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PERSISTENCE PROBABILITY FOR A CLASS
OF GAUSSIAN PROCESSES RELATED
TO RANDOM INTERFACE MODELS
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Abstract

We consider a class of Gaussian processes which are obtained as height processes of
some (d + 1)-dimensional dynamic random interface model on Z

d . We give an estimate
of persistence probability, namely, large T asymptotics of the probability that the process
does not exceed a fixed level up to time T . The interaction of the model affects the
persistence probability and its asymptotics changes depending on the dimension d.
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1. Introduction

Consider a real valued stochastic process {Xt }t≥0 starting from zero in discrete or continuous
time. To study the asymptotics of the probability pT := P{Xt ≤ 1 for every t ∈ [0, T ]} as
T → ∞ is called the problem of persistence probability. This is also referred to as survival
probability or the one-sided exit problem and is one of the classical problems in probability
theory. For example, it is well-known that pT � T −1/2 for Brownian motion or symmetric
random walk. Also, for fractional Brownian motion with Hurst parameter H , pT behaves as
T −(1−H)+o(1) (see [2], [21]). In many cases pT exhibits power law decay and the main problem
is to identify its exponent. Even for a Gaussian process with given covariances this is not an easy
problem and the precise exponent is known only for a handful of cases (see [5], [19]). Recently,
in connection with several applications, persistence probabilities for some stochastic processes
such as the integrated process or weighted random walks etc. have been actively investigated
(see, for example, [3], [4], and [10]). Many of these processes do not have the Markov property
nor stationary increments and this makes the problem difficult. See a review [5] for recent
developments.

As one of the motivations and related topics, there are extensive studies of persistence
probability of fluctuating interface in the literature. A typical model is the Kardar–Parisi–
Zhang (KPZ) equation given by the following:

∂

∂t
h(x, t) = 1

2
λ(∇h)2 + ν�h + η(x, t), x ∈ R, t ≥ 0, (1.1)

where η(x, t) is a space-time white noise. This describes the time evolution of a (1 + 1)-
dimensional random interface and h(x, t) represents the height at position x ∈ R and time t ≥ 0.
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Persistence probability for a Gaussian process 147

When λ = 0, (1.1) is called the Edwards–Wilkinson (EW) equation and the solution is the
infinite dimensional Ornstein–Uhlenbeck process in this case. Studies about the KPZ/EW
equation have been quite active in the last several decades and particularly, a lot of analytic,
numerical, and experimental results have been obtained about the asymptotics of p(0, T ) or
limt0→∞ p(t0, T ) as T → ∞, where p(t0, T ) := P{h(x, s) 
= h(x, t0) for every s ∈ (t0, t0 +
T )} is the persistence probability focused on the height at a fixed position x ∈ R (see [17], [20],
[24] and references therein).

However, to the author’s knowledge, analytic results have been obtained only for the EW
equation and almost all of those results are mathematically non-rigorous. Also, most of these
studies focused on the one-dimensional model. In the viewpoint of the study of random
interfaces, it seems natural to consider the higher dimensional model. The main purpose of
this paper is to study persistence probability for a multi-dimensional dynamic random interface
model in a mathematically rigorous way and to give an estimate which clarifies the dependence
on the dimension. For this purpose we discretize the underlying space and consider a dynamic
Gaussian interface model on Z

d . In particular, if we focus on the height process at site 0 ∈ Z
d

then a class of non-Markov Gaussian processes appears.

1.1. Model and result

In this paper we consider the following lattice system of interacting diffusion processes as
a model of dynamic (d + 1)-dimensional random interfaces

dφt (x) =
{
−φt (x) +

∑
y 
=x

q(y − x)φt (y)

}
dt + √

2 dBt(x), x ∈ Z
d , (1.2a)

φ0(x) = 0, x ∈ Z
d , (1.2b)

where {Bt(x)}x∈Zd is a family of independent standard one-dimensional Brownian motions and
we assume the following conditions for {q(x)}x∈Zd :

(i) That q(x) = q(−x) ≥ 0 for every x ∈ Z
d .

(ii) There exists R > 0 such that q(x) = 0 for every x ∈ Z
d with |x| ≥ R.

(iii) The summation
∑

x 
=0 q(x) = 1.

(iv) Additive group generated by {x ∈ Z
d; q(x) > 0} is Z

d .

The physical meaning of (1.2) is as follows. For a configuration φ = {φ(x)}x∈Zd ∈ R
Z

d
,

which describes a phase separating interface embedded in (d + 1)-dimensional space, consider
a (formal) Hamiltonian

H(φ) = 1

2

∑
<x,y>

q(y − x)(φ(x) − φ(y))2, (1.3)

where we take the summation for the pair x, y ∈ Z
d . Then (1.2) corresponds to the Langevin

equation associated with H(φ),

dφt (x) = − ∂H

∂φ(x)
(φt ) + √

2dBt (x), x ∈ Z
d , (1.4)

and this describes the time evolution of a (d+1)-dimensional phase separating random interface
starting from flat initial configuration at height 0. The term φt (x) corresponds to the height
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148 H. SAKAGAWA

of the interface at position x ∈ Z
d and time t ≥ 0. Note that though (1.3) is a formal sum,

∂H/∂φ(x) makes sense by the assumption (ii) on q. Since the energy of the interface φ is
determine by its height differences, this model is called the ∇φ interface model and its studies
have been active in both of static and dynamic aspects (see [14] and references therein).

Since the stochastic differential equation (SDE) (1.2) is determined from the constant
diffusion coefficient and linear drift with the weight satisfying condition (iii), it is also called the
critical Ornstein–Uhlenbeck process and has been investigated in connection with the study of
infinite dimensional interacting diffusion processes (see, for example, [11], [15]). By standard
approximation arguments (1.2) has a unique strong solution. In particular, we have a random
walk representation of space-time correlations of this model (see [8], [12, Proposition 1.3]).
By these facts, the following holds.

