Jordan–Chevalley Decomposition in Lie Algebras

Leandro Cagliero and Fernando Szechtman

Abstract. We prove that if s is a solvable Lie algebra of matrices over a field of characteristic 0 and $A \in s$, then the semisimple and nilpotent summands of the Jordan–Chevalley decomposition of A belong to s if and only if there exist $S, N \in s$, S is semisimple, N is nilpotent (not necessarily $[S, N] = 0$) such that $A = S + N$.

1 Introduction

All Lie algebras and representations considered in this paper are finite dimensional over a field F of characteristic 0. An important question concerning a given representation $\pi: g \rightarrow gl(V)$ of a Lie algebra g is (cf. [B2, Ch. VII, §5])

(∗) Does $\pi(g)$ contain the semisimple and nilpotent parts of the Jordan–Chevalley decomposition (JCD) in $gl(V)$ of $\pi(x)$ for a given $x \in g$?

For semisimple Lie algebras, this is true for any representation and this classic result is a cornerstone of the representation theory of semisimple Lie algebras (see [Hu, §6.4 and Ch. VI] or [FH, §9.3 and Ch. 14]). We are interested in the classification of indecomposable representations of certain families of non semisimple Lie algebras (see [CS2, CS3]), and an extension of the classical result to more general Lie algebras will prove useful in this endeavour. In a different direction, the recent article [Ki], studies the existence of a Jordan–Chevalley–Seligman decomposition in prime characteristic.

The question (∗) led us to study the existence and uniqueness of abstract JCDs in arbitrary Lie algebras [CS]. Recall that an element x of a Lie algebra g is said to have an abstract JCD if there exist unique $s, n \in g$ such that $x = s + n, [s, n] = 0$ and given any finite dimensional representation $\pi: g \rightarrow gl(V)$ the JCD of $\pi(x)$ in $gl(V)$ is $\pi(x) = \pi(s) + \pi(n)$. The Lie algebra g itself is said to have an abstract JCD if every one of its elements does. The main results of [CS] are Theorems 1 and 2, and they respectively state that a Lie algebra has an abstract JCD if and only if it is perfect, and an element of a Lie algebra g has an abstract JCD if and only if it belongs to $[g, g]$. These theorems, though related to question (∗), do not provide a satisfactory answer to it.

The purpose of this note is two-fold: on one hand we prove Theorem 1.1 below, which directly addresses question (∗) and allows us to derive from it [CS, Theorems 1 and 2]. On the other hand, we recently realized that there is a gap in the original

Received by the editors January 8, 2018; revised May 14, 2018.
Published electronically July 23, 2018.
Author L. C. was supported in part by CONICET and SECYT-UNC grants.
Author F. S. was supported in part by an NSERC discovery grant.
AMS subject classification: 17-08, 17B05, 20C40, 15A21.
Keywords: solvable Lie algebra, Jordan–Chevalley decomposition, representation.
proof of [CS, Theorems 1 and 2], since [CS, Lemma 2.1] is not true. Therefore, we leave [CS, Theorems 1 and 2] in good standing by giving a correct proof derived from Theorem 1.1.

Theorem 1.1 Let s be a solvable Lie algebra of matrices, let $A \in s$, and assume that $A = S + N$ with $S, N \in s$, S semisimple, N nilpotent (we are not assuming $[S, N] = 0$). Then the semisimple and nilpotent summands of the JCD of A belong to s.

This theorem is a consequence of the following result.

Theorem 1.2 Let \mathbb{F} be algebraically closed. Given a square matrix $A = S + N$ with S semisimple and N nilpotent, let $\{S_n\}$ and $\{N_n\}$ be sequences defined inductively by

$$S_0 = S \quad \text{and} \quad N_0 = N,$$

and, if $[S_n, N_m] \neq 0$, let $(N_n)_{\lambda_n}$ be a non-zero eigenmatrix of $\text{ad}(S_n)$ corresponding to a non-zero eigenvalue λ_n appearing in the $\text{ad}(S_n)$-decomposition of N_n, and let

$$S_{n+1} = S_n + (N_n)_{\lambda_n} \quad \text{and} \quad N_{n+1} = N_n - (N_n)_{\lambda_n}.$$

(The sequences depend on the choice of the non-zero eigenvalues.)

If $\{S, N\}$ generates a solvable Lie algebra s, then (independently of the choice of the eigenvalues)

(i) S_n is semisimple, N_n is nilpotent, and $S_n, N_n \in s$ for all n,

(ii) there is n_0 such that $[S_{n_0}, N_{n_0}] = 0$.

