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Several structure theorems are proved for groups G having the following property. There is a prime p and a
collection of subgroups of G such that the elements of G which lie in the complement of every subgroup of the
collection all have order p.

1991 Mathematics Subject Classification: 20E34.

1. Introduction

Let p be a prime, G a finite group and s/ a union of subgroups of G. We say that si
has the Hughes property for exponent p if the following two conditions hold: firstly
G^s/, and secondly every element of G\s/ has order p. (The term 'union' is used here
in the sense of set theory: si need not be a subgroup of G.) The following well-known
result describes the structure of a finite group which has a subgroup with the Hughes
property.

Theorem 1.1. (Hughes and Thompson [2], Kegel [4]). Let p be a prime, let G be a
finite group and let H be a subgroup of G with the Hughes property for exponent p. Then
H is nilpotent and, if G is not a p-group, the index of H in G is p.

A more familiar statement of this is that in a non-nilpotent finite group the Hughes
subgroup, that generated by the elements whose order is not p, if not the whole group,
is nilpotent and of index p in G.

We will denote by JVJip) the class of all finite groups which have a union of n
subgroups with the Hughes property for exponent p. Theorem 1.1 says, among other
things, that the groups of the class ^ ( p ) have a nilpotent normal p-complement. The
aim of this article is to prove results like this about more general classes

Theorem 1.2. Let n be a positive integer and p a prime greater than n. Each group in
the class JVn(p) has a nilpotent normal p-complement.

Theorem 1.3. Let G be a group in the class JVJip), and let n be the set of primes other
than p, which are greater than or equal to n. Then On(G) is nilpotent and GIOn(G) is a
n'-group.

It is of interest to examine what these theorems say about Jfn(p)-groups when n is
small. When n = l Theorem 1.2 follows from Theorem 1.1. When n = 2 all odd primes
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are covered by Theorem 1.2. In fact the restriction to odd p here is not necessary: the
article [1], where techniques quite different to those in this paper are employed, proves
Theorem 1.2 for n = 2 and all p. For n=3 all primes p greater than or equal to 5 are
covered by Theorem 1.2. The class JV3(3) does not come under Theorem 1.2. Indeed an
Jf3(3)-group need not be 3-nilpotent, witness the symmetric group on three symbols: the
union of its three Sylow 2-subgroups has complement consisting only of elements of
order 3. However we can use Theorems 1.2 and 1.3 to prove the following result.

Corollary 1.4. Let n be a positive integer and p a prime such that (n,p)<(5,5) in the
lexicographical ordering of ordered pairs. Then the groups in the class 3fn{p) are soluble.

Proof. By Theorem 1.2 we may suppose that p<n. Let n be the set of primes greater
than or equal to n and different from p. Then |7t'|<2, so the result follows from
Theorem 1.2 and Burnside's Theorem.

This result is best possible in the sense that J^5(5) contains the insoluble group A5,
the alternating group on five symbols: there is in A5 a conjugacy class of five copies of
/44 whose union excludes only elements of order 5.

More detailed structure of the groups in classes J^n(p) will be developed in a sequel to
the present article.

2. Preliminary results and notations

If, in the sequel, the number n of subgroups forming a union is important, we call it
an w-union. We do not suppose in this definition that the union is necessarily
irredundant, and certainly a union may be a union of subgroups in different ways. In
particular we note that ^fn_,(p)cjfn(p)(n> 1).

Let G be a group and s/ an n-union with the Hughes property of sub-groups of G. If
H is a subgroup of G, not contained in si, then H nsi is an m-union of subgroups of
H with the Hughes property, for some m<n. It will sometimes be useful to write nsi
for the intersection of some particular expression of si as a union, recognising that it is
not a well-defined notation.

We begin with a simple, but very useful, lemma.

Lemma 2.1. Let G be a group and si a union with the Hughes property for exponent
p. Then CG(x) is a p-group for every

Proof. If a p'-element y of G centralises x, then xy is not of order p, so lies in si and
therefore x is in si, contradiction.

The following lemma will also be very useful to us.

Lemma 2.2. Suppose that a group G is irredundantly the union of n sub-groups whose
intersection is D. Every p-element of G is in D whenever p is a prime greater than or equal
to n.

Proof. Suppose that
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irredundantly.
Let S be a non-empty subset of the set Z = {1,2,...,n} of the first n positive integers.

