LOWER BOUNDS FOR INDUCED FORESTS IN CUBIC GRAPHS

BY
J. A. BONDY, GLENN HOPKINS AND WILLIAM STATON

> AbSTRACT. If G is a connected cubic graph with p vertices, $p>4$, then G has a vertex-induced forest containing at least $(5 p-2) / 8$ vertices. In case G is triangle-free, the lower bound is improved to $(2 p-1) / 3$. Examples are given to show that no such lower bound is possible for vertex-induced trees.

In [2] and [4], it was shown that in a cubic graph with p vertices, a largest vertexinduced forest contains no more than [3/4p-2] vertices. If G is cubic and cyclically 4 -connected, this upper bound is achieved, as was shown by Payan and Sakarovitch [3]. In the present article, making no assumptions about high connectivity, we provide lower bounds for the size of largest vertex-induced forests in connected graphs with maximum degree three.
Throughout what follows, we use the following definitions. A vertex set is independent if no two of its vertices are adjacent. An independent vertex set I in a graph G is strongly independent if the subgraph $G-I$ is connected. A subgraph H of G is vertex-induced or simply induced if, whenever v and w are vertices of H adjacent in G, it follows that v and w are adjacent in H. A forest is a graph with no cycles. A tree is a connected forest.

Our first proposition is taken from [4].
Proposition 1. Let G be a connected graph with maximum degree 3. Let I be a maximum strongly independent vertex set in G. Then no two cycles in $G-I$ have a vertex in common.

Proof. Suppose that C_{1} and C_{2} are distinct intersecting cycles of $G-I$. Their union is connected and bridgeless, and contains a vertex v whose degree in $C_{1} \cup C_{2}$, and hence in $G-I$, is 3 . Therefore v is adjacent to no vertex of I, so $I \cup\{v\}$ is strongly independent, which is a contradiction.

Proposition 2. If G is a connected cubic graph with p vertices where $p \geqq 6$, then G has a strongly independent vertex set I with $|I| \geq(p+6) / 8$.

Proof. Let I be a maximum strongly independent vertex set in G. Consider the subgraph $F=G-I$. By proposition 1, no two cycles of F intersect. Denote by A, B,

[^0]C, and D the sets of vertices of F of degree one, of degree two and in no cycle of F, of degree two and in some cycle of F, and of degree three, respectively. If F is a cycle, then
$$
|I|=p / 4 \geqq(p+6) / 8 \quad \text { for } \quad p \geqq 6
$$

Thus, since F is connected, we may assume that each cycle of F includes at least one vertex of D. Let H be the bipartite subgraph of G induced by the bipartition $(I, A \cup B \cup C)$. In H, the vertices of I have degree three, those of A have degree two, and those of B and C have degree one. For $X=A, B, C$, we shall refer to an edge of H with one end in I and the other end in X as an (I, X)-edge.

Let c be the number of cycles in F. We shall show that

$$
\begin{equation*}
c \geqq(p-2|I|) / 3 . \tag{1}
\end{equation*}
$$

To establish this inequality, we assign a weight $w(e)$ to each edge e of H, as follows:

$$
w(e)= \begin{cases}1 / 2 & \text { if } e \text { is an }(I, A) \text {-edge; } \\ 1 & \text { if } e \text { is an }(I, B) \text {-edge; } \\ (k-3) /(k-1) & \text { if } e \text { is an }(I, C) \text {-edge and the } \\ \text { end of } e \text { in } C \text { belongs to a } k \text {-cycle of } F\end{cases}
$$

We define the weight of a subgraph of H to be the sum of the weights of its edges. In particular, denoting by c_{k} the number of cycles in F of length k, and noting that each cycle of F includes at least one vertex of D,

$$
\begin{aligned}
w(H) & \leqq|A|+|B|+\sum(k-3) c_{k} \\
& =|A|+|B|+\sum_{k \geqq 3}^{k \geqq 3} k c_{k}-3 \sum_{k \geqq 3} c_{k} \\
& \leqq p-|I|-3 c
\end{aligned}
$$