In particular, $A = S_{n_0} + N_{n_0}$ is the Jordan–Chevalley decomposition of A with both components $S_{n_0}, N_{n_0} \in s$. Moreover, if $\pi : s \to \mathfrak{gl}(V)$ is a representation such that $\pi(S)$ is semisimple and $\pi(N)$ is nilpotent, then $\pi(A) = \pi(S_{n_0}) + \pi(N_{n_0})$ is the Jordan–Chevalley decomposition of $\pi(A)$.

2 Jordan–Chevalley Decomposition of Upper Triangular Matrices

This section is devoted to proving Theorem 1.2, and thus we assume that \mathbb{F} is algebraically closed. Let t denote the Lie algebra of upper triangular $n \times n$ matrices over \mathbb{F}, let $t' = [t, t]$, and let s be a Lie subalgebra of t.

Lemma 2.1 Let $S, X, N \in s$ and assume that $\text{ad}_s(S)(N) = \lambda N$, with $\lambda \in \mathbb{F}$, and $\text{ad}_s(S)(X) = \mu X$, with $0 \neq \mu \in \mathbb{F}$ (in particular, $X \in t'$). Then

$$\exp\left(-\mu^{-1} \text{ad}_s(X) \right)(N) = \sum_{j=0}^{n-1} \frac{(-\mu)^{-j}}{j!} \text{ad}_s(X)^j(N)$$

is an eigenmatrix of $\text{ad}_s(S + X)$ of eigenvalue λ, and it belongs to s. In particular, S is semisimple if and only if $S + X$ is semisimple.
Jordan–Chevalley Decomposition in Lie Algebras

Proof Since $X \in t'$, we see that $\mu^{-1} \text{ad}_S(X)$ is a nilpotent derivation of s, so $\exp(\mu^{-1} \text{ad}_S(X)) \in \text{Aut}(s)$. In particular, $\exp(\mu^{-1} \text{ad}_S(X))(N) \in s$ and

\[
\left[\exp \left(-\mu^{-1} \text{ad}_S(X) \right)(S), \exp \left(-\mu^{-1} \text{ad}_S(X) \right)(N) \right] = \exp \left(-\mu^{-1} \text{ad}_S(X) \right)([S, N]) = \lambda \exp \left(-\mu^{-1} \text{ad}_S(X) \right)(N).
\]

But $[S, X] = 0$ yields $\exp(\mu^{-1} \text{ad}_S(X))(S) = S + X$, so $\exp(-\mu^{-1} \text{ad}_S(X))(N)$ is an eigenmatrix of $\text{ad}_S(S + X)$ of eigenvalue λ. Consequently, if $\text{ad}_t(S)$ is semisimple then $\exp(\mu^{-1} \text{ad}_S(X))$ transforms a basis of eigenmatrices of $\text{ad}_t(S)$ into a basis of eigenmatrices of $\text{ad}_S(S + X)$.

To complete the proof it is sufficient to show that a matrix $A \in t$ is semisimple if and only if $\text{ad}_t(A)$ is semisimple. The ‘only if’ part is clear. Conversely, if $\text{ad}_t(A)$ is semisimple and $A = A_1 + A_n$ is the JCD of A, then $A_1, A_n \in t$ (both are polynomials in A), and it follows that $\text{ad}_t(A) = \text{ad}_t(A_1) + \text{ad}_t(A_n)$ is the JCD of $\text{ad}_t(A)$. By uniqueness, $\text{ad}_t(A_1) = 0$, and this implies that $A_n = 0$, since $A_n \in t'$ and the centralizer of t in t' is 0.

Let $S \in s$ be semisimple. Let Λ be the set of eigenvalues of $\text{ad}_S(S)$, and for each $\lambda \in \Lambda$, let $s_\lambda \subseteq s$ be the corresponding eigenspace. Given $N \in s$, let

\[
N = \sum_{\lambda \in \Lambda} N_\lambda,
\]

where each $N_\lambda \in s_\lambda$. We refer to the above as the $\text{ad}_S(S)$-decomposition of N.

For $k = 0, \ldots, n - 1$, let t_k be the subspace of t consisting of those matrices whose non-zero entries lay only on the diagonal (i, j) such that $j - i = k$. Given $N \in t$, let $d_k(N) \in t_k$ be defined so that $N = \sum_{k=0}^{n-1} d_k(N)$. We now introduce a function that will help to measure how close two matrices are to commuting with each other.

