario Monte S. Angelo,
Via Cintia, I 80126 Napoli, Italy
e-mail: annavalentina.deluca@unina.it
GIOVANNA DI GRAZIA,
Dipartimento di Matematica e Applicazioni,
Università di Napoli Federico II,
Complesso Universitario Monte S. Angelo,
Via Cintia, I 80126 Napoli, Italy
e-mail: giovanna.digrazia@unina.it