Thus, to establish (1), it suffices to prove that

$$
\begin{equation*}
w(H) \geqq|I| . \tag{2}
\end{equation*}
$$

We achieve this by considering each connected component of H individually. Let H have components $H_{1}, H_{2}, \ldots, H_{m}$. For $X=I, A, B, C$, and any component H_{i}, set

$$
X_{i}=X \cap V\left(H_{i}\right)
$$

We shall show that

$$
\begin{equation*}
w\left(H_{i}\right) \geqq\left|I_{i}\right|, \quad 1 \leqq i \leqq m \tag{3}
\end{equation*}
$$

Counting the edges of H_{i} in two ways yields

$$
\begin{equation*}
2\left|A_{i}\right|+\left|B_{i}\right|+\left|C_{i}\right|=3\left|I_{i}\right| . \tag{4}
\end{equation*}
$$

Next, we consider the subgraph $H_{i}-\left(B_{i} \cup C_{i}\right)$. Since it has $\left|I_{i}\right|+\left|A_{i}\right|$ vertices and $2\left|A_{i}\right|$ edges and is connected,

$$
2\left|A_{i}\right| \geqq\left|I_{i}\right|+\left|A_{i}\right|-1
$$

Thus

$$
\begin{equation*}
\left|A_{i}\right| \geqq\left|I_{i}\right|-1 \tag{5}
\end{equation*}
$$

Two cases arise.
Case 1: $\left|A_{i}\right| \geqq\left|I_{i}\right|$. In this case

$$
w\left(H_{i}\right) \geqq\left|A_{i}\right| \geqq\left|I_{i}\right|
$$

Case 2: $\left|A_{i}\right|=\left|I_{i}\right|-1$. By (4)

$$
\left|B_{i}\right|+\left|C_{i}\right|=\left|I_{i}\right|+2 \geqq 3 .
$$

If $\left|B_{i}\right| \geqq 1$, then

$$
w\left(H_{i}\right) \geqq\left|A_{i}\right|+\left|B_{i}\right| \geqq\left|I_{i}\right|-1+1=\left|I_{i}\right| .
$$

If $\left|B_{i}\right|=0$, then $\left|C_{i}\right| \geqq 3$. We now observe that the vertices of $\left|C_{i}\right|$ must lie on a common cycle of F.

Suppose, to the contrary, that vertices x, y of $\left|C_{i}\right|$ belong to distinct cycles of F. Let P be an (x, y)-path in H_{i}, and, for $X=1, A$, set

$$
X \cap V(P)=X_{p}
$$

Then

$$
\left(I \backslash I_{p}\right) \cup A_{p} \cup\{x, y\}
$$

is a strongly independent vertex set of cardinality $|I|+1$. But this contradicts our choice of I. Therefore the vertices of C_{i} do indeed lie on a common cycle of F.

Let the length of this common cycle be k. Then $k \geqq\left|C_{i}\right|+1 \geqq 4$, and so

$$
w\left(H_{i}\right)=\left|A_{i}\right|+\left|B_{i}\right|+((k-3) /(k-1))\left|C_{i}\right| \geqq\left|I_{i}\right|-1+0+1=\left|I_{i}\right| .
$$

Therefore (3) holds in both cases. It follows that (2), and hence (1) also hold.
Finally, we count the edges of F in two ways, and deduce from (1) that

$$
3 p / 2-3|I|=p-|I|+c-1 \leqq p-|I|+(p-2|I|) / 3-1
$$

whence

$$
|I| \geqq(p+6) / 8 .
$$

We now determine when equality holds in Proposition 2.
Proposition 3. (Corollary to the proof of Proposition 2). Equality holds in the statement of Proposition 2 if and only if G is derived from a cubic tree (all vertices degree three or one) by blowing up each degree three vertex to a triangle and attaching K_{4} with one subdivided edge at each degree one vertex.

Proof. In order that equality hold, equation (3) must hold for each component. If case 1 of the proof of Proposition 2 holds, then $\left|A_{i}\right|=\left|I_{i}\right|$ and by (4) $\left|A_{i}\right|=\left|C_{i}\right|$. By the argument in case 2, the vertices of C_{i} all lie on the same cycle of F. Equality in (3) forces this cycle to be a triangle. Thus in case 1 , we have
a) $\left|I_{i}\right|=2$,
$\left|A_{i}\right|=2$,
$\left|B_{i}\right|=0$,
$\left|C_{i}\right|=2$.