Definition 2.2 Let $S, N \in s$, with S semisimple, and let $N = \sum_{\lambda \in \Lambda} N_\lambda$ be the decomposition of N as a sum of eigenmatrices of $\text{ad}_S(S)$. For $k = 0, \ldots, n - 1$, let

\[
C_{S, k}(N) = \{ \lambda \in \Lambda : \lambda \neq 0 \text{ and } d_k(N_\lambda) \neq 0 \},
\]

let $\epsilon_{S, k}(N)$ be the number of elements in $C_{S, k}(N)$ ($\epsilon_{S, 0}(N) = 0$, since $\lambda \neq 0$ implies that $N_\lambda \in t'$), and let

\[
y_S(N) = (\epsilon_{S, 1}(N), \ldots, \epsilon_{S, n-1}(N)) \in \mathbb{Z}_{\geq 0}^{n-1}.
\]

It is clear that $\epsilon_{S, k}(N) \leq \dim s$ for all k and $[S, N] = 0$ if and only if $y_S(N) = (0, \ldots, 0)$.

Lemma 2.3 Let $S, X, N \in s$ with S semisimple and $\text{ad}_S(S)(X) = \mu X$, with $0 \neq \mu \in F$. Let $k_0 \geq 1$ be the lowest k such that $d_k(X) \neq 0$ ($\mu \neq 0$ implies $X \in t'$ and hence $k_0 \geq 1$). Then $C_{S+X, k}(N) = C_{S, k}(N)$ for all $k \leq k_0$.

Proof We first point out that it follows from Lemma 2.1 that $S + X$ is semisimple, and thus it makes sense to consider $C_{S+X, k}(N)$.

Downloaded from https://www.cambridge.org/core. 09 Aug 2021 at 01:49:17, subject to the Cambridge Core terms of use.
Let

\[N = \sum_{\lambda \in \Lambda} N_{\lambda}, \quad N_{\lambda} \in \mathfrak{s}, \]

be the \(ad(S) \)-decomposition of \(N \). Let

\[\tilde{N}_{\lambda,0} = \exp \left(-\mu^{-1} ad_e(X) \right) (N_{\lambda}), \]

and, for \(j \geq 1 \), let \(\tilde{N}_{\lambda,j} = \frac{\mu^{-j}}{j!} ad_e(X)^j (\tilde{N}_{\lambda,0}). \)

It follows from Lemma 2.1 that \(\tilde{N}_{\lambda,j} \) is an eigenmatrix of \(ad_e(S + X) \) of eigenvalue \(\lambda + j\mu \). Since

\[N_{\lambda} = \exp \left(-\mu^{-1} ad_e(X) \right) (\tilde{N}_{\lambda,0}) = \tilde{N}_{\lambda,0} + \tilde{N}_{\lambda,1} + \tilde{N}_{\lambda,2} + \cdots, \]

it follows that

\[N = \sum_{\lambda \in \Lambda} \sum_{j \geq 0} \tilde{N}_{\lambda,j} = \sum_{\lambda \in \Lambda} \tilde{N}_{\lambda,0} + \sum_{\lambda \in \Lambda} \sum_{j \geq 1} \tilde{N}_{\lambda,j} \]

and this leads to the decomposition of \(N \) as a sum of eigenmatrices of \(ad_e(S + X) \) (after adding up those \(\tilde{N}_{\lambda,j} \) with the same eigenvalue).

Let \(k \leq k_0 \) (recall that \(k_0 \) is the lowest \(k \) such that \(d_k(X) \neq 0 \)). Since \(k_0 \geq 1 \), it follows that

\[d_k(\tilde{N}_{\lambda,j}) = \begin{cases} d_k(N_{\lambda}) & \text{if } j = 0, \\ 0 & \text{if } j \geq 1. \end{cases} \]

This implies \(C_{S+X,k}(N) = C_{S,k}(N) \). \(\blacksquare \)

Lemma 2.4 Let \(S, N \in \mathfrak{s}, \) with \(S \) semisimple, and let \(N = \sum_{\lambda \in \Lambda} N_{\lambda} \) be the \(ad(S) \)-decomposition of \(N \). Assume that there is \(\lambda_0 \in \Lambda \) with \(\lambda_0 \neq 0 \) such that \(N_{\lambda_0} \in \mathfrak{s}_{\lambda_0} \) is non-zero. Then

\[y_{S+N_{\lambda_0}}(N - N_{\lambda_0}) < y_{S}(N) \]

in the lexicographical order. (The pair \((S + N_{\lambda_0}, N - N_{\lambda_0}) \) is closer to commuting than the pair \((S, N) \).)

