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THE POINCARÉ MAP IN MIXED 
EXTERIOR ALGEBRA 

BY 

J. R. V A N S T O N E 

ABSTRACT. The Poincaré map of mixed exterior algebra 
generalizes the Hodge star operator and it plays a central rôle in the 
proofs of many classical identities of linear algebra. The principal 
purpose of this paper is to derive a new formula for it. This formula 
is useful in circumstances when the definition is too implicit. Several 
applications are discussed. 

§1. Introduction. Let E be an n -dimensional vector space over a field T of 
characteristic 0. Let E * denote its dual, relative to a scalar product (,). Then 
we may form vector spaces AE*,AJ5 and their tensor product, which we 
denote by A(E*, E). This space has a natural inner product, which is induced 
from (,) and which we denote by the same symbol. Also the exterior algebra 
structures of AE* and AE give rise to an algebraic structure on A(E*, E). 
This is denoted by a dot and is called the mixed exterior algebra. As well, 
A(E*,E) has a "composition" product " ° " . The inner product and both 
algebraic structures restrict to the diagonal subalgebra 

A(J5) = ë AP(JB), AP(E) = ApE*(g)APE, 
p = 0 

and the dot product is commutative there. Since A0(E) = F and A^E) generate 
A(JS), it is often easy to prove results for the dot product by working with 
decomposed elements and using linearity. On the other hand, many important 
results involve the composition algebra. Thus it is essential to know relations 
between the two products. Several such relations have been developed in [1] 
and used to give intrinsic proofs of many classical results of linear algebra. 
Others were announced in [2]. The purpose of this paper is to give a complete 
proof of one of the formulae of [2]. 

§2. Algebraic preliminaries. The proofs of all the results stated in this 
section are to be found in [1]. 

If L(E) denotes the algebra of linear transformations of E, then the map 
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T: Ax(E) -> L(E), given by 

(1) T(x*(g>x)y=<jc*,y>x, x , y e E , x * e E * , 

is an isomorphism of composition algebras. T - 1 ( t ) = t is called the unit tensor. 
It satisfies 

(2) z°t = t°z = z z e A ^ E ) . 

We define r peA p (E) , p e Z , by 

(3) t° = 1, tp = — (t - t • • • f), p = 1, 2 , . . . , n and tp = 0, otherwise. 
P ! (p factors) 

For each u e A ( E * , E ) , let JUI(U) denote left multiplication by u in the dot 
algebra. Thus 

(4) fx(u • v) = fi(u) o IL(V) u,ve A(E*, E). 

The dual of JUI(W) is written i(u): 

(fji(u)v, w) = (v, i(u)w) u,v,we A(E*, E) 

and thus (4) implies 

(4)' i(u • v) = i(v) o i(u) u,ve A(E*, E). 

The identity 

(5) i(«")r' = ( B " p + qy-« 

holds. 
The Poincaré map D: A(E*, E ) - > A(E*, E) is defined by 

(6) Dw = i(w)tn, u e A ( E * , E ) . 

It is a linear isomorphism and an isometry. It satisfies 

(7) D2u = u, U G A ( E ) . 

From (4)' and the commutativity of A(E), we have 

(8) î(u) oD = Do jjLdi), u G A(E), 

as an operator identity on A(E). From (5), we also have 

(9) Dtp = tn~p. 
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The following identity will play a central rôle in the sequel: 

p 

i(z)(z1 • • • zp) = X Zx • • • <z, z,,) • • • zp 

(10) - X ( z ^ o Z o Z v + ZvoZoZijL) 

x zx • • • fp, • • • zv • • • Zp z, z 1 ? . . . , zp G Ax(E) 

Finally, since any element of L(E) induces an unique derivation of AE, we 
write 0Z for the derivation generated by T(z), zeAx(E) (cf. (1)). 

§3. The derivations A2 and p2. For each Z G A ^ E ) , define 

(11) A 2 =t®» 2 , p 2 =AÎ = e*®i. 

Then both A2 and pz are derivations of the dot algebra. They both restrict to 
derivations of A(E). 

Throughout the remainder of this paper, we will restrict our consideration to 
ME). For u,veA(E), then, (4), (4)' imply 

(12) ix(u) o ^(v) = n(v) o p,(u) and i(u) ° i(v) = i(v) ° i(u). 

LEMMA. 

P 

(13) A2(Zi • • • zp) = X Zi • • • (z o zv) • • • zp 
v = l 

(13)' pz(zi ' ' ' zp) = Z zx • • • (zv o z) • • • zp 
v = l 

z, Z i - • • Z p G A ^ E ) . 