Lemma 1.1. Set gt := φt (0), t ≥ 0. Then, {gt }t≥0 is a continuous Gaussian process on [0, ∞)

with mean 0 and the covariance is given by

�(s, t) := E[gsgt ] =
∫ s

0
P (St−s+2u = 0) du, 0 ≤ s ≤ t, (1.5)

where {Su}u≥0 is a continuous time random walk on Z
d with the generator

QF(x) =
∑
y 
=x

q(y − x)(F (y) − F(x)), x ∈ Z
d , (1.6)

for F : Z
d → R and P denotes its law starting at 0 ∈ Z

d .

We stress that though the whole system {φt (x); x ∈ Z
d}t≥0 has the Markov property, if we

focus on the height at 0 ∈ Z
d then {gt }t≥0 := {φt (0)}t≥0 is a non-Markov process. Also, this

is a non-stationary process.
By the above lemma our main problem is to study the persistence probability for a class

of continuous Gaussian processes whose covariances are given by (1.5). Now we are in the
position to state the main result of this paper. We have the following estimate on the persistence
probability for {gt }t≥0.

Theorem 1.1. There exist C−, C+ > 0 such that the following holds for every T > 0 large
enough.

e−C−(log T )

e−C−(log T )3

e−C−
√

T log T

e−C−T

e−C−T

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
≤ P{gt ≤ 1 for every t ∈ [0, T ]} ≤

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e−C+(log T ) if d = 1,

e−C+(log T )2
if d = 2,

e−C+
√

T if d = 3,

e−C+(T / log T ) if d = 4,

e−C+T if d ≥ 5.

Roughly speaking, the dynamics (1.2) represent averaging of the height of the interface at
each site with those of surrounding sites (plus random noises). The number of surrounding
sites increases as the dimension increases and the influence of the height of the original site
decreases in the averaging. Hence, the correlation of the process {gt }t≥0 decays faster as the
dimension increases (see Lemma 1.2 below) and the persistence event becomes hard to occur.
Though the order of upper and lower bounds does not match in 2 ≤ d ≤ 4, the above result
shows that the persistence probability decays faster as the dimension becomes large.

We give several remarks about the result.
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Remark 1.1. If we assume η := ∑
x 
=0 q(x) < 1 then (1.2) corresponds to the Langevin

equation associated with a massive Hamiltonian

H(φ) = 1

2

∑
<x,y>

q(y − x)(φ(x) − φ(y))2 + 1

2
(1 − η)

∑
x∈Zd

(φ(x))2.

In this case, the generator (1.6) can be considered as

QF(x) =
∑
y 
=x

η
q(y − x)

η
(F (y) − F(x)), x ∈ Z

d ,

with
∑

y 
=x q(y − x)/η = 1. Namely, this is a generator of continuous time random walk with
killing rate 1 − η. Hence, we have

E[gsgt ] =
∫ s

0
P (St−s+2u = 0) du ≤

∫ s

0
e−C(t−s+2u) du ≤ C′e−C(t−s),

for some C, C′ > 0 and the covariance of {gt }t≥0 decays exponentially fast. In this case, the
proof of Theorem 1.1 for the case d ≥ 5 works well and we can prove that

e−C−T ≤ P{gt ≤ 1 for every t ∈ [0, T ]} ≤ e−C+T ,

for every T > 0 large enough for arbitrary dimensions.

Remark 1.2. We can also consider the discrete time dynamics of a (d + 1)-dimensional
Gaussian random interface model. Define a R

Z
d
-valued discrete time process {hn(x); x ∈

Z
d , n ≥ 0} by

hn(x) :=

⎧⎪⎨⎪⎩
0 if n = 0,∑
y∈Zd

q(y − x)hn−1(y) + ηn(x) if n ≥ 1, (1.7)

where {ηn(x); x ∈ Z
d , n ≥ 0} is a family of independent, identically distributed (i.i.d.) random

variables. This model is called serial harness and was introduced by Hammersley as a discrete
time model of evolving random interfaces (see [13], [16]). By iterating (1.7), we have

hn(x) =
n−1∑
k=0

∑
y∈Zd

pk(x, y)ηn−k(y),

wherepk(x, y) is k-step transition probability of a random walk on Z
d with transition probability

{q(x)}x∈Zd . Therefore, if the law of noise variables ηn(x) is given by N (0, σ 2) then the height
process at the origin {hn(0)}n≥1 is a family of centered Gaussian random variables whose
covariances are given by

E[hm(0)hn(0)] = σ 2
n−1∑

k=n−m

∑
y∈Zd

pk(0, y)pk−n+m(0, y) = σ 2
m−1∑
k=0

pn−m+2k(0, 0)

for 1 ≤ m ≤ n. Hence, the covariance structure is the same as (1.5) and Theorem 1.1 would
hold also for this model. Actually, our proof of the upper bound also works well for this model.
For the lower bound some extra work might be needed.
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Remark 1.3. (i) One of the difficulties for the estimate of the persistence probability for our
model in d ≥ 2 is that the process has long range correlations (see Lemma 1.2). Namely,
our model has logarithmic correlations in d = 2 and polynomially decaying correlations in
d ≥ 3. Though there are several general theorems for the persistence probability for Gaussian
processes (e.g. [19]), most of them require fast decaying correlations of the process (summability
or integrability of correlations). Recently, Dembo and Mukherjee [9] gave a general criterion
for the persistence probability for Gaussian processes. But they also require the summability
of correlations and their result does not work well for our model in dimensions 2, 3, 4.

To the author’s knowledge, even for the stationary Gaussian process with similar (and
simpler) covariance structure to our model, there is no result with the same order of the upper
and lower bound. The best known result is a classical result in [22] which studied stationary
Gaussian processes whose correlation at time s and s + t behaves as � t−α (α > 0) as t → ∞.
Though the Gaussian process considered in this paper is not a stationary process, large time
behavior of the correlation is similar to this when d ≥ 3 and our result for this case is the same
as [22].

(ii) From the viewpoint of the study of dynamic interface models, it might be natural to consider
Langevin’s equation (1.4), which is associated with the more general Hamiltonian H(φ) =
1
2

∑
<x,y>V (φ(x) − φ(y)) instead of (1.3) where V : R → R denotes interaction potential

(see [14]). However, since several parts of our proof rely on the Gaussian property of our
model, at this moment we do not have an estimate about persistence probability for this general
model.