Write

As=n(Ai-.ieS). (2.3)

For ieZ we will write At instead of A{i).
If S is a proper subset of Z we show that, for some non-empty subset T of the

complement of S in Z, and for some elements g,(t e T) of G,

/l^ute./ls^ter). (2.4)

For, let weZ\S. If As=ASu{u) then the claim is immediate: simply choose T — {u}. If
not, let a be an element of Au which is not in any of the other At: such an a exists
because of the irredundance of the union. For each beAs\As ,_,,„, there exists
(eZ\Su{«) for which a~lbeAt. It follows that As\As^{u)^ v(aA,:t$Sv {u}). If
a A, n / 4 s / 0 , then a A, n ^s^&^sum for some g,eAs. In other words (2.4) is proved.

Now let h be a p-element of G. We prove by induction that, for each m satisfying
i<m<n, there is a subset S of Z of cardinality m, for which /l s contains h. For m = l
this is true because G is the union of subgroups As( 1 < s < n). Suppose that, for some m
satisfying 1 < m < n, there is a subset S of Z of cardinality m for which As contains h. By
(2.4), h'(l<i<p-l) belongs to

where T is a non-empty subset of the complement of S in Z. Now one at least of the
cosets g,ASu{t) is a subgroup. If some h'(\ <i<p— 1) is in this subgroup then so is h, and
we have completed the inductive step. If not, then the p — 1 powers of h lie in the union
of \T\— l<n—m— \<n — 2<p— 1 of the cosets g,ASui,y One, therefore, contains
powers ti and hJ for \<i<j<p— 1. It follows that hJ~', and therefore h, is in ASu{t) for
some teT. Since | S u {t} \ =m+ 1, this completes the induction.

Since D = ,4S for the unique S for which \S\ =n, we have proved the claim of the
lemma.

We will use repeatedly, without explicit mention, that no group is the union of two
proper subgroups.

3. Proof of Theorem 1.2

We now turn to Theorem 1.2. First note that it is sufficient to prove that the groups
of the class Jfn(p) are p-nilpotent; for Lemma 2.1, and the result of Thompson [5],
ensures that a normal p-complement is nilpotent. The proof will be by contradiction.
Suppose that there is a positive integer n and a prime p>n for which 3Vn(p) contains
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groups which are not p-nilpotent. It follows from Theorem 1.1 that n>2 and therefore
that p>3 . Moreover let n be the least such integer, and let Ge.?fn(p) be a minimal
non-p-nilpotent group. G has an n-union jrf with the Hughes property for exponent p,
but no (n — l)-union with this property.

For convenience we write s/ = Al\jA2u...vAn and £>= n<c/.
As a consequence of the next result we are able to choose the subgroups 4,(1 <i<n)

as maximal subgroups of G.

(3.1). G is not the union of n maximal subgroups.

Suppose, on the contrary, that G is the union of n maximal subgroups. Then it is the
irredundant union of maximal subgroups M,(l<i<m) where \<m<n. Write E =
Mx n M2 n...n Mm.

Since p>m all p-elements of G lie in E by Lemma 2.2. Let us write S for the
subgroup they generate. Now S is of smaller order than G, and it is not contained in s/
so, by the minimality of G it, and every proper subgroup containing it, has a normal p-
complement. Moreover S is normal in G, and G/S is a p'-group. But S^OPP{G): = R, so
G/R is a p'-group. Since every proper subgroup of G containing S has a normal p-
complement, it must be that R is of prime index in G.

Let P be a Sylow p-subgroup of G chosen so that P<£s4. Write T = N0(P). By the
Frattini argument* G = RT. Therefore PcT. If TJ=G then it is p-nilpotent. However this
means that some p'-element centralises an element outside stf, a contradiction to Lemma
2.1. Therefore T = G. For the same reason we must have OP(G) = 1. Hence P — R is
maximal in G. However, by Lemma 2.2, P s £ , which is not maximal. This contradicts
the fact that G is the union of the subgroups M,, completing the proof of (3.1).

It follows now that we may replace the subgroups A( by maximal subgroups
containing them, and still have an n-union in G with the Hughes property. To avoid
introducing new notation we suppose that the subgroups At are all maximal.

(3.2). / / U is an abelian minimal normal subgroup of G with \U\ >n then U££>.

Since At is maximal, and U abelian and minimal normal, either AtnU = 1 or
t/£/4;(l <i<n). Suppose that U is not in D. Then V c\Al = \, say.

