NOETHER LATTICES REPRESENTABLE AS QUOTIENTS OF THE LATTICE OF MONOMIALLY GENERATED ideals of polynomial rings

D. D. ANDERSON, E. W. JOHNSON AND J. A. JOHNSON

Noether lattices were introduced by R. P. Dilworth in [5] and constitute a natural abstraction of the lattice of ideals of a Noetherian ring. In his definitive work, Dilworth showed that a minimal prime of an element generated by n principal elements has rank $\leqq n$. Following standard ring theoretical terminology, a local Noether lattice with (unique) maximal element M is said to be regular if M has rank n and can be generated by n principal elements.

In [3], K. P. Bogart showed that a distributive regular local Noether lattice of Krull dimension n is isomorphic to $R L_{n}$, the sublattice of all ideals generated by monomials of any polynomial ring $k\left[x_{1}, \ldots, x_{n}\right]$ (k a field). In a later paper [4], Bogart extended his results on distributive regular local Noether lattices by showing that any distributive local Noether lattice is the image of a multiplicative map θ which preserves joins, and can in fact be thought of as the related congruence lattice.

This paper began with two related problems which occurred at about the same time. First: given Bogart's result above that every distributive local Noether lattice \mathscr{L} is the image of a distributive regular local Noether lattice $R L_{n}$ under a multiplicative map θ which preserves joins, what special properties does \mathscr{L} have if θ is a lattice homomorphism? And, second: what are the special properties of the quotients $R L_{n} / K$, either in terms of internal properties or in terms of properties of the map θ, which distinguish them from the other distributive local Noether lattices? The first question led to a general investigation of what we have called r-homomorphisms, and yielded a generalized "Fundamental Theorem" for this class of homomorphisms. Applied to the original question, it shows that if θ is a lattice homomorphism, then \mathscr{L} is, up to isomorphism, one of the quotients $R L_{n} / K$. Since the natural map $\pi_{K}: R L_{n} \rightarrow$ $R L_{n} / K$ is a lattice homomorphism, the second problem is reduced to the problem of finding an internal characterization of the quotients $R L_{n} / K$. Here we discovered that the quotients $R L_{n} / K$ are distinguished (among distributive local Noether lattices) by the property that the elements E_{i} of the minimal base of the maximal elements are (what we have called) q-prime (i.e., if F_{1} and F_{2} are principal elements such that $F_{1} F_{2} \leqq E$, then $F_{1} \leqq E, F_{2} \leqq E$, or $F_{1} F_{2}=0$). A generalization of Bogart's result mentioned above is also obtained outside of the local case.

[^0]It is convenient to introduce some terminology.
By a homomorphism (or morphism) between Noether lattices \mathscr{L} and \mathscr{L}^{\prime} we will mean a multiplicative lattice homomorphism $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$. If θ is just a multiplicative map which preserves order, we will call θ an O-morphism. Similarly, if we abbreviate join, meet and residual division by J, M and R, respectively, we will call θ an X-morphism if θ is a multiplicative map which preserves the X-operation $(X=J, M, R)$. (It is easy to see that for $X=J$, M, R, any X-morphism is an O-morphism.) If $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ is a homomorphism, and if there exists a subset \mathscr{G} of principal elements which generates \mathscr{L} under joins such that $\theta(E)$ is principal, for every element $E \in \mathscr{G}$, then we call θ an r-homomorphism. We will also use the variations epimorphism and monomorphism, with or without further prefixes, when appropriate.

If $K \in \mathscr{L}$ we denote by π_{K} the natural map of \mathscr{L} to \mathscr{L} / K (i.e., $\pi_{K}(A)=$ $A \vee K)$. And if S is a submultiplicatively closed subset of \mathscr{L} we denote by i_{S} the natural map of \mathscr{L} to \mathscr{L}_{S} (i.e., $\left.i_{S}(A)=A_{S}\right)$ (see [2, Section 2]). We note that, in our terminology, i_{S} is both an r-epimorphism and an R-epimorphism (an R - r-epimorphism), while π_{K} is a J-epimorphism. (If K is a distributive element, π_{K} is an M-morphism, but in general, π_{K} need not be either an R-morphism or an M-morphism, or may be an M-morphism and not an R-morphism; see Corollary 1.1.)

If θ is any O-morphism, we will denote by $\mathscr{K}(\theta)$ the join of all elements A such that $\theta(A)=\theta(O)$ and by $\mathscr{I}(\theta)$ the multiplicatively closed subset of all elements A such that $\theta(A)=(I)$.

It is easily seen that if $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ is any O-morphism and if $\mathscr{I}(\theta)=S$, then $A_{S} \leqq B_{S}$ implies $\theta(A) \leqq \theta(B)$. Hence, naturally associated with any O-morphism θ is a map $\theta_{S}: \mathscr{L}_{S} \rightarrow \mathscr{L}^{\prime}$ defined by $\theta_{S}\left(A_{S}\right)=\theta(A)$. Although discovered independently by the present authors, a slight variation of the map θ_{S} was first isolated and used by P. J. McCarthy to study what, in our setting, amounts to R-epimorphisms [7]. We record the principal properties of θ_{S} below without proof.