1.2. Strategy of the proof

For the proof of Theorem 1.1 we first investigate the covariance structure of the process
{gt }t≥0. We recall the local central limit theorem∣∣∣∣P (St = x) − 1

(2πt)d/2
√

det A
e−(x·A−1x/2t)

∣∣∣∣ ≤ Ct−(d/2)−1 (1.8)

for every x ∈ Z
d and t > 0 where A is the covariance matrix of random walk on Z

d with
transition probability {q(x)}x∈Zd (see [18, Theorem 2.1.3]). By combining this with the random
walk representation (1.5), we have the following lemma.

Lemma 1.2. There exists C > 0 such that the following holds for every 0 ≤ s ≤ t:

• For d = 1, |�(s, t) − κ1(
√

(t + s) ∨ 1 − √
(t − s) ∨ 1)| ≤ C.

• For d = 2,

∣∣∣∣�(s, t) − κ2

2
(log((t + s) ∨ 1) − log((t − s) ∨ 1))

∣∣∣∣ ≤ C. (1.9)

• For d ≥ 3, 0 ≤ �(s, t) ≤ C((t − s) ∨ 1)−(d/2)+1, (1.10)

where κd = (1/(2π)d/2
√

det A).

In particular we remark that our model exhibits aging phenomena when d ≤ 2. Namely,
asymptotics of the correlation (�(s, s + t)/

√
�(s, s)

√
�(s + t, s + t)) as s, t → ∞ depends

on the choice of s, t (see [8]).
Now we explain the strategy of the proof of Theorem 1.1. The main part of the proof of upper

bound is the case d = 2. The important property of the process {gt }t≥0 in this case is that the
process has logarithmic correlations. This is similar to the two-dimensional discrete Gaussian
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free field (DGFF). In the recent study of DGFF, [7] introduced modified branching random
walk (MBRW) and proved tightness of the (centered) maximum of DGFF by comparing with
MBRW. We also introduce MBRW and consider comparison with {gt }t≥0. This reduces the
estimate on the persistence probability for {gt }t≥0 to the problem about the partial maximum
of MBRW. This problem can be handled by a multi-scale argument which is based on the
hierarchical structure of MBRW. For the case d ≥ 3, we follow the argument of [22] which
studied the persistence probability for stationary Gaussian processes whose correlation behaves
as � t−α, α > 0. The case d = 1 follows from comparison with Brownian motion.

For the proof of the lower bound in the case of d ≤ 3, we use a measure change argument. We
first add a suitable drift to the process {gt }0≤t≤T so that the persistence event in time interval
[δT , T ] (0 < δ < 1) occurs with large probability. We can estimate its cost by using the
Cameron–Martin formula and we obtain the lower bound of the probability of the persistence
event in time interval [δT , T ]. Then, by using Slepian’s lemma we obtain the lower bound of
the probability of the event in time interval [0, T ]. The lower bound in the case of d ≥ 4 simply
follows from Slepian’s lemma.

In Sections 2 and 3 we give the proofs of the upper and the lower bounds of Theorem 1.1,
respectively. At the end of this section, we remark that throughout this paper C represents
a positive constant which does not depend on T but may depend on other parameters. Also,
this C in estimates may change from place to place in the paper.

2. Proof of the upper bound

2.1. The case d = 2

For the proof of the upper bound in d = 2, we introduce MBRW which was originally
considered by [7] in the study of the maximum of two-dimensional discrete Gaussian free
fields. For k = 0, 1, 2, . . . , let �k = {([1, 2k] ∩ Z) + z; z ∈ Z} be the set of all intervals on Z

with size 2k and define �k(x) = {I ∈ �k; I � x} for x ∈ Z. For L ∈ N, �L
k denotes all intervals

in �k whose left end point belongs to the interval [1, 2L]. The set {ak,I ; I ∈ �L
k , k ≥ 0} is

a family of centered Gaussian random variables which are independent with respect to k ≥ 0
and i.i.d. with respect to I ∈ �L

k with variance 2−k . We extend it periodically over Z, namely
we define {aL

k,I ; I ∈ �k, k ≥ 0} as

aL
k,I :=

{
ak,I if I ∈ �L

k ,

ak,I ′ if I = I ′ + 2Ly for I ′ ∈ �L
k and y ∈ Z.

Then MBRW {ML
x }2L

x=1 on [1, 2L]∩Z is defined by ML
x := ∑L

k=0
∑

I∈�k(x) aL
k,I . By definition

E[(ML
x )2] = L + 1 for every x ∈ [1, 2L] ∩ Z. We also define

M̃L
x := ML

x + vg√
E[(ML

x + vg)2] = ML
x + vg√

L + 1 + v2

where v > 0, and g is a standard normal random variable independent of {ML
x }2L

x=1.
Now, we recall Slepian’s lemma which is used frequently throughout this paper.

Proposition 2.1. ([23].) Let ξ = {ξi}1≤i≤n, ζ = {ζi}1≤i≤n be centered R
n-valued Gaussian

random variables such that E[ξ2
i ] = E[ζ 2

i ] for every 1 ≤ i ≤ n and E[ξiξj ] ≤ E[ζiζj ] for
every 1 ≤ i, j ≤ n. Then, we have

P{ξi ≤ λi for every 1 ≤ i ≤ n} ≤ P{ζi ≤ λi for every 1 ≤ i ≤ n},
for every {λi}1≤i≤n ∈ R

n.
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We remark that this inequality also holds for the continuous parameter setting

(see [1, Theorem 2.2.1]). Define the normalized process of {gt }t≥0 as g̃t := gt/

√
E[g2

t ],
for t > 0. Then we have the following comparison estimate.

Lemma 2.1. Let 0 < δ < 1, 0 < β < 1 be fixed and set � = 2[βL] and N = [(1−δ)2L−[βL]].
There exists v0 = v0(δ) > 0 such that if v ≥ v0, then we have

P{g̃x ≤ λx for every x ∈ {[δ2L] + i�; i = 0, 1, . . . , N}}
≤ P{M̃L

x ≤ λx for every x ∈ {[δ2L] + i�; i = 0, 1, . . . , N}},
for every {λx} ∈ R

N+1 and L large enough.