Similar reasoning in case 2 yields possibilities:

If a) holds, we have the situation in figure 1 , where $I_{i}=\left\{i_{1}, i_{2}\right\}, A_{i}=\left\{a_{1}, a_{2}\right\}$, and

Figure 1
$C_{i}=\left\{c_{1}, c_{2}\right\}$. Now $I^{\prime}=\left(I-I_{i}\right) \cup A_{i}$ is a strongly independent set satisfying $\left|I^{\prime}\right|=$ $(p+6) / 8$. Letting $F^{\prime}, H^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ be defined by analogy with the proof of Proposition 2, we observe that every component of H^{\prime} must fall into one of the cases a), b), or c). Since a_{1} and a_{2} are clearly in the same component of H^{\prime}, only case a) is possible. We have $I_{i}^{\prime}=A_{i}, A_{i}^{\prime}=I_{i}, B_{i}^{\prime}=\phi$ and $\left|C_{i}^{\prime}\right|=2$. Let $C_{i}^{\prime}=\left\{c_{1}^{\prime}, c_{2}^{\prime}\right\}$. Then we have the situation pictured in figure 2 .

Figure 2

Since F is connected, there is a $d-d^{\prime}$ path in F. Hence $I^{\prime \prime}=\left(1 \backslash\left\{i_{1}\right\}\right) \cup\left\{c_{1}, c_{1}^{\prime}\right\}$ is strongly independent. This contradicts the maximality of I, and equality in Proposition 2 may not hold in case a).

If b) holds, we have the situation of Figure 3, where $I_{i}=\{v\}, A_{i}=\phi, B_{i}=\{b\}$, $C_{i}=\left\{c_{1}, c_{2}\right\}$.

Figure 3
Letting $I^{\prime}=\left(I \backslash\{v\} \cup\left\{c_{1}\right\}\right.$, we observe that I^{\prime} is strongly independent and we are in case c). In fact, we may assume that every component of H^{\prime} is of type c), as shown in Figure 4.

Figure 4
Let F^{\prime} be the subgraph of F induced by D. Since, in the equality case, $\Sigma k c_{k}=p-$ $|I|$, every vertex of F^{\prime}, except those of degree one, is on a cycle of F^{\prime}. If c_{k}^{\prime} is the number of cycles of length k in F^{\prime}, then

$$
\Sigma k c_{k}^{\prime}=p-5|I| .
$$

Contracting each cycle to a vertex, we obtain a tree T with c_{k}^{\prime} vertices of degree k and $|I|$ vertices of degree one. Therefore, summing degrees of vertices of T, we get

$$
\begin{gathered}
\Sigma k c_{k}^{\prime}+|I|=2\left(\Sigma c_{k}^{\prime}+|I|-1\right), \\
\text { or } \Sigma(k-2) c_{k}^{\prime}=|I|-2 .
\end{gathered}
$$

Hence $2 \Sigma(k-3) c_{k}^{\prime}=3\left(\sum(k-2) c_{k}^{\prime}\right)-\sum k c_{k}^{\prime}=3|I|-6+5|I|-p=0$, since $|I|=(p+6) / 8$. It follows that every cycle in F^{\prime} is a triangle, and so G has the indicated structure.

Theorem 4. If G is a connected graph with $\Delta \leqq 3$ and $p>4$, then G has an induced forest with at least $(5 p-2) / 8$ vertices.

Proof. First assume G is cubic. Let I be a maximum strongly independent vertex set with $|I| \geqq(p+6) / 8 . G-I$ has cycles disjoint, and may be reduced to a forest by removal of one vertex from each cycle. Suppose $G-I$ has c cycles. Then it has $p-|I|+c-1$ edges. Hence $3 / 2 p-3|I|=p-|I|+c-1$, or $c=1 / 2 p-2|I|$ +1 . Hence, there is a forest in G with $p-|I|-c$ vertices. This is $p-|I|-1 / 2 p$ $+2|I|-1$, or $1 / 2 p+|I|-1$. But $|I| \geqq(p+6) / 8$; so there is a forest with at least $(5 p-2) / 8$ vertices. In case G is not cubic, we embed G as an induced subgraph of a cubic graph H in the standard way [1]. H consists of several disjoint copies of G joined by some new edges. Since H has an induced forest with at least $(5 p-2) / 8$ vertices, certainly the restriction of such a forest to at least one of the copies of G attains this ratio.