Theorem 1. Let $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ be an O-morphism with $\mathscr{I}(\theta)=S$. Then
(i) θ_{S} is an O-morphism;
(ii) $\theta=\theta_{S} i_{S}$;
(iii) $\theta_{S}(X)=I$ if, and only if, $X=I$;
(iv) θ_{S} is a J-morphism (resp. M-morphism, R-morphism) if, and only if, θ is a J-morphism (resp. M-morphism, R-morphism);
(v) if θ is an R-morphism, then $\theta_{S}(A) \leqq \theta_{S}(B)$ if, and only if, $A \leqq B$. Hence $\theta(\mathscr{L})$ is isomorphic to \mathscr{L}_{S} so that, in particular, $\theta(\mathscr{L})$ is a Noether lattice;
(vi) if θ is an R-epimorphism and $S=\{I\}$, then θ is an isomorphism;
(vii) if θ is an R-epimorphism, then θ is an M-J-morphism.

Corollary 1.1. If $\pi_{K}: \mathscr{L} \rightarrow \mathscr{L} / K$ is an R-morphism, and if $K \leqq J(\mathscr{L})=$ $\wedge\{M \mid M$ is maximal in $\mathscr{L}\}$, then $K=O$.

Corollary 1.2. If S is a submultiplicatively closed subset of \mathscr{L} and if $\hat{S}=\mathscr{I}(S)$, then $\mathscr{L} \hat{\mathrm{s}} \cong \mathscr{L}_{\text {s }}$. Moreover, \hat{S} is the largest multiplicatively closed subset of \mathscr{L} such that $\hat{S} \supseteq S$ and $A_{\hat{S}} \mapsto A_{S}$ is an isomorphism.

It is trivial that if $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ is a J-morphism and $B \leqq \mathscr{K}(\theta)$, then the restriction of θ to \mathscr{L} / B is a J-morphism. We denote the restriction of θ to \mathscr{L} / B by θ_{B}. Of course, in general, θ_{B} will not be an isomorphism, even if $B=\mathscr{K}(\theta)$. However, (iii) of Theorem 1 allows us to restrict our attention to a special case.

Theorem 2. Let $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ be a homomorphism such that $\mathscr{I}(\theta)=\{I\}$. If $\mathscr{K}(\theta)=K$, then the map $\theta_{K}: \mathscr{L} / K \rightarrow \mathscr{L}^{\prime}$ is an r-monomorphism provided
(i) θ is an epimorphism; or, provided θ is an r-homomorphism and one of the following is satisfied:
(ii) \mathscr{L}^{\prime} is local;
(iii) O is prime in \mathscr{L}^{\prime};
(iv) if D and E are elements of \mathscr{L} with $E \in \mathscr{G}$, then $\theta(D) \theta(E)=\theta(E)$ implies $E \leqq D E \vee K$.

Proof. Clearly (ii) and (iii) imply (iv), since $\mathscr{I}(\theta)=\{I\}$. We show that if (i) holds then θ is an r-homomorphism satisfying (iv) and that if θ satisfies (iv), then θ_{K} is a monomorphism.

Hence, assume (i) holds and let D and E be elements of \mathscr{L} with E principal. Then $\theta(D) \wedge \theta(E)=\theta(D \wedge E)=\theta((D: E) E)=\theta(D: E) \theta(E)$, so that $\theta(E)$ is weak meet principal, and therefore principal, in $\mathscr{L}^{\prime},[\mathbf{2}$, Theorem 2.9]. If $\theta(D) \theta(E)=\theta(E)$, then $I=\theta(D) \vee(O: \theta(E))$. Choosing $C \in \mathscr{L}$ so that $\theta(C)=O: \theta(E)$, we get $I=\theta(D) \vee \theta(C)=\theta(D \vee C)$, so that $D \vee C=I$ and therefore $D E \vee C E=E$. Since $C E \leqq K$ by the choice of C, it follows that (iv) holds.

Now, assume that (iv) holds and that A and B are elements of \mathscr{L} / K with $\theta(A) \leqq \theta(B)$. If E is any principal element in \mathscr{G} such that $E \leqq A$, then $\theta(E) \leqq \theta(A) \leqq \theta(B)$, so that

$$
\theta(E)=\theta(B) \wedge \theta(E)=\theta(B \wedge E)=\theta((B: E) E)=\theta(B: E) \theta(E)
$$

Since A is the join of principal elements in \mathscr{G}, it follows that $A \leqq B \vee K=B$.
The following might well be called the fundamental theorem of r-homomorphisms.

Theorem 3. Let $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ be an epimorphism. Let $S=\mathscr{I}(\theta)$ and $K=\mathscr{K}\left(\theta_{S}\right)$. Then the following diagram is commutative, all maps involved are r homorphisms and the map $\left(\theta_{S}\right)_{K}$ is an isomorphism.

Proof. The results follow readily trom Theorem 1 and Theorem 2.
We note that Theorem 2 can be used to obtain three alternative statements of Theorem 3 in which the conclusion is that \mathscr{L}_{S} / K is isomorphic to the image in \mathscr{L}^{\prime} of θ. In particular, we observe that if $\theta: \mathscr{L} \rightarrow \mathscr{L}^{\prime}$ is an r-homomorphism and if one of (ii), (iii), or (iv) of Theorem 2 is satisfied, then $\theta(\mathscr{L})$ is a sub)Noether lattice of \mathscr{L}^{\prime}.

In [4], K. P. Bogart showed that if \mathscr{L} is a distributive local Noether lattice with maximal element \mathscr{M}, then there exists a regular local Noether lattice $R L_{n}$ and a J-epimorphism $\theta: R L_{n} \rightarrow \mathscr{L}$. If we denote the equivalence relation back induced on $R L_{n}$ also by θ, then $R L_{n} / \theta \cong \mathscr{L}$. We extend this result to regular Noether lattices in general. (\mathscr{L} is said to be regular if \mathscr{L}_{M} is regular for each maximal element M of \mathscr{L}.)

