J. Austral. Math. Soc. (Series A) 50 (1991), 384-390

SOME TRIGONOMETRIC EXTREMAL PROBLEMS AND DUALITY

SZILÁRD GY. RÉVÉSZ

(Received 30 August 1989; revised 19 February 1990)

Communicated by E. N. Dancer

Abstract

In this paper we present a minimax theorem of infinite dimension. The result contains several earlier duality results for various trigonometrical extremal problems including a problem of Fejér. Also the present duality theorem plays a crucial role in the determination of the exact number of zeros of certain Beurling zeta functions, and hence leads to a considerable generalization of the classical Beurling's Prime Number Theorem. The proof used functional analysis.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): primary 42 A 05; secondary 46 B 25.

Keywords and phrases: trigonometrical extremal problems, Borel measures of the d-dimensional torus, separation of convex sets, Riesz representation theorem.

1. Introduction

In [6] Ruzsa proved a duality property between certain extremal quantities. For a different kind of extremal problem a similar duality phenomenon was described in [3]. Later it turned out that the two types of extremal problems are in fact special cases of a class of extremal problems [5]. This class can be parametrized by a continuous variable r, where $0 \le r \le 1$, and the extremal problems in [3] and [6] belong to the special cases r = 0 and r = 1, respectively. So it was natural to look for a more general formulation of duality to cover the general class of extremal problems as well.

This research was partially supported by the Hungarian National Foundation for Scientific Research, grant 1801.

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

Extremal problems

In this paper we present a minimax theorem of several dimensions, which is general enough to cover both the above-mentioned extremal problems and the extremal problem of [2]. Actually, we need to introduce the problem in a several dimensional setting for the sake of [2], where in a certain analytic number theoretical problem this general duality plays a crucial role.

Most of the work presented here is contained in the author's thesis [4]. The author would like to express his gratitude to Professor I. Z. Ruzsa for calling his attention to the paper [6] and for giving useful comments in the course of his work.

2. The theorem

Let $d \in \mathbb{N}$ and denote $T^d = (\mathbb{R}/2\pi\mathbb{Z})^d$. We define (1) $\mathbb{Z}_+^d := \{\mathbf{z} = (z_1, \dots, z_d) \in \mathbb{Z}^d : \exists j < d, z_1 = \dots = z_j = 0, z_{j+1} > 0\}.$ For any $M, L \subset \mathbb{Z}_+^d$ we introduce

(2)
$$\mathscr{F}(M, L) := \left\{ f \in \mathscr{F} : f \ge 0, \ f(x) = 1 + \sum_{\mathbf{k} \in \mathbf{Z}_{+}^{d}} a(\mathbf{k}) \cos(\mathbf{k} \cdot \mathbf{x}), a(\mathbf{k}) \le 0 \ (\mathbf{k} \notin M), \ a(\mathbf{k}) \ge 0 \ (\mathbf{k} \notin L) \right\},$$

where \mathcal{T} denotes the set of trigonometric polynomials of d variables, and

$$\mathcal{M}(M, L) := \left\{ \tau \in BM(T^d) : \ d\tau(\mathbf{x}) \sim 2 \sum_{\mathbf{k} \in \mathbf{Z}^d_+} t(\mathbf{k}) \cos(\mathbf{k} \cdot \mathbf{x}), \\ t(\mathbf{k}) \le 0 \ (\mathbf{k} \notin M), \ t(\mathbf{k}) \ge 0 \ (\mathbf{k} \notin L) \right\},$$

where $BM(T^d)$ stands for the regular Borel measures of T^d .

We consider a fixed $\rho \in BM(T^d)$ with Fourier-Lebesgue series

(4)
$$d\rho(\mathbf{x}) \sim 1 + 2\sum_{\mathbf{k}\in\mathbf{Z}_{+}^{d}} r(\mathbf{k})\cos(\mathbf{k}\cdot\mathbf{x}).$$

Our goal is to find the extremal quantity

(5)
$$\alpha_{\rho}(M, L) := \inf\{\langle f, \rho \rangle \colon f \in \mathscr{F}(M, L)\}.$$

where the scalar product of f and ρ is

(6)
$$\langle f, \rho \rangle = \frac{1}{(2\pi)^d} \int_{T^d} f(\mathbf{x}) \, d\rho(\mathbf{x}) = 1 + \sum_{\mathbf{k} \in \mathbb{Z}^d_+} a(\mathbf{k}) r(\mathbf{k}).$$

Observe that, with the notation

(7)
$$\overline{M} := \mathbb{Z}^d_+ \backslash M, \quad \overline{L} := \mathbb{Z}^d_+ \backslash L,$$

we get

(8)
$$\langle f, \tau \rangle \leq 0$$
 for all $f \in \mathscr{F}(M, L)$ and $\tau \in \mathscr{M}(\overline{M}, \overline{L})$.