Proof. By Slepian’s lemma, we have only to show that E[̃gxg̃y] ≤ E[M̃L
x M̃L

y ] for every
x, y ∈ {[δ2L] + i�; i = 0, 1, . . . , N}, x 
= y. By (1.9),

E[g2
x] ≥ κ2

2
log(2x) − C ≥ κ2 log 2

2
L − C1, (2.1)

for some C1 = C1(δ) > 0 and

E[gxgy] ≤ κ2

2
(log((x + y) ∨ 1) − log(|x − y| ∨ 1)) + C

≤ κ2 log 2

2
(L − log2(|x − y| + 1)) + C2,

for some C2 > 0. Therefore,

E[̃gxg̃y] ≤ L − log2(|x − y| + 1) + C′
2

L − C′
1

, (2.2)

for some C′
1 = C′

1(δ) > and C′
2 > 0. Next, by definition of ML

x ,

E[ML
x ML

y ] =
L∑

k=0

∑
I∈�k(x)

∑
I ′∈�k(y)

E[aL
k,I a

L
k,I ′ ]

=
L∑

k=[log2(d
L(x,y)+1)]

(2k − dL(x, y))2−k

≥ L − log2(|x − y| + 1) − C3

for some C3 > 0 where dL(x, y) := min{|x − z|; z ∈ y + 2L
Z}. Therefore,

E[M̃L
x M̃L

y ] ≥ L − log2(|x − y| + 1) − C3 + v2

L + 1 + v2 . (2.3)

Now, by using the elementary fact that (a + x)/(b + x) ≥ a/b for every x ≥ 0 if 0 < a ≤ b

and log2 |x − y| ≥ [βL] for x, y ∈ {[δ2L] + i�; i = 0, 1, . . . , N} with x 
= y, (2.2) and (2.3)
yield that E[̃gxg̃y] ≤ E[M̃L

x M̃L
y ] if v > 0, L > 0 large enough.

Proof of Theorem 1.1 upper bound; the case d = 2. It is sufficient to show that there exists
C > 0 such that

P{gt ≤ 1 for every t ∈ [0, 2L]} ≤ e−CL2
,
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for every L ∈ N large enough. By Lemma 2.1,

P{gt ≤ 1 for every t ∈ [0, 2L]}
≤ P

{
g̃x ≤ 1√

E[g2
x]

for every x ∈ {[δ2L] + i�; i = 0, 1, . . . , N}
}

≤ P

{
M̃L

x ≤ 1√
E[g2

x]
for every x ∈ {[δ2L] + i�; i = 0, 1, . . . , N}

}
≤ P

{
g ≤ −γ

v
L

}
+ P

{
ML

x ≤ γL +
√

L + 1 + v2√
E[g2

x]
for every x ∈ {[δ2L] + i�; i = 0, 1, . . . , N}

}
,

for every γ > 0. The first term in the right-hand side is less than exp(−CL2) by Gaussian
tail estimate. By (2.1) there exists C > 0 such that

√
L + 1 + v2/

√
E[g2

x] ≤ C for every
x ∈ {[δ2L]+ i�; i = 0, 1, . . . , N} and L > 0 large enough. Hence, Proposition 2.2 yields that
the second term is also less than exp(−CL2) for small γ > 0 and we obtain the upper bound.

Proposition 2.2. Let 0 < δ < 1, 0 < β < 1 be fixed and set � = 2[βL], N = [(1−δ)2L−[βL]].
There exist γ0 > 0 and C > 0 such that for every γ ≤ γ0, it holds that

P{ML
x ≤ γL for every x ∈ {[δ2L] + i�; i = 0, 1, . . . , N}} ≤ e−CL2

,

for every L large enough.

For the proof of this proposition, we introduce some notation. For 0 < δ < 1 and
0 < α < 1, let �

(α)
L,δ := {[δ2L] + i2[αL]; i = 0, 1, . . . , [(1 − δ)2L−[αL]]}. Note that if

0 < β < α < 1 then �
(α)
L,δ ⊂ �

(β)
L,δ . We also define F (α) := σ(aL

k,I ; I ∈ �k, [αL] ≤ k ≤ L),

and M
L,(α)
x := E[ML

x |F (α)] = ∑L
k=[αL]

∑
I∈�k(x) aL

k,I . The main idea of the proof is a multi-
scale argument which is based on the hierarchical structure of MBRW. This is often used in the
study of branching random walks or two-dimensional discrete Gaussian free fields (see [6]).

Proof of Proposition 2.2. Let 0 < δ < 1, 0 < β < 1 be fixed and consider events

E = {ML
x ≤ γ0L for every x ∈ �

(β)
L,δ},

A = {ML,(α)
x ≤ L2 for every x ∈ �

(α)
L,δ},

B = {�{x ∈ �
(α)
L,δ; ML,(α)

x ≥ −γ1L} ≥ 2ε1L},
C = {�{x ∈ �

(α)
L,δ; ML,(β)

x ≥ γ2L} ≥ 2ε2L},
where α ∈ (β, 1), γ0, γ1, γ2, ε1, ε2 > 0 are to be specified later on. Then we have

P{E} ≤ P{Ac} + P{A ∩ Bc} + P{B ∩ Cc} + P{C ∩ E}.
We estimate each term in the right-hand side.

For P{Ac}, we have

P{Ac} ≤ |�(α)
L,δ| max

x∈�
(α)
L,δ

P{ML,(α)
x ≥ L2} ≤ C2L−[αL] max

x∈�
(α)
L,δ

exp

{
− L4

2 var(ML,(α)
x )

}
.
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Since var(ML,(α)
x ) = L − [αL] + 1 for every x ∈ �

(α)
L,δ , we obtain P{Ac} ≤ exp(−CL3) for

every L large enough and this term is negligible. Next, on Bc the number of x ∈ �
(α)
L,δ which

satisfies M
L,(α)
x < −γ1L is at least |�(α)

L,δ| − 2ε1L. Therefore, on A ∩ Bc we have

1

|�(α)
L,δ|

∑
x∈�

(α)
L,δ

ML,(α)
x ≤ 1

|�(α)
L,δ|

{−γ1L(|�(α)
L,δ| − 2ε1L) + L22ε1L} ≤ − 1

2γ1L,

for every L large enough if ε1 + α < 1. In this case, Gaussian tail estimate yields that

P{A ∩ Bc} ≤ exp

{
−C

L2

var((1/|�(α)
L,δ|)

∑
x∈�

(α)
L,δ

M
L,(α)
x )

}
.