Theorem 4. Let \mathscr{L} be a distributive Noether lattice. Then there exists a regular Noether lattice domain $\mathscr{R}(\mathscr{L})$ and a J-epimorphism $\theta: \mathscr{R}(\mathscr{L}) \rightarrow \mathscr{L}$, which takes principal elements to principal elements, such that
(i) θ establishes a bijection between the maximal elements of $\mathscr{R}(\mathscr{L})$ and the maximal elements of \mathscr{L}, and
(ii) $\mathscr{I}(\theta)=\{I\}$.

Proof. Let \mathscr{F} be the family of maximal elements of \mathscr{L}. For each $M \in \mathscr{F}$, choose a finite set $p(M)$ of principal elements such that every prime $P \leqq M$ is the join of a subset of $p(M)$ (this is possible since there are only finitely many primes in \mathscr{L}_{M}). Let S be the multiplicative closure of $K=\cup_{M \in \mathscr{F}} p(M)$, and let \mathscr{G} be the closure of S under joins, including O and I. Assume $\mathscr{G} \neq \mathscr{L}$ and let N be maximal in the complement of \mathscr{G}, so that N is not prime. Fix principal elements E, F such that $E F \leqq N, E \nsubseteq N$ and $F \nsubseteq N$. Then $N<N: E \neq I$, so $N: E \in \mathscr{G}$, by the maximality of N. Hence, we may choose $N_{1}, \ldots, N_{k} \in S$ with $N: E=N_{1} \vee \ldots \vee N_{k}$. It follows that $N=\bigvee_{i=1}^{k}\left(N \wedge N_{i}\right)=\bigvee_{i=1}^{k}\left(N: N_{i}\right) N_{i}$. Now, $N_{i} \leqq N: E$ implies $E \leqq N: N_{i}$. Since also $N \leqq N: N_{i}$, it follows that $N: N: \in \mathscr{G}$. But then $\left(N: N_{i}\right) N_{i} \in \mathscr{G}$, $i=1, \ldots, k$, and therefore also $N \in \mathscr{G}$. Hence $\mathscr{G}=\mathscr{L}$.

Now, let X be the set of all subsets A of K such that $A \subseteq p(M)$ for some $M \in \mathscr{F}$. Then by Theorem 8 of $[\mathbf{1}]$, there exists a unique regular Noether lattice domain $\mathscr{R}(\mathscr{L})$ and a bijection θ from the set of principal primes of
$\mathscr{R}(\mathscr{L})$ onto K that extends to an isomorphism of posets $\hat{\theta}: \operatorname{Spec}(\mathscr{R}(\mathscr{L})) \rightarrow X$ given by $\hat{\theta}(P)=\left\{\theta\left(P_{1}\right), \ldots, \theta\left(P_{n}\right)\right\}$, where $P=P_{1} \vee \ldots \vee P_{n}$ is the unique decomposition of P as a join of nonzero principal primes. If we extend θ to a map of $\mathscr{R}(\mathscr{L})$ to \mathscr{L} by taking products to products and joins to joins, then θ has the desired properties.

We note that above it is not sufficient to take $p(M)$ to be an arbitrary finite set of principal elements with join M (as it is in the local case). For example, $\mathscr{L}=R L_{1} \oplus R L_{1}$ has two maximal elements, (M, I) and (I, M), both of which are principal. However neither (O, I) nor (I, O) is a join of powers of (M, I) and (I, M).

Theorem 5. Let \mathscr{L} be a distributive Noether lattice. Then there exists a regular distributive Noether lattice domain $\hat{L}_{\text {a }}$ and an r-epimorphism $\theta: \hat{\mathscr{L}} \rightarrow \overline{\mathscr{L}}$ if, and only if, \mathscr{L} is isomorphic to a quotient $\overline{\mathscr{L}} / K$ of a distributive regular Noether lattice domain $\overline{\mathscr{L}}$.

Proof. If $\mathscr{I}(\theta)=\hat{S}$, then $\hat{L}_{\hat{S}}$ is a distributive regular Noether lattice domain [1]. By Theorem $3, \mathscr{L} \cong \mathscr{L} \hat{S} / K$, where $K=\mathscr{K}\left(\theta_{S}\right)$.

Because of the additional structural knowledge of the local case, Theorem 5 can be strengthened considerably in the local case. If X_{1}, \ldots, X_{n} is the minimal base of the maximal element of $R L_{n}$, we adopt the notation

$$
R L_{n}=R L\left(X_{1}, \ldots, X_{n}\right)
$$

The following theorem summarizes our results on distributive local Noether lattices and gives the internal characterization referred to in the introduction. Recall that an element E is q-prime if, for principal elements $F_{1}, F_{2}, F_{1} F_{2} \leqq E$ implies $F_{1} \leqq E, F_{2} \leqq E$ or $F_{1} F_{2}=0$.

Theorem 6. Let (\mathscr{L}, M) be a distributive local Noether lattice. Let E_{1}, \ldots, E_{n} be the minimal base for the maximal element M. And let $\theta: R L_{n} \rightarrow \mathscr{L}$ be the unique J-epimorphism from $R L_{n}$ to \mathscr{L} satisfying $\theta\left(X_{i}\right)=E_{i}$. Then the following are equivalent:
(i) E_{i} is q-prime, $i=1, \ldots, n$;
(ii) θ is an r-homomorphism;
(iii) $\mathscr{L} \cong R L_{n} / K$, where $K=\mathscr{K}(\theta)$;
(iv) $\mathscr{L} \cong R L_{m} / K$, for some K;
(v) if E, F are principal elements of $R L_{n}$ with $\theta(E)=\theta(F) \neq 0$, then $E=F$.