Hence if $\sigma \in BM(T^d)$ satisfies

(9)
$$\sigma - \rho =: \tau \in \mathscr{M}(\overline{M}, \overline{L}),$$

then

$$\langle f, \sigma \rangle \leq \langle f, \rho \rangle, \qquad f \in \mathscr{F}(M, L),$$

and hence taking infinum over $f \in \mathcal{F}(M, L)$ we obtain

(10) $\alpha_{\sigma}(M, L) \leq \alpha_{\rho}(M, L).$

On the other hand suppose that σ satisfies, for some $t \in \mathbb{R}$, the inequality

(11)
$$\sigma \ge t\lambda \quad (d\lambda(\mathbf{x}) = dx_1 \, dx_2 \cdots dx_d).$$

Introducing the extremal quantity

(12)
$$\omega_{\rho}(H, K) := \sup\{t : \exists \tau \in \mathscr{M}(H, K), \sigma = \rho + \tau \ge t\lambda\},\$$

we see from (9), (10), (11) and $\langle f, \sigma \rangle \ge \langle f, t\lambda \rangle = t$, that

(13)
$$\alpha_{\rho}(M, L) \ge \omega_{\rho}(\overline{M}, \overline{L}).$$

Given this observation our aim is to prove the sharpness of (13).

THEOREM. Let M, $L \subset \mathbb{Z}^d_+$ and $\rho \in BM(T^d)$ be arbitrary. We have $\alpha_{\rho}(M, L) = \omega_{\rho}(\overline{M}, \overline{L}).$

3. Proof of the duality theorem

Since ρ , M, L and \overline{M} , \overline{L} are fixed once and for all, we use α , \mathscr{F} and ω , \mathscr{M} without writing out ρ , M, L and ρ , \overline{M} , \overline{L} respectively. In view of (13) it is enough to prove $\omega \ge \alpha$.

We can suppose $\alpha > -\infty$ and as $f \equiv 1 \in \mathscr{F}$, we have $\alpha \leq 1$. For any $\mathbf{m} \in M$ and $\mathbf{l} \in L$, $1 + \cos(\mathbf{m} \cdot \mathbf{x}) \in \mathscr{F}$ and $1 - \cos(\mathbf{l} \cdot \mathbf{x}) \in \mathscr{F}$. Now if $\alpha = 1$

Extremal problems

then $1 = \alpha \le \langle 1 + \cos(\mathbf{m} \cdot \mathbf{x}), \rho \rangle = 1 + r(\mathbf{m})$ and $1 = \alpha \le \langle 1 - \cos(\mathbf{l} \cdot \mathbf{x}), \rho \rangle = 1 - r(\mathbf{l})$, hence $r(\mathbf{m}) \ge 0$ $(\mathbf{m} \in M)$, $r(\mathbf{l}) \le 0$ $(\mathbf{l} \in L)$ and so $\tau := \lambda - \rho \in \mathcal{M}$, and so $\sigma = \rho + \tau = \lambda$ can occur in (12) and $\omega = 1$.

Therefore, we can suppose $-\infty < \alpha < 1$. Moreover, we can suppose $\alpha = 0$, since for any $\alpha \in (-\infty, 1)$ we can consider

$$\rho^* = \frac{1}{1-\alpha}(-\alpha \cdot \lambda + \rho), \quad \alpha^* = \alpha_{\rho^*}(M, L), \quad \omega^* = \omega_{\rho^*}(\overline{M}, \overline{L})$$

and trivially

$$\alpha^* = \frac{-\alpha}{1-\alpha} + \frac{1}{1-\alpha}\alpha = 0, \quad \omega^* = \frac{-\alpha}{1-\alpha} + \frac{1}{1-\alpha}\omega$$

proves $\alpha = \omega$ if $\omega^* = 0$. Hence we take now $\alpha = 0$ and prove $\omega \ge 0$. Denote

(14)
$$\mathscr{P} := \{h \in C(T^d) \colon h > 0\},\$$

and with conditions on the coefficients identical to $\mathcal F$, introduce

(15)
$$\mathscr{G} := \left\{ g \in \mathscr{F} : \langle g, \rho \rangle = 0, \ g(\mathbf{x}) = 1 + \sum_{\mathbf{n} \in \mathbb{Z}^d_+} a(\mathbf{n}) \cos(\mathbf{n} \cdot \mathbf{x}), \\ a(\mathbf{n}) \le 0 \ (\mathbf{n} \notin M), \ a(\mathbf{n}) \ge 0 \ (\mathbf{n} \notin L) \right\}.$$