Proof Let \(k_0 \) be the lowest \(k \) such that \(d_k(N_{\lambda_0}) \neq 0 \) \((k_0 \geq 1, \text{ since } N_{\lambda_0} \in \mathfrak{t}') \). It is clear that

\[c_{S,k}(N - N_{\lambda_0}) = \begin{cases} c_{S,k}(N) & \text{if } k < k_0, \\ c_{S,k}(N) - 1 & \text{if } k = k_0, \end{cases} \]

and thus \(y_{S}(N - N_{\lambda_0}) < y_{S}(N) \).

It follows from Lemma 2.3 that, for \(k \leq k_0 \),

\[c_{S+N_{\lambda_0},k}(N - N_{\lambda_0}) = c_{S,k}(N - N_{\lambda_0}), \]

and this, combined with (2.1), implies \(y_{S+N_{\lambda_0}}(N - N_{\lambda_0}) < y_{S}(N) \) in the lexicographical order. \(\blacksquare \)

We are now in a position to prove Theorem 1.2.
Jordan–Chevalley Decomposition in Lie Algebras

Proof of Theorem 1.2 Since \{S, N\} generates a solvable Lie algebra \(\mathfrak{s} \), and \(F \) is algebraically closed, it follows from Lie's Theorem that we can assume \(S, N \in \mathfrak{s} \subset \mathfrak{t} \), and since \(N \) is nilpotent, \(N \in \mathfrak{t}' \).

We will prove (i) by induction. Assume (i) is true for \(S_n \) and \(N_n \) and let us suppose that \([S_n, N_n] \neq 0 \). Since \(\lambda_n \neq 0 \), we have \((N_n)_{\lambda_n} \in \mathfrak{t}' \), and hence \(N_{n+1} \) is nilpotent. It follows from Lemma 2.1 that \(S_{n+1} \) is semisimple and \(S_{n+1}, N_{n+1} \in \mathfrak{s} \). This proves (i).

It follows from Lemma 2.4 that

\[
y_{S_{n+1}}(N_{n+1}) = y_{S_n + (N_n)_{\lambda_n}}(N_n - (N_n)_{\lambda_n}) < y_{S_n}(N_n)
\]

in the lexicographical order. This implies that there exists \(n_0 \) such that \(y_{S_{n_0}}(N_{n_0}) = 0 \) and hence \([S_{n_0}, N_{n_0}] = 0 \). This proves (ii), and it is clear \(A = S_{n_0} + N_{n_0} \) is the Jordan–Chevalley decomposition of \(A \).

Finally, let \(\pi: \mathfrak{s} \to \mathfrak{gl}(V) \) be a representation such that \(\pi(S) = \pi(S_0) \) is semisimple and \(\pi(N) = \pi(N_0) \) is nilpotent. Since \(\pi \) is a representation, if \(N_n = \sum_{\lambda \in \Lambda_n} (N_n)_{\lambda} \) is the \(\text{ad}_n \)-decomposition of \(N_n \), then

\[
\pi(N_n) = \sum_{\lambda \in \Lambda_n} \pi((N_n)_{\lambda})
\]

is the \(\text{ad}_{\pi(n)}(\pi(S_n)) \)-decomposition of \(\pi(N_n) \). Therefore, assuming that \(\pi(S_n) \) is semisimple and \(\pi(N_n) \) is nilpotent, it follows, just as above, that \(\pi(S_{n+1}) \) is semisimple and \(\pi(N_{n+1}) \) is nilpotent. This implies that \(\pi(A) = \pi(S_{n_0}) + \pi(N_{n_0}) \) is the Jordan–Chevalley decomposition of \(\pi(A) \).

Proof of Theorem 1.1 Theorem 1.2 shows that Theorem 1.1 is true when \(\hat{F} \) is algebraically closed, since in this case, Lie's Theorem allows us to assume that \(\mathfrak{s} \subset \mathfrak{t} \).