Proof. Theorem 3 shows that (ii) implies (iii). That (iii) implies (iv) is obvious. The verification that (ii) implies (i) is straightforward, using that the elements $X_{i} \in R L_{m}$ are prime and that principal elements in \mathscr{L} are join-irreducible.

Assume that (i) holds and that $O \neq \theta(E)=\Pi_{1}^{n} E_{i}{ }^{s_{i}}=\Pi_{1}^{n} E_{i}{ }^{r_{i}}=\theta(F)$. If $s_{i}>0$. But then $E_{i}{ }^{s_{i-1}} \prod_{j \neq i} E_{j}{ }^{s_{j}}=E_{i}{ }^{s_{i}-1} \prod_{j \neq i} E_{j}{ }^{{ }^{r}}$. That (i) implies (v) now follows by induction.

Now, assume that (v) holds and that A and B are elements of $R L_{n}$ such that $\theta(A)=\theta(B)$. Let A_{1}, \ldots, A_{m} be the (unique) minimal base for A and let B_{1}, \ldots, B_{r} be the minimal base for B. Then for each t there exist u and v such that $\theta\left(A_{t}\right) \leqq \theta\left(B_{u}\right) \leqq \theta\left(A_{v}\right)$, whence $\theta\left(A_{t}\right)=\theta(E) \theta\left(A_{v}\right)=\theta\left(E A_{v}\right)$, for some principal element $E \in R L_{n}$. It follows that $\theta\left(A_{t}\right)=0$ or $A_{t}=E A_{v}$. In the latter $E=I$ and $t=v$, so that $A_{t}=B_{u}$. Hence $A \leqq B \vee K$, where $K=\mathscr{K}(\theta)$. Similarly $B \leqq A \vee K$. Since $\theta(A)=\theta(A \vee K)$, we have that $\theta(A)=\theta(B)$ if, and only if, $A \vee K=B \vee K$. Since $(A \vee K) \wedge(B \vee K)=$ $(A \wedge B) \vee K$, it follows that θ is an r-homomorphism. Hence (v) implies (ii), and the proof is complete.

It is obvious that if \mathscr{L}^{\prime} is isomorphic to a quotient \mathscr{L} / K and \mathscr{L} itself is isomorphic to a quotient of a distributive regular local Noether lattice, then \mathscr{L}^{\prime} is isomorphic to a quotient of a regular, local Noether lattice. The following proves the somewhat surprising result that any sub-Noether lattice of a quotient of a distributive regular local Noether lattice is isomorphic to a quotient of a distributive regular local Noether lattice.

THEOREM 7. Let: $\mathscr{L} \rightarrow \mathscr{L}^{\prime}$ be an r-monomorphism, where \mathscr{L}^{\prime} is isomorphic to a quotient of a distributive regular local Noether lattice. Then $\mathscr{L} \cong R L_{n} / K$ for some n and some K.

Proof. Since $\theta(I)$ is idempotent, either $\theta(I)=I$ or $\theta(I)=0$. In the latter case, $\mathscr{L}=\{0\}$. Similarly, $\theta(0)$ is idempotent, and therefore either $\mathscr{L}=\{0\}$ or $\theta(0)=0$. We may assume $\theta(I)=I, \theta(0)=0$, and $I \neq 0$. Let E_{1}, \ldots, E_{n} be a minimal base for the maximal element M of \mathscr{L}, and let $E_{1}{ }^{\prime}, \ldots, E_{n}{ }^{\prime}$ be a minimal base for the maximal element M^{\prime} of \mathscr{L}^{\prime}. We may assume that $\mathscr{L}^{\prime}=R L_{m} / K$ and that $E_{i}{ }^{\prime}=X_{i} \vee K$. Note that in $R L_{m} / K$ the intersection of a finite collection of principal elements is principal. Also,

$$
\begin{aligned}
& \prod_{j=1}^{m} X_{j}{ }^{e_{j}} \vee K=\bigwedge_{j=1} X^{e_{j}} \vee K, \text { and } \\
& \prod_{j=1}^{m} X_{j}{ }^{e_{j}} \vee K \leqq \prod_{j=1}^{m} X_{j}^{f_{j}} \vee K
\end{aligned}
$$

if, and only if, either

$$
\prod_{j=1}^{m} X_{j}{ }_{j}^{e_{j}} \leqq K \text { or } e_{j} \geqq f_{j} \text { for all } j=1, \ldots, m
$$

Fix r and $s, 1 \leqq r<s \leqq n$. Then

$$
\theta\left(E_{r}\right) \wedge \theta\left(E_{s}\right)=\theta^{\prime}\left(E_{r} \wedge E_{r}\right) \leqq \theta\left(M E_{s}\right)=\bigvee_{i=1}^{n} \theta\left(E_{i} E_{s}\right)
$$

so

$$
\theta\left(E_{r}\right) \wedge \theta\left(E_{s}\right) \leqq \theta\left(E_{i} E_{s}\right), \text { for some } i=1, \ldots, n
$$

Set

$$
\theta\left(E_{i}\right)=\prod_{j=1}^{m} X_{j}{ }^{i_{j}} \vee K, i=1, \ldots, n .
$$