Proof. It is sufficient to assume that z = x * ® x , zv = x*v®xv, where 
x*, x*v e E*, x,xveE, v = 1 , . . . , p. Then Z l • • • zp = (x*1

 A • • • AX*P)<8> 

(XIA • • • Axp) and so, by (11), 

p 

K(Zi' ' •Z p ) = ( x * 1 A - • -AX*P)(g> V (XiA« • ' A 0 2 X v A - - -AXp). 
v = \ 

But 02xv - T{z)xv = (x*, x,)x (cf. (1)). Thus 

A2(zx • • • zp) = I (x*1®x1) • • • «x*, xv>x*v<g>x) • • • (x*p®Xp). 
v = l 

Since z ° zv = (x*, xv)x*v<8>x, this is (13). Equation (13)' is proved similarly. 
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Next observe that (10) may be written 

;(Z)JUL(ZI)(Z2* • • zp) = <z,z1)(z2- • • zp) + jx(z1)[i(z)(z2- • • zp)] 
p 

- Z (Zi o Z o Zv + Zv o Z o Z l ) . Z 2 . • . fv . . . Z p . 
v = 2 

In view of the lemma, the last term is 

-(A2lo2+pZo2l)(z2- • • zp) 

and since z 2 , . . . , zp e A^E) and p are arbitrary, we have an operator identity 
on A(E): 

(14) i(z) « ^(zO - JUL(ZX) « i(z) = <z, z^ t - A2iOZ - pZOZi, z, zx e AX(E). 

Let 0(z), T(z) be the self-dual operators on A(E) defined by 

(15) 0(z) = A2 + p2, T(z) = <f, Z)L - 0(z), z G Ai(E). 

Then (14) implies 

, - , x Ht) o | U L ( Z ) - | X ( Z ) O i ( t ) = r ( z ) = i ( z ) o | U L ( t ) - i U L ( t ) o j ( Z ) , 

(16) 
z e A ^ E ) , 

where the latter equality follows from the former by dualizing. 

§4. Commutation formulae. The lemma of §3 implies that 

A2(t • zx • • • zp) = (z o t) • zi • • • zp + t • A2(zi • • • zp) 

and hence yields the operator identity: 

(17) A2 o |x(r) - M-(0 ° K = ft(z), z 6 AX(E). 

Similarly 

(17)' pz ° f i ( t ) - f t ( t ) o P z = |x(z) Z G A ^ E ) . 

In view of (15), these imply 

0(Z) o Ll(t)-lJL(t) o e ( z ) = 2 ^ ( z ) , T(Z) o n ( t ) - f l ( f ) o r ( z ) = "2|UL(z), 

and their duals. 
We will obtain higher order commutation formula via the 

LEMMA. Let F be any vector space. Fix <f>eL(F) and for each ijfeL(F) 
consider the <f>-commutators ifjp = \\f ° </>p -</>p ° i/f, p = 0 , 1 , . . . . Then 

(19) ij,p = Y f ° * i ° f ~ W 
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Proof. From the definition 

lAp+i= 4> ° % ~ <t> ° *AP-i ° </> + *Ap ° <t>-

This recursion has an unique solution if i/f0 and ij/1 are specified. But it is easy 
to check that (19) satisfies it (with i / ^ O ) . 

COROLLARY 1. For all p e l , 

(20) T(z) o ̂ ( fP)- ^ ( f ) o Y(z) = -2 /x(tp-1) o ^(z), 

(20)* i(tp) * T(z)-r(z) o î(rp) = -2î(rp"1) o i(z), Z G M E ) , 

Proof. In the lemma, let <£ = jx(f), ^ = T(z) and note that I^1 = -2JUI(Z), by 
(18). This gives (20) for p = 1, 2 , . . . . For p < 0 , it follows from (3). (20)* is its 
dual. 

COROLLARY 2. For all p e l , 

(21) i(z) o iL(tn-ii(tp) o i(z) = ii(t^1) o r(z)- |*(fp-2) o ^ ( Z ) , 

(21)* i ( t P ) ° ^ ( z ) " ^ ( z ) ° ^ r P ) = r ( z ) ° I '^P_1) 
- i(z)oi(fP"2) , Z G M E ) . 

Proof. In the lemma, let <j> = JLL(0, $ = i(z) and note that i/̂  = T(z), by (16). 
This gives 

<Ap= I n (0" o[j*(0p-1"v » r ( z ) - 2 ( p - l - y ) n ( 0 p - 2 - ' » n(z)], 

after the use of (20). Simplifying, we find 

iAP = pfi(t)p-1 o r(z)-p(P-i) iLi(0p-2 « ^(z), 

which, in view of (3), yields (21). (21)* is its dual. 

§5. The main identity. In this section we will prove the identity (26). It has 
many applications, some of which will be described in the next section. 

For notational simplicity, we introduce the elements of L(A(E)) defined by 

(22) rp = |m(tp+«) o i{f\ p,qeZ 

and 

(23) Tq = X(- l ) p T p , qel. 
p 

Observe that TP = 0, unless p, p + q e { 0 , 1 , . . . , n}. Thus the sum in (23) is finite 
and 

(24) I ( - D P ( T 5 + T5-1) = 0, qel. 
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Furthermore 

(25) TS(l) = 88'q, P,qeZ, 

where 8g= 1 and Sg = 0, for p^O. It follows from (23) and (25) that 

(25)' Tq(l) = t\ qel. 