By definition of M
L,(α)
x ,

var

(
1

|�(α)
L,δ|

∑
x∈�

(α)
L,δ

ML,(α)
x

)
= 1

|�(α)
L,δ|2

∑
x∈�

(α)
L,δ

∑
y∈�

(α)
L,δ

L∑
k=[αL]

∑
I∈�k(x)

∑
I ′∈�k(y)

E[aL
k,I a

L
k,I ′ ]

= 1

|�(α)
L,δ|2

∑
x∈�

(α)
L,δ

∑
y∈�

(α)
L,δ

L∑
k=[αL]

((2k − dL(x, y)) ∨ 0)2−k.

For given x ∈ �
(α)
L,δ and [αL] ≤ k ≤ L, we have

∑
y∈�

(α)
L,δ

((2k − dL(x, y)) ∨ 0) ≤ 2
2k−[αL]∑

i=0

(2k − i2[αL]) = 2k(2k−[αL] + 1).

By these computations,

var

(
1

|�(α)
L,δ|

∑
x∈�

(α)
L,δ

ML,(α)
x

)
≤ 1

|�(α)
L,δ|

L∑
k=[αL]

(2k−[αL] + 1) = O(1),

and we obtain P{A ∩ Bc} ≤ exp(−CL2) for every L large enough if ε1 + α < 1.
For the third term, we have P{B ∩Cc} = E[P{Cc|F (α)}; B]. For given F (α) and on B, the

number of x ∈ �
(α)
L,δ which satisfies M

L,(α)
x ≥ −γ1L is at least 2ε1L. We denote this set as S1.

Now, if Cc occurs then the number of x ∈ S1 which satisfy M
L,(β)
x − M

L,(α)
x ≥ (γ1 + γ2)L is

less than 2ε2L. For x ∈ �
(α)
L,δ ,

ML,(β)
x − ML,(α)

x =
[αL]−1∑
k=[βL]

∑
I∈�k(x)

aL
k,I

are independent centered Gaussian random variables with variance [αL] − [βL]. Therefore,
on B we have

P{Cc | F (α)} ≤ P

{2ε1L∑
i=1

I (ξi ≥ (γ1 + γ2)L) ≤ 2ε2L

}
,
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where {ξi} are i.i.d. centered Gaussian random variables with variance [αL] − [βL]. Set
θi := I (ξi ≥ (γ1 + γ2)L). Then {θi} are i.i.d. and by Gaussian tail estimate, we have

E[θi] ≥ C

L3/2 exp

{
− (γ1 + γ2)

2L2

2([αL] − [βL])
}

≥ 2−λL,

for every large enough L, where we set λ := (γ1 + γ2)
2/(α − β) log 2. Now, if ε1 − λ > ε2

then

P{Cc | F (α)} ≤ P

{2ε1L∑
i=1

θi ≤ 2ε2L

}

≤ P

{2ε1L∑
i=1

(θi − E[θi]) ≤ −1

2
2(ε1−λ)L

}
≤ 2 exp{−C2(ε1−λ)L},

for every L large enough, where the last inequality follows from [6, Lemma 11]. Therefore,
the third term is negligible under the condition ε1 − λ > ε2, λ := (γ1 + γ2)

2/(α − β) log 2.
For the last term, we have P{C ∩ E} = E[P{E | F (β)}; C]. For given F (β) and on C,

the number of x ∈ �
(α)
L,δ which satisfy M

L,(β)
x ≥ γ2L is at least 2ε2L. We denote this set

as S2. Now, if E occurs then ML
x − M

L,(β)
x ≤ (γ0 − γ2)L for every x ∈ S2. For x ∈ �

(α)
L,δ ,

ML
x − M

L,(β)
x = ∑[βL]−1

k=0

∑
I∈�k(x) aL

k,I are independent centered Gaussian random variables
with variance [βL]. Hence, we have

P{E | F (β)} ≤ P{ξ ≤ (γ0 − γ2)L}2ε2L ≤ exp

{
− (γ0 − γ2)

2L2

2[βL]
}2ε2L

,

if γ0 − γ2 < 0 and this term is also negligible, where ξ is a centered Gaussian random variable
with variance [βL].

Finally, by choosing α, γ0, γ1, γ2, ε1, ε2 to satisfy all the conditions, we obtain the desired
estimate. For example, for given 0 < β < 1 it is sufficient to take α = (1 + β)/2, ε1 =
(1 − β)/3, ε2 = (1 − β)/6, γ1 = γ2 = √

log 2(1 − β)/7 > γ0.

2.2. The cases d = 1 and d ≥ 3

Next, we consider the cases d = 1 and d ≥ 3. We prepare some notation which will be also
used in the proof of the lower bound. By the inversion formula,

P (Su = x) = 1

(2π)d

∫
[−π,π ]d

E[eiθ ·Su ]e−iθ ·x dθ,

for x ∈ Z
d , and u ≥ 0. Since {Su}u≥0 is a continuous time random walk with generator (1.6), we

have E[exp(iθ ·Su)] = exp{u(q̂(θ)−1)} for every u ≥ 0, θ ∈ R
d where q̂(θ) := ∑

x∈Zd exp(iθ ·
x)q(x) (cf. [18, Lemma 2.3.1]). By the assumption on q, φ(θ) := 1 − q̂(θ) = 0 if and only
if all the values of θ are integer multiples of 2π and there exists ε > 0 such that φ(θ) ≥ ε|θ |2
for every θ ∈ [−π, π ]d (see [18]). Also, by Taylor’s theorem φ(θ) = θ · Aθ/2 + O(|θ |4) as
|θ | → 0. Then, by Fubini’s theorem,∫ t

s

P (Su = 0) du = 1

(2π)d

∫
[−π,π ]d

e−sφ(θ) − e−tφ(θ)

φ(θ)
dθ, (2.4)

for every 0 ≤ s ≤ t .

https://doi.org/10.1239/aap/1427814585 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1427814585


156 H. SAKAGAWA

Lemma 2.2. Let d = 1 and {Bt }t≥0 be a one-dimensional standard Brownian motion. Define

B̃t := Bt/

√
E[B2

t ] = Bt/
√

t, t > 0. Then, we have E[̃gsg̃t ] ≤ E[B̃sB̃t ] for every s, t > 0.