We assume that $r_{j} \geqq s_{j}$ for $1 \leqq j \leqq u$ and that $r_{j}<s_{j}$ for $j>u$. Then

$$
\begin{aligned}
& \theta\left(E_{r}\right) \wedge \theta\left(E_{s}\right)=\left(\prod_{j=1}^{m} X_{j}^{r_{j}} \vee K\right) \wedge\left(\prod_{j=1}^{m} X_{j}^{s_{j}} \vee K\right) \\
& =\left(\bigwedge_{j=1}^{m} X_{j}^{r_{j}} \vee K\right) \wedge\left(\bigwedge_{j=1}^{m} X_{j}^{s_{j}} \vee K\right)=\left(\bigwedge_{j=1}^{u} X_{j}^{r_{j}}\right) \\
& \\
& \qquad\left(\bigwedge_{j>u} X_{j}^{s_{j}}\right) \vee K \leqq \theta\left(E_{i}\right) \theta\left(E_{s}\right)=\prod_{j=1}^{n} X_{j}{ }^{i_{j}+s_{j}} \vee K
\end{aligned}
$$

If $\theta\left(E_{r}\right) \wedge \theta\left(E_{s}\right)=0$, then clearly

$$
\theta\left(E_{r}\right) \wedge \theta\left(E_{s}\right)=\theta\left(E_{r}\right) \theta\left(E_{s}\right)
$$

Otherwise, $r_{j}=i_{j}+s_{j}$ for $1 \leqq j \leqq u$ and $s_{j}=i_{j}+s_{j}$ for $j>u$. It follows that $i_{j} \leqq r_{j}$ for all j, and hence that $\theta\left(E_{i}\right) \leqq \theta\left(E_{r}\right)$. Since θ is an embedding and E_{1}, \ldots, E_{n} is a minimal base for M, it follows that $i=r$, and therefore that

$$
\theta\left(E_{r}\right) \wedge \theta\left(E_{s}\right)=\theta\left(E_{r}\right) \theta\left(E_{s}\right)
$$

Hence $E_{r} \wedge E_{s}=E_{r} E_{s}$ for all $r \neq s$. But then $\left(E_{r}: E_{s}\right) E_{s}=E_{r} E_{s}$, so that $E_{r}: E_{s}=E_{r} \vee\left(0: E_{s}\right)$. Since every principal element in \mathscr{L} is a product of E_{1}, \ldots, E_{n}, it follows that E_{r} is g-prime for all r, and hence that \mathscr{L} is a quotient of $R L_{n}$.

We note that $\mathscr{L}=\left[M^{2}, M^{3}\right] \cup\{I\}$ is naturally embedded in $R L_{n} / M^{3}$ (when M is the maximal element of $R L_{n}$) whereas for $n \geqq 2$, the number of elements in a minimal base for M^{2} in \mathscr{L} exceeds the number of elements in a minimal base for M in $R L_{n} / M^{3}$. However, if \mathscr{L}^{\prime} is taken to be a domain in Theorem 7, this cannot happen.

Theorem 8. Let (\mathscr{L}, M) be a local Noether lattice and let $\theta: \mathscr{L} \rightarrow R L_{n}$ be an r-monomorphism. If E_{1}, \ldots, E_{m} is a minimal base for the maximal element of \mathscr{L}, then $\mathscr{L} \cong R L_{m}$ for some $m \leqq n$.

Proof. We may assume $\mathscr{L} \neq\{0\}$. Of necessity, \mathscr{L} must be a domain, since $R L_{n}$ is. By Theorem $7, \mathscr{L}$ is isomorphic to $R L_{m} / K$, for some K, so since the only primes of $R L_{m}$ are generated by subsets of the minimal base for the maximal element of $R L_{m}$, we may assume $\mathscr{L}=R L_{m}$. Let X_{1}, \ldots, X_{m} be the minimal base for the maximal element of $R L_{m}$ and let Y_{1}, \ldots, Y_{n} be the minimal base for the maximal element of $R L_{n}$. If $\theta\left(Y_{i}\right)$ and $\theta\left(Y_{j}\right)$ have a common factor, say X_{k}, then there exist principal elements E_{i} and E_{j} in $R L_{n}$ such that $\theta\left(Y_{i}\right)=X_{k} E_{i}$ and $\theta\left(Y_{j}\right)=X_{k} E_{j}$. If $i \neq j$, then

$$
\begin{aligned}
X_{k}{ }^{2} E_{i} E_{j} & =\left(X_{k} E_{i}\right)\left(X_{k} E_{j}\right)=\theta\left(Y_{i}\right) \theta\left(Y_{j}\right)=\theta\left(Y_{i} \wedge Y_{j}\right) \\
& =\theta\left(Y_{i}\right) \wedge \theta\left(Y_{j}\right)=X_{k} E_{i} \wedge X_{k} E_{j}=X_{k}\left(E_{i} \wedge E_{j}\right) \geqq X_{k} E_{i} E_{j}
\end{aligned}
$$

which is a contradiction. A simple counting argument now shows that $m \leqq n$.
If \mathscr{L} is any Noether lattice and E_{1}, \ldots, E_{n} are principal elements, we denote by $R L\left(E_{1}, \ldots, E_{n}\right)$ the multiplicative lattice consisting of all joins of power products of E_{1}, \ldots, E_{n}.