The bound of Theorem 4 is achieved in the examples cited following proposition 2. To see this, it suffices to note that to reduce such a graph to a forest, one must remove at least one vertex from each triangle and at least two from each subdivided K_{4}.

We now turn our attention to triangle-free graphs with maximum degree three.
Proposition 5. If G is a connected cubic triangle-free graph with p vertices, then G has a strongly independent vertex set I with $|I| \geqq(p+4) / 6$.

Proof. We proceed, following the notation of proposition 2, to show that

$$
c \leqq \frac{p-2|I|}{4}
$$

Our assignment of weights is as in the proof of proposition 2, except that $w(e)=$ $(k-4) /(k-1)$ if e has one end in a k-cycle of F. It follows that $w(H) \leqq p-|I|-$ $4 c$, and again, we show that $w(H) \geqq|I|$ by considering each component H_{i}. The only troublesome case occurs when $\left|A_{i}\right|=\left|I_{i}\right|-1$ and $\left|B_{i}\right|=0$. Again, all vertices of C_{i} lie on a single cycle of F. If $\left|C_{i}\right|=3$, then $\left|I_{i}\right|=1$ and the k-cycle containing C_{i} must have $k \geqq 6$ to avoid triangles. In this case $((k-4) /(k-1))\left|C_{i}\right| \geqq 1$. On the other hand, if $\left|C_{i}\right| \geqq 4$, then certainly $k \geqq 5$, and again $((k-4) /(k-1))\left|C_{i}\right| \geqq 1$. It follows that $w(H) \geqq|I|$. Hence, as in the proof of proposition $2, c \leqq(p-2|I|) / 4$, and $|I| \geqq(p+4) / 6 . \square$

Let H be the graph in figure 5 . By joining n copies of H cyclically, one obtains a cubic triangle-free graph in which the size of a largest strongly independent set is $(p+6) / 6$. Hence, if proposition 5 could be improved to strict inequality, it would be sharp.

Figure 5
Theorem 5. If G is a connected triangle-free graph with $\Delta \leqq 3$ then G has an induced forest with at least $(2 p-1) / 3$ vertices.

Proof. Similar to proof of theorem 4.
That this bound is nearly sharp follows from considering the examples above.
In what remains of this article, we will consider a modification of the question we have addressed above. In particular, we inquire about the size of a largest induced tree in a cubic graph. We will construct a sequence of examples in which the proportion of vertices in a largest induced tree approaches zero. Begin with three complete binary trees of n levels (each with $1+2+2^{2}+\ldots 2^{n-1}$ vertices) and join their three roots to a new vertex. In the resulting graph, each vertex has degree one or three. Blow up each vertex of degree three to a triangle and attach a copy of K_{4} with a subdivided edge to each vertex of degree one. Call the result G_{n}.

It is not difficult to check that G_{n} has $6\left(2^{n+1}-1\right)$ vertices, and that a largest induced tree in G_{n} has $4 n+4$ vertices. Therefore, the proportion of vertices in a largest induced tree approaches zero quite rapidly.

References

1. M. Behzad, G. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs (Wadsworth, 1979), p. 10.
2. F. Jaegar, On vertex-induced forests in cubic graphs, Proc. 5th S.-E. Conf. Combinatorics, Graph Theory, and Computing (1974) 501-512.
3. C. Payan and M. Sakarovitch, Ensembles cycliquement stables et graphes cubiques, Colloque sur la théorie des Graphes (Paris, 1974) Cahiers Centre Études Recherche Opér. 17 (1975) 319-343.
4. W. Staton, Induced forests in cubic graphs, Discrete Mathematics 49 (1984) 175-178.

Faculty of Mathematics
University of Waterloo
Waterloo, Ontario, N2L 3G1

Department of Mathematics
University of Mississippi
University, Mississippi 38677

[^0]: Received by the editors July 19, 1985 and, in revised form, January 21, 1986.
 AMS Subject Classification (1980): 05
 (C) Canadian Mathematical Society 1985.