Now there exists aeAx which lies in none of the subgroups 4,(2<i<n), or else G
would be in the class Jfn_{(p). It follows that, for each ie{2,3,,...,n}, there is at most
one element u, of U for which au, is in A-t. Since | U | >n it follows that au0 is not in s/
for at least one u0 in U. This means that 1 =(auo)

p = apu' for some u' in U, which in turn
means that apeAl n U = 1. Since a is an arbitrary element of At not in A2 u A3 u ... u
An it follows that G is in ^ , - ^ p ) , a contradiction. Hence U is in D, as we required.

Let P be a Sylow p-subgroup of G chosen so that P is not contained in sf, and let J
be the subgroup of P generated by the abelian subgroups of P of maximal order. We
write Z for the centre of J, and N for the normaliser of Z in G. By a theorem of
Glauberman (Chaper X, 9.10 in [3]), N is not p-nilpotent. However N is not in si, since
P is not, so the minimality of n and | G | ensures that N = G.

* Professor Zappa points out (I contributi di Alfredo Capelli alia teoria dei gruppi, Bollettino di Storia delle
Scienze Matematiche XI (1991), 25-54) that the priority for this idea belongs to Capelli and not to Frattini.

https://doi.org/10.1017/S0013091500019325 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019325


A HUGHES-LIKE PROPERTY FOR FINITE GROUPS 537

Now let M be a minimal normal subgroup of G contained in Z. Since \M\ >p>n it
follows from Lemma 3 that M £ D. Hence, since | G/M \ < | G | and since G/M satisfies
the hypotheses of the theorem, G/M is p-nilpotent. Write W for the subgroup of G
defined by W/M = Op.(G/M), and let x be an element of G outside both Wand sd'. Then
the subgroup W<x> is not in si'. If it were a proper subgroup of G then it would be p-
nilpotent. In particular W would be p-nilpotent. However this would mean that
OP(W) = OP(G) with G/Op.(G) a p-group, contradicting the non-p-nilpotence of G.
Hence G = W<x>.

Now G/M is in J^n(p) so, by Lemma 2.1, x acts fixed point freely on W/M. Therefore,
by Thompson [5], W/M is nilpotent. In particular G is soluble. We now show that G is
monolithic. Let X be a minimal normal subgroup other than M. If it is a p-group it is
in D by (3.2). If it is a p'-group then x acts without fixed points on it, and it follows that
|X | >p>n. Hence again, by (3.2), X£D. However in either case this means that G/X is
p-nilpotent by induction, and so G is a subdirect product of G/M and G/X and
therefore p-nilpotent, contradiction. Hence M is the unique minimal normal subgroup
ofG.

It follows that M = F(G). Let Y/M be a minimal normal subgroup of G/M, so that
Y/M is a p'-group. Since Cy/M(x) = l, it follows from a theorem of Higman (Chapter IX,
1.10 in [3]) that the minimum polynomial of x on M is (x— l)p. Therefore there is an
element of order p2 outside stf. This final contradiction concludes the proof of
Theorem 1.2.

4. Proof of Theorem 1.3

The crux of the proof of Theorem 1.3 is in the following two results. After stating
them, and before proving them, we show how they may be used to give a short proof of
Theorem 1.3.

Lemma 4.1. Let G be a finite group containing an n-union s/ with the Hughes
property for exponent p, but no (n—\)-union with the same property. Then Oq(G)<^ r\s#
for all primes q greater than or equal to n, but different from p.

Lemma 4.2. Let G be a group in the class ^CJ^p), and suppose that q is a prime
different from p, and greater than or equal to n. Then G has a unique Sylow q-subgroup.

Proof of Theorem 1.3. Let qen. By (4.2) there is a unique Sylow q-subgroup Sq of G.
Therefore Sq is normal in G, and the subgroup H generated by all Sq(qen) is nilpotent
and normal in G. Of course G/H is a rc'-group. This completes the proof of Theorem 1.3.

Proof of (4.1). Let D= nsf. Now suppose that N is a normal q-subgroup of G for
some prime q greater than or equal to n, but not equal to p. Moreover, in order to
obtain an eventual contradiction, suppose that N£D. Let heN\D. We write s/ =
Ay U/4 2 u . . .uX B with the notation chosen so that heA-t for l<,i<m and h$At for
m+l <i<n. Note that l<,m<n. Choose aeAn not belonging to any of the other At:
such an element exists because, by hypothesis, An cannot be omitted from the union.
Then, for 1 <j<q— 1, ah'$Ay <u A2v ...v Am<u An.
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Now for each ie{m + \,...,n— 1}, if any, there is at most one je{l,2,...,q-l} such
that ah'eAji or else h would be in one of these At. However q—\>n — \>n — m—\ and
so, for at least one ke{l,2,...,q — l}, ahk$s4. Hence there exists an element hoeN for
which aho$s/\ in particular it has order p. Therefore

We show that v: = hlP''ha
0'''

2...hx
oho= 1. Suppose not, and let Nt be the first term of

the lower central series of N not containing v. Note that i>2. Now ah0 acts by
conjugation on the factor group Nj-JNj and, in this action, Ntv is a fixed point
because

vah° = tf = hftvho l = hv
0~ 'vho ' = v mod(N,).