Proof. By the random walk representation (1.5), all we need to show is that∫ t+s

t−s
P (Su = 0) du

(
∫ 2s

0 P (Su = 0) du)1/2(
∫ 2t

0 P (Su = 0) du)1/2
≤

√
s√
t
,

for every 0 < s < t . By (2.4), this is equivalent to(∫ π

−π

e−(t−s)φ(θ) − e−(t+s)φ(θ)

2sφ(θ)
dθ

)
≤

(∫ π

−π

1 − e−2sφ(θ)

2sφ(θ)
dθ

)1/2(∫ π

−π

1 − e−2tφ(θ)

2tφ(θ)
dθ

)1/2

. (2.5)

Since (ex − 1)/x is increasing in x > 0, we have

e−(t−s)a − e−(t+s)a

2sa
≤

√
1 − e−2sa

2sa

√
1 − e−2ta

2ta
,

for every 0 < s < t, a > 0 and (2.5) follows from Schwarz’s inequality.

Proof of Theorem 1.1 upper bound; the case d = 1. By Lemma 2.2, we can use Slepian’s
lemma and we have

P{gt ≤ 1 for every t ∈ [0, T ]} ≤ P

{
Bt ≤

√
t√

E[g2
t ]

for every t ∈ (0, T ]
}
.

By the local central limit theorem (1.8),

E[g2
t ] = 1

2

∫ 2t

0
P (Su = 0) du ≥ 1

2

∫ t

0

(
κ1√
u

− C

u3/2

)
du ≥ √

2κ1
√

t − C,

for some C > 0 and every t > 0. Also, by using the estimate

P (Su = 0) ≥ P (there is no jump in [0, u]) = e−u,

we have E[g2
t ] ≥ 1

2

∫ 2t

0 exp(−u) du = 1
2 (1 − exp(−2t)). Hence, E[g2

t ] ≥ max{√2κ1
√

t −
C, 1

2 (1 − exp(−2t))} for every t > 0 and this yields that there exist C, C′ > 0 such that√
t/

√
E[g2

t ] ≤ Ct1/4 + C′ for every t > 0. Therefore,

P{gt ≤ 1 for every t ∈ [0, T ]} ≤ P{Bt ≤ Ct1/4 + C′ for every t ∈ (0, T ]},
and the right-hand side is bounded above by CT −1/2 by the result about persistence probability
for Brownian motion with drift (see [25]).

Proof of Theorem 1.1 upper bound; the case d ≥ 3. In this case the upper bound follows
from a similar argument to the proof of [22, Theorem 2] which studied a class of stationary Gaus-
sian processes. For completeness we give the proof. Let � = �(T ) > 0 which will be specified
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later on. Consider n × n matrix ρ = (ρjk) where ρjk = E[̃gj�g̃k�], 1 ≤ j, k ≤ n := [T/�].
We also denote ρ−1 = (ρ−1

jk ) as the matrix inverse of ρ. By (1.8),
∫ ∞

0 P (Su = 0) du < ∞
when d ≥ 3. Therefore, there exists c0 > 0 such that E[g2

x] = 1
2

∫ 2x

0 P (Su = 0) du ≥ 1/c2
0

for every x ∈ {j�; j = 1, 2, . . . , n} if T > 0 is large enough and we have

P{gt ≤ 1 for every t ∈ [0, T ]}
≤ P

{
g̃x ≤ 1√

E[g2
x]

for every x ∈ {j�; j = 1, 2, . . . , n}
}

≤ P{g̃x ≤ c0 for every x ∈ {j�; j = 1, 2, . . . , n}}

= 1

(2π)n/2
√

det ρ

∫ c0

−∞
dx1 · · ·

∫ c0

−∞
dxn exp

{
−1

2

n∑
j,k=1

ρ−1
jk xj xk

}
.

Since ρ is a real symmetric positive definite matrix, its eigenvalues are given by 0 < λ1 ≤ · · · ≤
λn and we have det ρ ≥ λn

1. Also, eigenvalues of ρ−1 are given by 0 < 1/λn ≤ · · · ≤ 1/λ1
and we have

∑n
j,k=1 ρ−1

jk xj xk ≥ (1/λn)
∑n

j=1 x2
j for every (xj ) ∈ R

n. Therefore, we obtain

P{gt ≤ 1 for every t ∈ [0, T ]} ≤
(

b
λn

λ1

)n/2

, (2.6)

for some b ∈ (0, 1). Now, we use the fact that for every n × n matrix A = (aij ) and an
eigenvalue λ, it holds that |λ − aii | ≤ ∑

j 
=i |aij | for some 1 ≤ i ≤ n. By (1.10) and ρii = 1
for every 1 ≤ i ≤ n, there exists C2 > 0 such that λn ≤ 1 + C2�

−(d/2)+1 ∑n
j=1 |j |−(d/2)+1

and λ1 ≥ 1 − C2�
−(d/2)+1 ∑n

j=1 |j |−(d/2)+1. If we choose � as

� = �(T ) =

⎧⎪⎨⎪⎩
K

√
T if d = 3,

K log T if d = 4,

K if d ≥ 5,

with K > 0 large enough (independent of T ), then �−(d/2)+1 ∑n
j=1 |j |−(d/2)+1 ≤ C/K

for every T > 0 large enough and every d ≥ 3. Hence, we can choose K > 0 so that
b(λn/λ1) ≤ C3 < 1 for every T > 0 large enough and (2.6) yields the desired upper bound.

3. Proof of the lower bound

In this section we prove the lower bound of Theorem 1.1. We first consider the case d ≤ 3.
Let T > 0 and consider a continuous Gaussian process {gt }t∈[0,T ] with mean 0 and covariance
(1.5). We first give an estimate on its maximum.