Now, by (22), if zeA^E), we have i(z) ° rp = [i(z) ° jut(rp+q)] o f(tp). Thus 
successive use of (21), (20), (21)* and (20)* yields 

i(z) o Tp = [fx(tp+q) o iW + iLit^*-1) o r (z ) - f i ( t p + q - 2 ) « n(z)] o î(rp) 

-iLi(rp+q)oIXz)oi(tp) + |UL(tp+q-1)o[Krp)or(z) + 2i(rp"1)0 i(z)] 

-im(rp+q-2) o {/(rp) o ̂ ( z ) - ^ - 1 ) o T(z) + 2i(fp-2) o i(z)] + i(z) 
° î(rp"2)}. 

In view of (12), (22) this may be written 

HZ) « TS = [ ( T p + T r 1 ) + ( T r 1 + T p - 2 ) ] ° *(*) + ( T p _ 1 + T p I Î ) ° T ( z ) " T P _ 2 o ^ ( z ) . 

Summation on p, therefore, yields 

(26) i (z)oT q=-T q_ 2o j L L (z) , qeZ, zeA^E) , 

because of the definition (23) and the identity (24). 
This formula is the key to all that follows, as was pointed out to the author by 

W. H. Greub, to whom the author wishes to express his indebtedness. 
From (25), we have Tq(l) = tq and hence 

Tq(z) = £T„ « n(z)Kl) = -U(z) o Tq+2](1) = -i(z)t*+2, z e A,(E). 

An inductive argument then leads to 

Tq(Z l • z2 • • • zp) = (-lniz, • z2 • • • zp)f+2p, z 1 ; . . . , zp e A t(E). 

Thus 

T » = (-l)p*(u)fq+2p, u€A p (E) . 

This result has been proved for p = 1, 2 , . . . but it is clearly true for p < 0 and, 
hence, for p e Z . It may be written 

(27) »(u)tq+2p = ( - l ) P I ( - i r n ( r - K O J ( t ' ' ) H , p,qel,ueAp(E). 
v 

In particular (cf. (6)), if q + 2p = n, we have the following formula for the 
Poincaré map: 

(28) Du = ( - l ) p X ( - l ) > ( r - 2 p + v ) i ( f ) M , p G Z, u G Ap(JS). 

In view of the interesting properties of D such as (7), (8), (9), the equation (28) 
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is the source of many other identities. The precise structure of D may be found 
by using (28) and the orthogonal direct sum decomposition of A(J5) announced 
in [2]. We will discuss this in a later paper; however, some immediate 
applications will be given in the next section. 

§6. Some applications. Define subspaces Fp, Gp of AP(F) by 

(29) Fp - Ap(E)Hker i(t), Gp = Ap(E)Hker ji(r), pel. 

Then (28) yields 

(30) Du = (-l)p^(tn-2p)u, ueFp, pel. 

It follows that Du — 0 for 2p>n and since D is an isomorphism, we conclude 
that 

Fp = 0 for 2p > n. 

Also, applying ii(t) to (30), we have 

Fpc=ker|LL(rn-2p+1), pel, 

in view of (8). 
Next, we prove the 

LEMMA. D maps Fp isomorphically onto Gn_p. 

Proof. If ueFp, then JUL(t)Du = Di(t)u = 0, by (8). Thus DFpc=Gn_p. A 
similar argument shows that DGn-p^Fp. The result then follows from (7). 

COROLLARY 1: 

(31) Dv = (-l)pi(tn-2p)v, ueG n _ p , pel, 

Proof. Put Du = v in (30) and apply D to the result. 
It follows, as above, that 

G n _ p = 0 for 2p>n 

and 
G n _ p ^ker i ( t n - 2 p + 1 ) , pel. 

From (30), (31) we also conclude that 

Gn_p = |m(r-2p)Fp, Fp = i(rn~2p)Gn_p, pel. 

COROLLARY 2. If ueAp(E) is an eigenvector of D, then n = 2p. In this case 
Fp = Gp are eigenspaces of D corresponding to the eigenvalue ( - l ) p . 

For a different type of result, put u = tp in equation (28) and use (5) and (9). 
The result is 

fn-p = ( - i ) p f (-iy(n~~p+v)tn-2p+v-tp~v. 
v=o \ v J 
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Thus we obtain a new proof of the binomial identity: 

t (-ir(n-p+v)(n-p)=(-iy. 
v=o V v A p - w 

As a final application, let q = 0 and ueFp in (27): 

(32) i(u)t2p = (-l)pu, ueFp. 

To see the meaning of this in component form, choose a basis for E and 
construct the dual basis for E*. The components of ueFp are then scalars 
u)\- • jp> *'i ' * ' ip = 1> 2 , . . . , n, skew-symmetric in the f s and /'s and such that 
Mkj2-"'jp = 0 (summation convention). The components of t2p are the 
generalized Kronecker deltas. Then (32) reads 

uy : : : ;* 8\*\ : : {jp = ( - i ) p (p !)2wH • ' ' {?. 
J l Jp l l l 2 p v / Vf / lp + 1 l 2 p 

This results may be proved directly but it does not seem to have been noticed. 
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