However ah0 has no non-trivial fixed points in N, by Lemma 2.1, so none in N/Nt. It
follows that veNh a contradiction to the choice of i. Therefore v = 1 as claimed.

From this it follows that a"=\. Since a is an arbitrary element of An\Ai<oA2

u A3... u An_l this would mean that An could be omitted from the union, contrary to
hypothesis.

This completes the proof of (4.1).

Proof of (4.2). We suppose not, and that n is the least integer for which a
counter-example G exists. By Theorem 1.1 and [1], n>3. We assume, moreover, that
\G\ is as small as possible. We write s/ = AlvA2v---vAn for an n-union in G with
the Hughes property, and we write D= r\stf. There is more than one Sylow q-subgroup
of G.

First we prove

(4.3). O,(G) = 1.

For, it follows from (4.1) that O^G)^D. Now the factor group G/O^G) also satisfies
the hypotheses of (4.2), and it has more than one Sylow ^-subgroup, so the minimality
of G means that Oq(G) = 1.

(4.4). / / H is a proper subgroup of G which contains more than one Sylow q-subgroup
ofG, then H<^sf.

For, otherwise, H and the m-union H n s/(m < n) satisfy the hypotheses of (4.2). But
then either m< n, or m = n and | H | < | G \ so, by the minimal choice of n and G, H has a
unique Sylow q-subgroup, a contradiction.

(4.5). The subgroups A( may be chosen maximal.

If not, then G is the union of n maximal subgroups containing the Ait and therefore
the irredundant union of at least three of them. As in the proof of (3.1), the subgroup S
generated by the ^-elements of G is proper, but not maximal, in G. Let x e G\sf. Then
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S(x~) = G by (4.4). But S<x>#G because S is not maximal in G. This completes the
proof of (4.5), and we continue with the proof of (4.2).

(4.6). O(G) = 1.

By (4.5) the subgroups ,4,(1 <i<ri) are all maximal. Therefore <D(G)s£>. Hence, unless
<D(G)=1, G/<D(G) satisfies the hypotheses of (4.2) and has order smaller than that of G,
so that S<D(G)/<l>(G) is normal in G/<D(G). It follows that G = NG(S)O(G) = NG(S), a
contradiction and therefore <D(G) = 1.

By Lemma 2.2, no q-gwup can be the union of fewer than q+-1 proper subgroups.
Hence every Sylow q-subgroup of G lies in some Av By Sylow's theorem there are at
least q+l Sylow q-subgroups of G. It follows from the pigeon-hole principle that Au

say, contains at least two of these Sylow subgroups. We write S, for the subgroup of At

generated by all its q-elements (l<i<n). Without loss of generality we may suppose
that Si is of maximal order among these subgroups S,; and that S2 is of maximal order
among the subgroups S,(2<i<n).

(4.7). St is a Sylow subgroup of G for 2<i<n.

It will suffice to show that S2 is a Sylow subgroup of G. We suppose that it is not, in
order to obtain a contradiction. We show first that

(4.8). S2 is not normal in G.

Otherwise S2<x> = G by (4.4), so S2 is maximal, and therefore A2 = S2. Also it follows
that A2 contains all ^-elements of G, whence A2 = S2 = S1^Al. However this contradicts
the minimal choice of n, so S2 is not normal in G.

Another consequence of (4.4) is that, for all geG, A9
2^sf. In fact we show now that

(4.9). for all geG, there exists a j for which A\ = Aj.

Because A2 is maximal in G, the result is true if A9
2^Aj for some j . Hence, if the

statement of (4.9) is false, then A\ is the union of at least three of its intersections with
the subgroups /t,(l<i<n). By Lemma 2.2 therefore, there are integers j , k satisfying
2<j<k<n for which S9

2^SjnSk, whence S9
2 = Sj = Sk. However Aj and Ak together

generate G by (4.5). Hence S9
2^G, and therefore S2^G, a contradiction to (4.8).

Next we show that

(4.10). \G:A2\=q = n.