Lemma 3.1. There exists C > 0 such that

E

[
sup

0≤t≤T

gt

]
≤

⎧⎪⎨⎪⎩
CT 1/4 if d = 1,

C log T if d = 2,

C
√

log T if d ≥ 3.

(3.1)

Proof. Let ρ(s, t) := {E[(gs −gt )
2]}1/2 be a canonical metric induced by g. For 0 ≤ s ≤ t ,
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by (1.5) we have

ρ(s, t)2 = 1

2

(∫ 2s

0
+

∫ 2t

0
−2

∫ t+s

t−s

)
P (Su = 0) du

= 1

2

(∫ (t+s)+(t−s)

t+s

−
∫ 2s+(t−s)

2s

+2
∫ t−s

0

)
P (Su = 0) du

= 1

2

∫ t−s

0
{P (Su+t+s = 0) − P (Su+2s = 0) + 2P (Su = 0)} du.

Then, we have a trivial bound ρ(s, t)2 ≤ 2|t − s| for every d ≥ 1. Also, by the local central
limit theorem (1.8) we have P (Su = 0) ≤ Cu−(d/2) for every u > 0 and this yields

ρ(s, t)2 ≤

⎧⎪⎨⎪⎩
C|t − s|1/2 if d = 1,

C log(|t − s| ∨ 1) + C′ if d = 2,

C if d ≥ 3,

for every s, t ≥ 0.
Now, we use Dudley’s bound:

E

[
sup

0≤t≤T

gt

]
≤ C

∫ 1
2 diam([0,T ])

0

√
log N(ε) dε, (3.2)

where N(ε) is a metric entropy for [0, T ] induced by ρ, namely, the smallest number of ρ-balls
with radius ε which cover [0, T ] (cf. [1, Theorem 1.3.3]). When d = 2, by the above estimates
there exist C1, L1 > 0 such that

ρ(s, t) ≤
{√

2|t − s| for every s, t ≥ 0,√
C1 log(|t − s|) if |t − s| ≥ L1.

If ε ≥ √
C1 log L1 then s, t ≥ 0 with L1 ≤ |t−s| ≤ exp(ε2/C1) satisfy ρ(s, t) ≤ ε and we have

N(ε) ≤ T exp(−ε2/C1). If ε <
√

C1 log L1 then s, t ≥ 0 with |t−s| ≤ 1
2ε2 satisfy ρ(s, t) ≤ ε

and we have N(ε) ≤ 2T/ε2 in this case. Also, diam ([0, T ]) = sups,t∈[0,T ] ρ(s, t) ≤ C
√

log T .
By combining these estimates with (3.2), we obtain E[sup0≤t≤T gt ] ≤ C log T . When d ≥ 3,
by the trivial bound of ρ we have N(ε) ≤ 2T/ε2 for every ε > 0. Also, since ρ is bounded,
diam ([0, T ]) ≤ C. Hence, we obtain E[sup0≤t≤T gt ] ≤ C

√
log T in this case.

Finally, for the case d = 1 let {Bγ
t }t≥0 be a fractional Brownian motion with Hurst parameter

γ = 1
4 , namely {Bγ

t }t≥0 is a continuous centered Gaussian process with E[(Bγ
t − B

γ
s )2] =

|t − s|1/2. It is well known that E[sup0≤t≤T B
γ
t ] ≤ CT 1/4 and we have E[(gt − gs)

2] ≤
E[(√CB

γ
t − √

CB
γ
s )2]. Then, the Sudakov–Fernique inequality (see [1, Theorem 2.2.3])

yields that E[sup0≤t≤T gt ] ≤ √
CE[sup0≤t≤T B

γ
t ] ≤ CT 1/4.

Next, let (H(�), ‖ · ‖H ) denote a reproducing kernel Hilbert space associated with � =
{�(s, t); s, t ∈ [0, T ]}. We define η = ηT := ∫ T

0 gs ds and h = {hT
t }t∈[0,T ], hT

t := E[ηgt ] =∫ T

0 E[gsgt ] ds. Then, by definition, h ∈ H(�) and we have the following lemma.
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Lemma 3.2. Let d ≤ 3. (i) There exists C > 0 such that ‖h‖2
H ≤ CT 3−(d/2) for every T > 0

large enough.

(ii) For every 0 < δ < 1, there exists C = C(δ) > 0 such that

lim inf
T →∞ T (d/2)−2 inf

t∈[δT ,T ] h
T
t ≥ C.

Proof. At first, by (1.5) and (2.4)

E[gsgt ] = 1

2

∫ t+s

t−s

P (Su = 0) du = 1

2(2π)d

∫
C(π)

e−(t−s)φ(θ) − e−(t+s)φ(θ)

φ(θ)
dθ, (3.3)

for every 0 ≤ s ≤ t where C(r) := [−r, r]d , r > 0.

(i) By (3.3) and Fubini’s theorem, we compute that

‖h‖2
H =

∫ T

0

∫ T

0
E[gsgt ] ds dt

= 2
∫ T

0

(∫ t

0
E[gsgt ] ds

)
dt

= 1

(2π)d

∫
C(π)

1

φ(θ)2

(∫ T

0
e−tφ(θ)(etφ(θ) + e−tφ(θ) − 2) dt

)
dθ

= T 3

(2π)d

∫
C(π)

f (T φ(θ)) dθ,

where f (x) = 1/x2(1 − (1/2x){(2 − e−x)2 − 1}) is a continuous function on (0, ∞)

which satisfies limx→0 f (x) = 1
3 and f (x) ≤ 1/x2 for every x ∈ (0, ∞). Therefore,

‖h‖2
H = T 3−(d/2)

(2π)d

∫
C(π

√
T )

f

(
T φ

(
θ√
T

))
dθ

= T 3−(d/2)

(2π)d

(∫
C(1)

+
∫

C(π
√

T )\C(1)

)
f

(
T φ

(
θ√
T

))
dθ.

By properties of f and φ, f (T φ(·/√T )) is bounded on C(1). Also,

∫
C(π

√
T )\C(1)

f

(
T φ

(
θ√
T

))
dθ ≤

∫
C(π

√
T )\C(1)

(
T φ

(
θ√
T

))−2

dθ

≤
∫

Rd\C(1)

1

ε2|θ |4 dθ

≤ C

ε2

∫ ∞

1

rd−1

r4 dr.

