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SUMMARY

A procedure for combining evidence from different biological assays is shown to
be equivalent both to generalized least-squares and to maximum-likelihood estima-
tion. By appropriate nesting of hypotheses, the likelihood function can be used to
test the agreement between the assays and to obtain probability limits for the
combined estimate of potency. The properties of these limits are examined, with
particular reference to the situation, unusual but not impossible in practice, in
which the values of relative potency that they define consist of several disjoint
segments instead of a single interval. The connexion with general theory of
estimating linear functional relations is pointed out.

1. INTRODUCTION

The problem of combining evidence from different biological assays, so as to pro-
vide a point estimator and confidence intervals for a common potency ratio, is well-
known. Finney (1964, chapter 14) discussed several empirical methods that provide
point estimators with approximate standard errors, from which approximate limits
of error are obtainable. Bennett (1962; a paper henceforth called B) gave a likeli-
hood ratio statistic from which a point estimator and confidence limits could be
derived (see also Bennett, 1963a).

Armitage (1970; henceforth called A) described a method for obtaining the
maximum-likelihood (ML) estimator of the common potency ratio. Subsequently,
Armitage & Bennett (1974; henceforth called AB) confirmed that the A and B
estimators are identical. The present paper examines the general theory of com-
bining assay results in greater detail; it then considers the particular problem of
interval estimation, and finds therein some unusual features. The notation is
largely consistent with that in AB, though with some generalizations.

As noted in A, the problem can be regarded as a particular case of the estimation
of a linear functional relation between two variables. Some of the results in §3 can
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be found in the literature on functional relations, to which references are given
below. Other results, such as the use of (4.3) and (4.5) and the discussions in §§5, 6,
may be of interest in the wider context of functional relations.

2. SPECIFICATION OF PROBLEMS

Suppose that each of k parallel-line assays compares the same standard and test
preparations, the true regression equation in assay i being

for standard and test respectively, where x is the logarithm of dose. Then the log
potency ratio of test relative to standard in assay i is

/«< = («*-«*)/&. (2.2)

Suppose that xi and x\ are the mean values of log dose for the two preparations,
yi and y\ are the observed mean responses, and Bi the estimated regression coeffi-
cient in assay i. Equations (2.1) are estimated by

Tt = yi + Bi{x-XiU

Write
A = ft-Vi, (2-4)

*i = E(Dt) (2.5)
and

z, = x ^ , (2.6)

the last being a constant determined by the assay design. Then (2.2) can be
expressed

fi, = Zt + SJfa. (2.7)

We shall be concerned particularly with hypotheses that specify equality of the /it.
We shall adopt the customary assumption that individual responses in assay i

are distributed normally about the appropriate regression lines. We shall further
assume the variance of the distribution to be a constant, cr2, for all the assays, this
condition being at the heart of the argument that follows. For assay i, the usual
least-squares procedure for fitting parallel regression lines provides unbiased esti-
mators Bt, Dt of fii, 8it and these together with the residual sum of squares are
sufficient statistics for fi{, S{, cr2. For the data as a whole, the k pairs (Bit Dt) and
the pooled residual sum of squares about the 2k parallel lines are sufficient for the
(2k + 1) parameters. Most of the following discussion is in terms of the set (Bt, Dt)
rather than individual responses.

In general, B{ and D{ are normally distributed about /?f and St, with

(2.8)
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where uit v{, % depend solely on the design and number of responses measured for
assay i. In the simpler types of assay corresponding ^equations (2.1 )-(2.8), wf will
be zero; complexities of design such as incomplete blocks or missing observations
commonly introduce a covariance, and w^ is introduced here for generality.

Although the emphasis of this paper is on parallel-line assays, essentially the
same theory is applicable to slope-ratio assays (Bennett, 19636). For suppose that
x is now the absolute dose and, in a notation that is non-standard but convenient
here, equations (2.1) are replaced by

Then the relative potency is
Pi = *i/A- (2-10)

Again under the customary assumptions of normality, least-squares theory leads to
statistics Bit Dt that are sufficient and unbiased estimators of/?t-, 8t for assay i. The
constraint that the two regression lines shall meet at x = 0 introduces a non-zero
covariance between Bit Dt, and the generality of (2.8) is needed.