In general, let \(\hat{F} \) be an algebraic closure of \(F \). Suppose \(A, S, N \in \mathfrak{s} \), where \(A = S + N, S \) is semisimple, and \(N \) is nilpotent. Let \(A = S' + N' \) be the JCD of \(A \) in \(\mathfrak{gl}(n, \hat{F}) \), as ensured in [HK, §7.5]. The minimal polynomial of \(S' \), say \(p \), is a product of distinct monic irreducible polynomials over \(\hat{F} \) [HK, §7.5]. Since \(\hat{F} \) has characteristic 0, it follows that \(p \) has distinct roots in \(\hat{F} \), whence \(S' \) is diagonalizable over \(\hat{F} \). Therefore, \(A = S' + N' \) is the JCD of \(A \) in \(\mathfrak{gl}(n, \hat{F}) \). Let \(\hat{\mathfrak{s}} \) be the \(\hat{F} \)-linear span of \(\mathfrak{s} \) in \(\mathfrak{gl}(n, \hat{F}) \). Then \(\hat{\mathfrak{s}} \) is a solvable subalgebra of \(\mathfrak{gl}(n, \hat{F}) \). As the theorem is true over \(\hat{F} \), we infer \(S', N' \in \hat{\mathfrak{s}} \). Thus, \(S', N' \in \mathfrak{gl}(n, \hat{F}) \cap \hat{\mathfrak{s}} = \mathfrak{s} \). This completes the proof of Theorem 1.1.

3 Jordan–Chevalley Decomposition in a Lie Algebra

Theorem 3.1 An element \(x \) of a Lie algebra \(\mathfrak{g} \) has an abstract JCD if and only if \(x \) belongs to the derived algebra \([\mathfrak{g}, \mathfrak{g}] \), in which case the semisimple and nilpotent parts of \(x \) also belong to \([\mathfrak{g}, \mathfrak{g}] \).

Necessity This is clear, since any linear map from \(\mathfrak{g} \) to \(\mathfrak{gl}(V) \) such that \(\dim\pi(\mathfrak{g}) = 1 \), and \(\pi([\mathfrak{g}, \mathfrak{g}]) = 0 \) is a representation.

Sufficiency By Ado’s theorem, we can assume that \(\mathfrak{g} \) is a Lie algebra of matrices. Fix a Levi decomposition \(\mathfrak{g} = \mathfrak{g}_s \rtimes \mathfrak{r} \) and let \(\mathfrak{n} = [\mathfrak{g}, \mathfrak{r}] \). We know that \(\mathfrak{n} \) is nilpotent (see [FH, Lemma C.20]). If \(x \in [\mathfrak{g}, \mathfrak{g}] \), then \(x = a + r \) for unique \(a \in \mathfrak{g}_s \) and \(r \in \mathfrak{n} \). If \(a = a_s + a_n \) is the JCD of the matrix \(a \), since \(\mathfrak{g}_s \) is semisimple, it follows that \(a_s, a_n \in \mathfrak{g}_s = [\mathfrak{g}_s, \mathfrak{g}_s] \) (see, for instance, [Hu, §6.4]). Let \(\mathfrak{s} = \mathcal{F}a_s \oplus \mathcal{F}a_n \oplus \mathfrak{n} \subset [\mathfrak{g}, \mathfrak{g}] \). Since \([\mathfrak{s}, \mathfrak{s}] \subset \mathfrak{n} \) and \(\mathfrak{n} \)
is nilpotent, we obtain that s is a solvable Lie algebra. We now apply Theorem 1.1 to the Lie algebra s with $S = a_s, N = a_n + r$. We obtain that if $x = S' + N'$ is the JCD of x, then $S', N' \in s \subset [g, g]$.

Finally, let $\pi : g \rightarrow \mathfrak{gl}(V)$ be a representation of g. Since $r \in n$, it follows that $\pi(r)$ is nilpotent (see [FH, Lemma C.19] or [B1, Ch.1, §5]). Since g_s is semisimple, $\pi(S) = \pi(a_s)$ is semisimple and $\pi(a_n)$ is nilpotent. Since s is solvable, it follows from Lie's Theorem that $\pi(N) = \pi(a_n + r)$ is nilpotent. It follows from Theorem 1.2 (applied over a field extension of \mathbb{F}) that $\pi(x) = \pi(S') + \pi(N')$ is the JCD of $\pi(x)$. ■

References

CIEM–CONICET, FAMAF-Universidad Nacional de Córdoba, Córdoba, Argentina
e-mail: cagliero@famaf.unc.edu.ar

Department of Mathematics and Statistics, University of Regina, Regina, SK
e-mail: fernando.szechtman@gmail.com