Since A2 is maximal, and not normal in G, it is self-normalising. It follows that
|G:/42| <n since, by (4.9), there are at most n distinct conjugates of A2. However, if
either n<q or | G: /421 <« then A2 contains every q-element of G, contradicting the
non-normality of S2. This proves (4.10).

It now follows that the conjugates of A2 are precisely the subgroups At(l <i<n). The
orbits of these subgroups under conjugation by an element x^sf have length either 1 or
p. Since the sum of the orbit lengths is q, there must be at least one fixed point for x,
that is a subgroup Aj normalised by x. However this says that Aj'SG, whence all the
subgroups Ax are equal, being conjugate, a contradiction.
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This completes the proof of (4.7).

(4.11). /4j =Si and this subgroup is normal in G.

By (4.4), A\£s/ for all geG. If A\±Ay then Lemma 2.2 yields that S\^AL for at
least one i>2, contradicting (4.7) since St is not a Sylow subgroup of G. It follows that
A^G, whence S^G. As in the proof of (4.8), we get that Ax =SX as required.

Our aim now is to show that

(4.12). Ax has a normal q-complement K.

By (4.7) there is a Sylow ^-subgroup S of G not in any of /4,(2< i<w). Of course S is
in Au Since A^G, G = /11NC(S) by the Frattini argument and therefore, in particular,

Now let Z be a characteristic subgroup of S. Write N = TSG(Z). Note that NsNG(S)
hence N^A1. In fact N ^ J J / because otherwise Lemma 2.2 would require that S belong
to some Ai(i>l). By (4.3) Af#G.

Because N£s/, NeJ^Xp) for some re{1,2,...,«}, where Nns/ is an r-union with
the Hughes property for some r<n. Choose r to be as small as possible. Since G is
minimal, S is normal in N. If r>\ then, by (4.1), SsAt for some i> l . This contradicts
the choice of S. Hence r = l . This must mean that every element of N outside N nAl

has order p, because there are ^-elements in N\At for every i> l . Theorem 1.1 then
yields that N r\Ax is nilpotent. Therefore N ^ Z ) is nilpotent.

Now we may choose Z to be the centre of the subgroup of S generated by the abelian
subgroups of S of maximal order. Since 3<n<q, Glauberman's Theorem (Chapter X,
Theorem 9.10 in [3]) says that A^ has a normal ^-complement, K say, as required by
(4.12).

(4.13). The q-complement K is a Sylow subgroup of Alt and G = KS(x} for some

Let R be a Sylow subgroup of K. By the Frattini argument, G = NG(R)K. In
particular L: = NG{R)$:Al and L contains a Sylow q-subgroup of G. Hence some
conjugate of L contains S. Therefore, with the choice of a suitable conjugate of R
originally, we may suppose that L contains S. Hence L£s& or else, by Lemma 2.2, S
would be contained in some A( for i>\.

Now S does not centralise K since it is not normal in G. Therefore some choice R is
not centralised by S. For such a choice it follows that L = G, since otherwise L would be
a smaller counterexample than G to the conclusion of (4.2).

We have seen that N ^ S J ^ X L and hence Nc(S)£<s/, or else S would be in some A,
with «>1. Hence there is an element X ^ J / normalising S. Now G = RS(x} satisfies the
hypotheses of (4.2), and is a counterexample to its conclusion. Since G is minimal
therefore, G = RS(x}. It follows that R = K, so (4.13) is proved.

Since <1>(G) = 1, K is elementary abelian. It is not centralised by S since S is not
normal in G. By Fitting's Lemma therefore, there is a minimal normal subgroup M of G
contained in K, which is not centralised by S. Then MS<x> is a subgroup satisfying the
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conditions of (4.2) and therefore, G = MS(x}. Moreover M is (irreducible and) faithful
for the action of S<x>, since 0,(G)= 1 by (4.3).

From this, and the minimality of G, it follows that SM/M is a chief factor of G.
Higman's theorem (Chapter IX, 1.10 in [3]) shows that the minimum polynomial of x
on M, is xp— 1. Therefore M is a p-group since, by Lemma 2.1, x centralises no
p'-elements. We deduce that, for some element m of M, y = xm is of order p2.

Note that Cc(y) is a p-group, otherwise x would have fixed points in S. Choose seS,
s^ l . Consider the set of conjugates {/': 0<j<q — l}. This set has cardinality q. These
elements are contained in u(X,: 2<i<n) and hence one of the subgroups /4,(2<i<ri)
contains two of them. However two of these elements together generate G giving a final
contradiction, concluding the proof of (4.2), and with it the proof of Theorem 1.3.
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