It follows from the previous results that if E_{1}, \ldots, E_{n} is a subset of the minimal base for the maximal element of $R L_{m} / K$, then $R L\left(E_{1}, \ldots, E_{n}\right)$ is a
sub-Noether lattice of $R L_{m} / K$ and is in fact isomorphic to a quotient of $R L_{n}$. Although the elements E_{1}, \ldots, E_{n} do not necessarily form a prime sequence, this behavior is reminiscent of that described in [6], and the analogy is made even tighter by the fact that the elements $Q_{i}=E_{1} \vee \ldots \vee E_{i}$ form a chain of q-prime elements of length n. These observations suggest natural generalizations of the definitions of prime sequence and regular. Specifically, if \mathscr{L} is a Noether lattice, we call an ordered sequence E_{1}, \ldots, E_{n} of nonzero principal elements (contained in the radical of \mathscr{L}) a q-prime sequence if it satisfies the conditions
(i) $\left(E_{1} \vee \ldots \vee E_{i}\right): E_{i+1}=E_{1} \vee \ldots \vee E_{i} \vee\left(0: E_{i+1}\right)$, for all $i=1, \ldots, n-1$, and
(ii) $\left(0: E_{i}\right) \wedge\left(J_{1} \vee J_{2}\right)=\left(\left(0: E_{i}\right) \wedge J_{1}\right) \vee\left(\left(0: E_{i}\right) \wedge J_{2}\right)$, for all

$$
i=1, \ldots, n \text {, and for all } J_{1}, J_{2} \in R L\left(E_{1}, \ldots, E_{n}\right)
$$

We call a local Noether lattice $(\mathscr{L}, M) q$-regular if there exists a q-prime chain $Q_{0}<Q_{1}<\ldots<Q_{d}$, where d is the number of elements in a minimal base for M.

We note that since the elements E_{1}, \ldots, E_{n} are principal, (i) is equivalent to

$$
\left(E_{1} \vee \ldots \vee E_{i}\right) \wedge E_{i+1}=\left(E_{1} \vee \ldots \vee E_{i}\right) E_{i+1}
$$

and (ii) is equivalent to

$$
E_{i}\left(J_{1} \wedge J_{2}\right)=E_{i} J_{1} \wedge E_{i} J_{2}
$$

for all i and for all $J_{1}, J_{2} \in R L\left(E_{1}, \ldots, E_{n}\right)$.
We begin by showing that, as for prime sequences, q-prime sequences are order independent.

Lemma 9.1. Let E_{1}, \ldots, E_{n} be a q-prime sequence and $\varphi \in S_{n}$. Then $E_{\varphi(1)}, \ldots, E_{\varphi(n)}$ is a q-prime sequence.

Proof. Since $E_{2} \wedge E_{1}=E_{1} \wedge E_{2}=E_{1} E_{2}$, it suffices to show that

$$
\left(E_{1} \vee \ldots \vee E_{i-1}\right) \wedge E_{i+1}=\left(E_{1} \vee \ldots \vee E_{i-1}\right) E_{i+1}
$$

and that

$$
\left(E_{1} \vee \ldots \vee E_{i-1} \vee E_{i+1}\right) \wedge E_{i}=\left(E_{1} \vee \ldots \vee E_{i-1} \vee E_{i+1}\right) E_{i}
$$

$$
\text { for all } i \geqq 2 \text {. }
$$

Now,

$$
\begin{aligned}
\left(E_{1} \vee\right. & \left.\ldots \vee E_{i-1}\right) \wedge E_{i+1}=\left(E_{1} \vee \ldots \vee E_{i-1}\right) \wedge E_{i+1} \\
& \wedge\left(E_{1} \vee \ldots \vee E_{i}\right)=\left(E_{i} E_{i+1} \vee \ldots \vee E_{i-1} E_{i+1}\right) \\
& \vee\left(\left(E_{1} \vee \ldots \vee E_{i-1}\right) \wedge E_{i} \wedge E_{i} E_{i+1}\right) \\
& \quad=\left(E_{1} E_{i+1} \vee \ldots \vee E_{i-1} E_{i+1}\right) \vee\left(\left(E_{1} \vee \ldots \vee E_{i-1}\right) \wedge E_{i+1}\right) E_{i}
\end{aligned}
$$

SO

$$
\begin{aligned}
\left(E_{1} \vee \ldots \vee E_{i-1}\right) \wedge E_{i+1}=E_{1} E_{i+1} \vee \ldots & \vee E_{i-1} E_{i+1} \\
& =\left(E_{1} \vee \ldots \vee E_{i-1}\right) E_{i+1},
\end{aligned}
$$

by the Intersection Theorem.
Similarly,

$$
\begin{aligned}
\left(E_{1}\right. & \left.\vee \ldots \vee E_{i-1} \vee E_{i+1}\right) \wedge E_{i}=\left(E_{1} \vee \ldots \vee E_{i-1} \vee E_{i+1}\right) \\
& \wedge\left(E_{1} \vee \ldots \vee E_{i}\right) \wedge E_{i}=\left(\left(E_{1} \vee \ldots \vee E_{i-1}\right)\right. \\
& \left.\vee\left(\left(E_{1} \vee \ldots \vee E_{i}\right) \wedge E_{i+1}\right)\right) \wedge E_{i}=\left(E_{1} \vee \ldots \vee E_{i-1}\right. \\
& \left.\vee E_{i} E_{i+1}\right) \wedge E_{i}=\left(\left(E_{1} \vee \ldots \vee E_{i-1}\right) \wedge E_{i}\right) \vee E_{i+1} E_{i} \\
& =\left(E_{1} \vee \ldots \vee E_{i-1} \vee E_{i+1}\right) E_{i}
\end{aligned}
$$