In the Banach space $C(T^d)$, where the norm is the supremum norm as usual, \mathscr{P} forms an open, nonvoid convex cone, and \mathscr{G} is another convex set. Then \mathscr{G} is nonvoid since for any $f_0 \in \mathscr{F}$ with $0 \leq \langle f_0, \rho \rangle < 1$ (such f_0 must exist since $\alpha = 0 < 1$) we have

$$g_0(\mathbf{x}) := \frac{1}{1 - \langle f, \rho \rangle} (f - \langle f, \rho \rangle) \in \mathscr{G}.$$

Moreover, $\mathscr{P} \cap \mathscr{G} = \varnothing$. Indeed, for any $g \in \mathscr{P} \cap \mathscr{G}$, $0 < \min g \le 1$ and so with $\delta = \frac{1}{2} \min g$ we have

$$F:=\frac{g-\delta}{1-\delta}\in\mathscr{F},$$

and hence $0 = \alpha \leq \langle F, \rho \rangle = -\delta/(1-\delta) < 0$, a contradiction. Therefore we can apply the separation theorem of convex sets (cf. [1, Corollary 2.2.2]) to \mathscr{P} and \mathscr{G} , which furnishes a nontrivial continuous linear functional *I* satisfying

(16)
$$I\mathscr{P} \ge 0 \ge I\mathscr{G}, \quad I1 = 1.$$

Szilárd Gy. Révész

Here I1 = 1 is a matter of normalization since $I\mathscr{P} \ge 0$ and I1 = 0 would imply $I\mathscr{P} = 0$ and hence I = 0, and therefore I1 > 0 is guaranteed. The separation constant can be chosen to be 0 since \mathscr{P} is a cone and $I\mathscr{P} \ne 0$ implies $I\mathscr{P} = (0, \infty)$ or $[0, \infty)$ once $I\mathscr{P}$ is bounded from below. Also, we can suppose that I is even in the sense that

(17)
$$I(f(\mathbf{x})) = \frac{1}{2^d} \sum_{e_1, \dots, e_d = \pm 1} I(f(e_1 x_1 + \dots + e_d x_d))$$

since we can define a new functional by the right hand side of (17) if it does not hold for I itself. Applying the representation theorem of F. Riesz (cf. [1, Theorem 4.10.1]) we obtain a $\mu \in BM(T^d)$ which satisfies, according to (16) and (17),

(18)
$$I = \frac{1}{(2\pi)^d} \int_{T^d} \cdot d\mu, \quad d\mu(\mathbf{x}) \sim 1 + \sum_{\mathbf{k} \in \mathbb{Z}^d_+} b(\mathbf{k}) \cos(\mathbf{k} \cdot \mathbf{x}).$$

We define the index sets

(19)
$$N_{+} = \{ \mathbf{k} \in \mathbb{Z}_{+}^{d} : r(\mathbf{k}) \gtrless 0 \}, \quad M_{+} = N_{+} \cap M, \quad L_{+} = L \cap N_{+}, \\ \underline{0} = U \cap M_{+}, \quad \underline{0} = U$$

where the three alternatives (+, 0, -) are to be understood separately. Accordingly, we denote the elements of M_+ by \mathbf{m}_+ , elements of M_0 by \mathbf{m}_0 , etc. For any $g_0 \in \mathcal{G}$ and a > 0

$$g_0 + a\cos(\mathbf{m}_0 \cdot \mathbf{x}) \in \mathcal{G}, \ g_0 - a\cos(\mathbf{l}_0 \cdot \mathbf{x}) \in \mathcal{G},$$

and hence (16) and (18) give after $a \to +\infty$ the inequalities

(20)
$$b(\mathbf{m}_0) \leq 0, \quad b(\mathbf{l}_0) \geq 0.$$

Suppose now that $n \in M_{-} \cup L_{+}$. Clearly,

$$g_{\mathbf{n}}(\mathbf{x}) := 1 - \frac{1}{r(\mathbf{n})} \cos(\mathbf{n} \cdot \mathbf{x}) \in \mathscr{G},$$

and so (16) and (18) now yield $1 \le b(\mathbf{n})/r(\mathbf{n})$ and

(21)
$$s := \inf\left\{\frac{b(\mathbf{n})}{r(\mathbf{n})} : \mathbf{n} \in M_{-} \cup L_{+}\right\} \ge 1.$$