This integral is finite if d ≤ 3.
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(ii) By (3.3) and Fubini’s theorem again, we compute that

hT
t =

∫ T

0
E[gsgt ] ds

≥ 1

2(2π)d

∫
C(π)

(∫ t

0

e−(t−s)φ(θ) − e−(t+s)φ(θ)

φ(θ)
ds

)
dθ

= 1

2(2π)d

∫
C(π)

1

φ(θ)2 e−tφ(θ)(etφ(θ) + e−tφ(θ) − 2) dθ

≥ 1

2(2π)d

∫
C(π)

1

φ(θ)2 e−tφ(θ) 1

2
(tφ(θ))2 dθ

= t2T −(d/2)

4(2π)d

∫
C(π

√
T )

e−tφ(θ/
√

T ) dθ,

where the second inequality follows from the fact that ex + e−x − 2 ≥ x2/2 for every
x ∈ R. Finally, by Fatou’s lemma we have

lim inf
T →∞ T (d/2)−2 inf

t∈[δT ,T ] h
T
t ≥ δ2

4(2π)d

∫
Rd

e−(1/2)θ ·Aθ dθ > 0.

Remark 3.1. Asymptotics of ‖h‖2
H as T → ∞ for d ≥ 3 have been studied in [11] by using

SDE (1.2).

By using Lemma 3.2, we first show the lower bound of the persistence probability in time
interval [δT , T ], 0 < δ < 1.

Proposition 3.1. Let 0 < δ < 1 be fixed. There exists C > 0 such that

P{gt ≤ 1 for every t ∈ [δT , T ]} ≥

⎧⎪⎨⎪⎩
e−C if d = 1,

e−C(log T )2
if d = 2,

e−C
√

T log T if d = 3,

for every T > 0 large enough.

Proof. Set h̃ = {̃hT
t }t∈[0,T ], h̃T

t := βa(T )ht , 0 ≤ t ≤ T where β > 0 and

a(T ) =

⎧⎪⎨⎪⎩
T −(5/4) if d = 1,

T −1 log T if d = 2,

T −(1/2)
√

log T if d = 3.

By the Cameron–Martin formula and Schwarz’s inequality, we have

P{gt − h̃T
t ≤ 1 for every t ∈ [δT , T ]}

= E[1{gt≤1 for every t∈[δT ,T ]}eη̃−(1/2)‖h̃‖2
H ]

≤ P{gt ≤ 1 for every t ∈ [δT , T ]}1/2e−(1/2)‖h̃‖2
H E[e2η̃]1/2,

where η̃ is a centered Gaussian random variable with variance ‖h̃‖2
H . This yields that

P{gt ≤ 1 for every t ∈ [δT , T ]} ≥ e−‖h̃‖2
H P{gt − h̃T

t ≤ 1 for every t ∈ [δT , T ]}2.
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Therefore, by definition of h̃ and Lemma 3.2(i) it is sufficient to prove that

lim inf
T →∞ P{gt − h̃T

t ≤ 0 for every t ∈ [δT , T ]} ≥ C > 0. (3.4)

By Lemma 3.1 and Lemma 3.2(ii), if we chooseβ > 0 large enough then infδT ≤t≤T h̃T
t ≥ 2b(T )

where we set the right-hand side of (3.1) as b(T ). Then,

P{gt − h̃T
t ≥ 0 for some t ∈ [δT , T ]} ≤ P

{
sup

0≤t≤T

gt − E[ sup
0≤t≤T

gt ] ≥ b(T )
}

≤ exp

{
−b(T )2

2σ 2
T

}
,

where

σ 2
T := sup

0≤t≤T

E[g2
t ] ≤

⎧⎪⎨⎪⎩
C

√
T if d = 1,

C log T if d = 2,

C if d = 3,

and the last inequality follows from Borell’s inequality (see [1, Theorem 2.1.1]). Hence, we
obtain (3.4) and complete the proof.

Proof of Theorem 1.1 lower bound; the case d ≤ 3. By Proposition 3.1, there exist T0 > 0
and C0 > 0 such that

P{gt ≤ 1 for every t ∈ [T , 2T ]} ≥ e−C0a(T ),

for every T ≥ T0 where

a(T ) =

⎧⎪⎨⎪⎩
1 if d = 1,

(log T )2 if d = 2,√
T log T if d = 3.

For every T ≥ T0, we have [T0, T ] ⊂ ⋃l̄
l=0[2lT0, 2l+1T0] where l̄ = [log(T /T0)/log 2].

Slepian’s lemma yields that

P{gt ≤ 1 for every t ∈ [0, T ]}

≥ P{gt ≤ 1 for every t ∈ [0, T0]}
l̄∏

l=0

P{gt ≤ 1 for every t ∈ [2lT0, 2l+1T0]}

≥ C1 exp

{
−C0

l̄∑
l=0

a(2lT0)

}
,

for some C1 = C1(T0) > 0. Then, by elementary computation we have

l̄∑
l=0

a(2lT0) ≤

⎧⎪⎨⎪⎩
C2 log T if d = 1,

C2(log T )3 if d = 2,

C2
√

T log T if d = 3,

for some C2 > 0 and we complete the proof.
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Proof of Theorem 1.1 lower bound; the case d ≥ 4. By (1.5) and (1.8), there exist T0, C1,

C2 > 0 such that C1 ≤ E[gtgt+s] ≤ C2 for every t ≥ T0, 0 ≤ s ≤ 1. Therefore, there exists
C3 > 0 such that P{gs ≤ 1 for every s ∈ [t, t + 1]} ≥ C3 for every t ≥ T0. Then, Slepian’s
lemma yields that

P{gt ≤ 1 for every t ∈ [0, T ]}

≥ P{gt ≤ 1 for every t ∈ [0, T0]}
[T −T0]∏

l=0

P{gt ≤ 1 for every t ∈ [T0 + l, T0 + l + 1]}

≥ e−CT ,

for some C > 0 and we complete the proof.
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