Lemma 9.2. Let E_{1}, \ldots, E_{n} be a q-prime sequence and e_{1}, \ldots, e_{n} nonnegative integers. Then

$$
\bigwedge_{j=1}^{n} E_{i}^{e^{i}}=\prod_{1}^{n} E_{i}^{e^{i_{2}}} .
$$

Proof. Since for $r \neq s, E_{r}, E_{s}$ is a q-prime sequence, we have

$$
\begin{aligned}
& E_{r}{ }^{i+1} \wedge E_{s}{ }^{j+1}=E_{r}{ }^{i+1} \wedge E_{s}{ }^{j+1} \wedge E_{r} \wedge E_{s}=\left(E_{r}{ }^{i+1} \wedge E_{s}{ }^{j+1}\right) \\
& \wedge E_{s} E_{T}=E_{r}{ }^{i+1} \wedge\left(E_{s}{ }^{j+1} \wedge E_{r} E_{s}\right)=E_{T}{ }^{i+1} \wedge\left(\left(E_{s}{ }^{j} \wedge E_{T}\right) E_{s}\right) \\
& =E_{r}{ }^{i+1} \wedge\left(\left(E_{s}{ }^{j} E_{r}\right) E_{s}\right)=E_{r}{ }^{i+1} \wedge\left(E_{s}{ }^{j+1} E_{r}\right)=\left(E_{r}{ }^{i} \wedge E_{s}{ }^{j+1}\right) E_{r} \\
& =\left(E_{r}{ }^{i} E_{s}{ }^{j+1}\right) E_{r}=E_{r}{ }^{i+1} E_{s}{ }^{j+1},
\end{aligned}
$$

by induction on the sum of the exponents. Hence

$$
\begin{aligned}
& \bigwedge_{i=1}^{n} E_{i}{ }^{e_{i}}=\bigwedge_{i=1}^{n-1}\left(E_{i} e_{i} \wedge E_{n}{ }^{e_{n}}\right)=\bigwedge_{i=1}^{n-1} E_{i} e^{e^{i}} E_{n}{ }^{e_{n}}=\left(\bigwedge_{i=1}^{n-1} E_{i} e_{i}\right) E_{n}^{e_{n}} \\
&=\left(\prod_{i=1}^{n-1} E_{i}{ }^{e_{i}}\right) E_{n}{ }^{e_{n}}=\prod_{i=1}^{n} E_{i}^{e^{e_{i}},}
\end{aligned}
$$

by induction on n.
Lemma 9.3. Let E_{1}, \ldots, E_{n} be a q-prime sequence and let J be a join of power products of E_{2}, \ldots, E_{n}. Then $E_{1} \wedge J=E_{1} J$.
Proof. If no power product involved has length >1, then the result follows from Lemma 9.1. Hence, assume some power product involving E_{n} has length >1. Write $J=K \vee B E_{n}$, where K is the join of power products of E_{2}, \ldots, E_{n-1}.
By induction on the sum of the lengths of the power products of which J is the supremum, we have

$$
\begin{array}{r}
E_{1} \wedge J=E_{1} \wedge\left(\left(E_{1} \vee K\right) \wedge\left(K \vee B E_{n}\right)\right)=E_{1} \wedge\left(K \vee \left(\left(E_{1} \vee K\right)\right.\right. \\
\left.\left.\wedge B E_{n}\right)\right)=E_{1} \wedge\left(K \vee\left(\left(\left(E_{1} \vee K\right) \wedge E_{n}\right) \wedge B E_{n}\right)\right)=E_{1} \\
\wedge\left(K \vee\left(\left(\left(E_{1} \vee K\right) E_{n}\right) \wedge B E_{n}\right)\right)
\end{array}
$$

(by the inductive hypothesis, since E_{n} does not appear in $E_{1} \vee K$ written as a join of power products)

$$
\begin{aligned}
&\left.=E_{1} \wedge\left(K \vee\left(\left(E_{1} \vee K\right) \wedge B\right) E_{n}\right)\right)=E_{1} \wedge\left(K \vee \left(\left(E_{1} \wedge B\right)\right.\right. \\
&\left.\left.\vee(K \wedge B)) E_{n}\right)\right)
\end{aligned}
$$

$\left(\right.$ since $\left.E_{1} \wedge(K \vee B)=E_{1}(K \vee B)=E_{1} K \vee E_{1} B=\left(E_{1} \wedge K\right) \vee\left(E_{1} \wedge B\right)\right)$

$$
\begin{aligned}
=E_{1} \wedge\left(K \vee E_{1} B E_{n}\right)=\left(E_{1} \wedge K\right) \vee E_{1} B E_{n} & =E_{1} K \vee E_{1} B E_{n} \\
& =E_{1}\left(K \vee B E_{n}\right)=E_{1} J
\end{aligned}
$$

Lemma 9.4. Let E_{1}, \ldots, E_{n} be a q-prime sequence in \mathscr{L}. Then $R L\left(E_{1}, \ldots, E_{n}\right)$ is a distributive sublattice of \mathscr{L}.

Proof. If P and J_{i} are elements of $R L\left(E_{1}, \ldots, E_{n}\right)$, where P and J_{i} are power products, then $P \wedge J_{i}$ is an element of $R L\left(E_{1}, \ldots, E_{n}\right)$, by Lemma 9.2.