Finally we define for **k**, $\mathbf{n} \in N_{\perp} \cup N_{\perp}$ the function

$$f_{\mathbf{k},\mathbf{n}}(\mathbf{x}) := \frac{1}{r(\mathbf{k})}\cos(\mathbf{k}\cdot\mathbf{x}) - \frac{1}{r(\mathbf{n})}\cos(\mathbf{n}\cdot\mathbf{x}).$$

Then $\langle f_{\mathbf{k},\mathbf{n}}, \rho \rangle = 0$ and for a fixed $g_0 \in \mathcal{G}$ and a > 0 we have

(22)
$$g_{0} - af_{\mathbf{k},\mathbf{n}} \in \mathcal{G} \quad (\mathbf{k} \in L_{+}, \mathbf{n} \in L_{-}), \\ g_{0} + af_{\mathbf{k},\mathbf{n}} \in \mathcal{G} \quad (\mathbf{k} \in M_{+}, \mathbf{n} \in M_{-}), \\ g_{0} + af_{\mathbf{k},\mathbf{n}} \in \mathcal{G} \quad (\mathbf{k} \in M_{+}, \mathbf{n} \in L_{+}), \\ g_{0} - af_{\mathbf{k},\mathbf{n}} \in \mathcal{G} \quad (\mathbf{k} \in M_{-}, \mathbf{n} \in L_{-}). \end{cases}$$

Again, we refer to (16), $I\mathscr{G} \leq 0$ and (18) to obtain after $a \to +\infty$ the inequalities

(23)
$$\frac{b(\mathbf{l}_{+})}{r(\mathbf{l}_{+})} \geq \frac{b(\mathbf{l}_{-})}{r(\mathbf{l}_{-})}, \qquad \frac{b(\mathbf{m}_{-})}{r(\mathbf{m}_{-})} \geq \frac{b(\mathbf{m}_{+})}{r(\mathbf{m}_{+})},$$
$$\frac{b(\mathbf{l}_{+})}{r(\mathbf{l}_{+})} \geq \frac{b(\mathbf{m}_{+})}{r(\mathbf{m}_{+})}, \qquad \frac{b(\mathbf{m}_{-})}{r(\mathbf{m}_{-})} \geq \frac{b(\mathbf{l}_{-})}{r(\mathbf{l}_{-})}.$$

Comparing (23) and (21) we obtain that for a certain real $s \ge 1$

(24)
$$\frac{b(\mathbf{n})}{r(\mathbf{n})} \ge s \ge \frac{b(\mathbf{k})}{r(\mathbf{k})} \qquad (\mathbf{n} \in M_- \cup L_+, \ \mathbf{k} \in M_+ \cup L_-).$$

Now let us define

(25)
$$\tau := \left(1 - \frac{1}{s}\right)\lambda + \frac{1}{s}\mu - \rho, \quad d\tau(\mathbf{x}) \sim 2\sum_{\mathbf{k}\in\mathbb{Z}^d_+} t(\mathbf{k})\cos(\mathbf{k}\cdot\mathbf{x}).$$

Then it is easy to check that the constant term in the Fourier-Lebesgue series of τ is zero, and (24) along with (20) can be expressed as

(26)
$$t(\mathbf{m}) \leq 0 \quad (\mathbf{m} \in M), \qquad t(\mathbf{l}) \geq 0 \quad (\mathbf{l} \in L)$$

whence

(27)
$$\tau \in \mathcal{M}$$
.

Now with $t = 1 - 1/s \ge 0$ we infer from $\mu \ge 0$ and (25)-(27) that $\sigma := \tau + \rho \ge t\lambda$ and so $\omega \ge t \ge 0$, which completes the proof of our theorem.

References

- R. E. Edwards, Functional analysis, (Holt-Rinehart-Winston, New York, Toronto, London, 1965).
- [2] Sz. Gy. Révész, 'On Beurling's prime number theorem', preprint, Mathematical Institute of the Hungarian Academy of Sciences, No. 5, 1990.
- [3] Sz. Gy. Révész, 'Extremal problems and a duality phenomenon', Proceedings of the IMACS conference held in Dalian, China, 1989, edited by Alan G. Law, to appear.
- [4] Sz. Gy. Révész, *Polynomial extremal problems* (in Hungarian), (thesis for the "candidate degree", 1988, Budapest).
- [5] Sz. Gy. Révész, 'On a class of extremal problems', Journal of Approx. Th. and Appl., to appear.

[6] I. Z. Ruzsa, 'Connections between the uniform distribution of a sequence and its differences', *Topics in classical number theory*, Coll. Math. Soc. J. Bolyai 34, edited by P. Erdös and G. Halász, pp. 1419-1443 (North-Holland, Amsterdam, New York, Budapest, 1981).

Mathematical Institute Hungarian Academy of Sciences Budapest, POB 127, 1364 Hungary