Hence, to show that

$$
P \wedge\left(\bigvee_{i=1}^{s} J_{i}\right)=\bigvee_{i=1}^{s}\left(P \wedge J_{i}\right)
$$

it suffices to consider the case $P=E_{1}{ }^{r+1}$. Moreover, by Lemma 9.3 , we may proceed by induction on r. Let $J_{i}=\prod_{j=1}^{n} E_{j}{ }^{i}$ and assume $i_{1} \geqq 1$ for $i=1, \ldots, u$ and $i_{1}=0$ for $i>u$. Also, for $1 \leqq i \leqq u$, let

$$
J_{i}^{\prime}=E_{1}{ }_{1}^{i_{1-1}} \prod_{j=2}^{n} E_{j}{ }^{i_{j}} .
$$

Then

$$
\begin{aligned}
& E_{1}^{r+1} \wedge\left(\bigvee_{s=1}^{i} J_{i}\right)=E_{1}^{r+1} \wedge E_{1} \wedge\left(\bigvee_{i=1}^{s} J_{i}\right)=E_{1}^{r+1} \wedge\left(\left(\bigvee_{i=1}^{u} J_{i}\right)\right. \\
& \left.\vee\left(\bigvee_{i>u} E_{1} J_{i}\right)\right)=E_{1}\left(E_{1}^{r} \wedge\left(\left(\bigvee_{i=1}^{u} J_{i}^{\prime}\right) \vee\left(\bigvee_{i>u} J_{i}\right)\right)\right. \\
& \quad=E_{1}\left(\left(\bigvee_{i=1}^{u} E_{1}{ }^{r} \wedge J_{i}^{\prime}\right) \vee \bigvee_{i>u}\left(E_{1}{ }^{r} \wedge J_{i}\right)\right)=\bigvee_{i=1}^{u}\left(E^{r+1} \wedge J_{i}\right)
\end{aligned}
$$

The equation

$$
\left(\bigvee_{i=1}^{u} P_{i}\right) \wedge\left(\bigvee_{j=1}^{s} J_{j}\right)=\bigvee_{i, j}\left(P_{i} \wedge J_{j}\right)
$$

now follows by induction on u.
Theorem 9. Let E_{1}, \ldots, E_{n} be a q-prime sequence in \mathscr{L}. Then

$$
R L\left(E_{1}, \ldots, E_{n}\right)
$$

is a q-regular distributive Noether sublattice of \mathscr{L}.
Proof. Since $R L\left(E_{1}, \ldots, E_{n}\right)$ is a distributive sublattice of \mathscr{L} by Lemma 9.4, and since every element of $R L\left(E_{1}, \ldots, E_{n}\right)$ is, by definition, a join of power products of E_{1}, \ldots, E_{n}, it suffices to show that the elements E_{i} are principal in $R L\left(E_{1}, \ldots, E_{n}\right)$.

By Lemma 9.3 and Lemma 9.4, it is immediate that $J \wedge E_{i}$ is a multiple of E_{i}, for every $J \in R L\left(E_{1}, \ldots, E_{n}\right)$. On the other hand, if $J \in R L\left(E_{1}, \ldots, E_{n}\right)$ and P is a power product of E_{1}, \ldots, E_{n}, then $P E_{i} \leqq J E_{i}$ implies

$$
P E_{i}=P E_{i} \wedge J E_{i}=(P \wedge J) E_{i}
$$

so that (in \mathscr{L})

$$
P=(P \wedge J) \vee\left(P \wedge\left(0: E_{i}\right)\right)=(P \wedge J) \vee\left(0: P E_{i}\right) P
$$

It follows that either $P E_{i}=0$ or that $P \leqq J$, whence $P \leqq J \vee\left(0: E_{i}\right)$ in
$R L\left(E_{1}, \ldots, E_{n}\right)$. Hence E_{i} is both weak meet principal and weak join principal, and therefore principal, in $R L\left(E_{1}, \ldots, E_{n}\right)$.

Theorem 10. Let (\mathscr{L}, M) be a distributive q-regular local Noether lattice. If E_{1}, \ldots, E_{n} is a minimal base for M, and if

$$
K=\vee\left\{X_{1}^{e_{1}} \ldots X_{n}{ }_{n}^{e_{n}} \mid E_{1}{ }^{e_{1}} \ldots E_{n}^{e_{n}}=0\right\},
$$

then $\mathscr{L} \cong R L_{n} / K$. Conversely, any quotient of $R L_{n}$ is a distributive q-regular local Noether lattice.

Proof. Let $Q_{0}<Q_{1}<\ldots<Q_{n}$ be a q-prime chain in \mathscr{L}. It is easily seen that each of the elements Q_{i} is generated by a subset of E_{1}, \ldots, E_{n} with i elements, so we may assume that $0=Q_{0}$, and that $Q_{i}=E_{1} \vee \ldots \vee E_{i}$. It follows that E_{1}, \ldots, E_{n} is a q-prime sequence in \mathscr{L}, and hence by Lemma 9.1 that each of the elements E_{i} is q-prime. The isomorphism of \mathscr{L} with $R L_{n} / K$ now follows from Theorem 6 .

References

1. D. Anderson, Distributive Noether lattices, Michigan Math. J., 22 (1975), 109-115.
2. - Abstract commutative ideal theory without chain condition, Algebra Universalis, 6 (1976), 131-145.
3. K. P. Bogart, Structure theorems for regular local Noether lattices, Michigan Math. J., 15 (1968), 167-176.
4. - Distributive local Noether lattices, Michigan Math. J., 16 (1969), 215-223.
5. R. P. Dilworth, Abstract commutative ideal theory, Pacific J. Math. 12 (1962), 481-498.
6. E. W. Johnson and M. Detlefsen, Prime sequences and distributivity in local Noether lattices, Fund. Math., 86 (1974), 149-156.
7. P. J. McCarthy, Homomorphisms of certain commutative lattice ordered semigroups, Acta Sci. Math. XXVII (1966), 63-65.

The University of Iowa, Iowa City, Iowa;
The University of Houston, Houston, Texas

[^0]: Received November 9, 1977 and in revised form November 7, 1978.