Equation (2.7) appears to be more complex than (2.10), in that zt can be different
in each assay. However, if Sf is defined by

8* = 8i+/3iZi (2.11)
and estimated by Df, where

Df = Dt+BtZf, (2.12)

then (2.7) can be put in exactly the same form as (2.10). If Bt and Di are un-
correlated, i?f and Df will have a non-zero covariance. In fact, either of zit wi can
be regarded as redundant since a simple transformation allows the problem to be
expressed in a form involving only one of them. For practical convenience, both
are retained in this paper.

The central problem, then, is that of estimating a ratio of two parameters, where
k pairs of unbiased and normally distributed estimators of the two are available,
and the covariance matrix for every pair consists of three known multiples of a
single variance that itself can be estimated from a pooled sum of squares.

3. THE LIKELIHOOD

The most general hypothesis, Ho, puts no constraints on the parameters and in
particular permits all /it to be different. Under Ho, the log likelihood is

(3.1)

where C{cr2) is a function of a2 and of individual responses that does not involve
the fiit 8t and summation (as elsewhere in the paper) is from i = 1 to i = k. The
maximum of Lo is

T — o
-^O.max — °0>

occurring when /? = Bi,^i = Dit and a2 = a% is chosen to maximize C(cr2). The /it

are estimated by
ftt = zt + BtIDt. (3.2)

10-3
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We now consider two other composite hypotheses involving constraints on the
parameters fa, 8t:

Hk_1: fa = fi (unspecified),

Hk: fa = /i0 (a specified value).

The subscripts on H indicate the number of constraints imposed; Hk_1 is a subset
of Ho and Hk is a subset of Hk_v We shall study the maximization of likelihood,
first under Hk and then under Hk_v

From (2.7) and under Hk,
*i = &(Po-*i)- (3-3)

The log likelihoood is

-"*; — ~\" / 2<r2 (uv—w?)

where £f is written for (/io — zt). Algebraic manipulation enables this to be written

1
2a*2*

Only the final summation involves /?it and the 8t have been eliminated. Hence Lk is
maximized by making all terms in that summation zero. The ML estimates are
therefore

'} (3.6)

^ = P& )
and

where a\ is the value of <r2 maximizing Lk and Ck =
Maximization under Hk leads easily to explicit formulae for the estimates of

ftit 8t. Under Hk_lt the known /i0 is replaced by an unknown /i that must also be
estimated. Evidently for any /i equations (3.6) determine corresponding maxi-
mizing values for /?i; 84, and therefore the ML estimates under Hk_1 can be obtained
by maximizing Lk> max with respect to [i. Sprent (1966) followed the same procedure
in a generalized least-squares solution to the functional relation problem; the sum-
mation in (3.7) is the same as Sprent's (10). Dolby (1972) demonstrated the
equivalence of maximum likelihood and generalized least squares in the estimation
of a linear functional relation. Replacement of §f by (/i — z{) in (3.4) and differentia-
tion with respect to fi gives the equation
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as an additional condition on the ML estimates. Hence

Iteration with equations (3.6), (3.8) enables p and the fa to be obtained numerically
to any desired accuracy. Except for the introduction of the covariance, this is the
same as the procedure using equations (1), (2) of paper A.

The maximum log likelihood under Hk_1 is obtained from (3.7) by putting
fi0 = p and choosing <r2 = al_x to maximize the expression. Writing for con-
ciseness Ij = p — zt,

1 „ (Bit,--DA2

- r
, max — °* - l

where Ck_1 =

4. LIKELIHOOD RATIOS AND BELATED TESTS

The hypothesis Hk is a constrained form a£Hk_v which in turn imposes additional
constraints on Ho. Although these constraints are non-linear, only Ho being a truly
linear model, general theory of hypotheses nested in this fashion ensures that

(4.1)

can be used to test Hlc_1 within the wider family Ho by regarding it as asymptoti-
cally distributed as Xik-v- Similarly, Hk can be tested within the wider family
Hfc-i by regarding

Z ( L L ) (4.2)

as a xfi]- Thus (4.1) and (4.2) enable the heterogeneity of the/^ and the deviation
of a common /i from a specified fi0 to be tested.

The algebraic forms are complicated by the fact that the maximizations involve
three different estimators of <r2. Asymptotically, this can be neglected, and formal
proof along standard lines confirms the more heuristic conclusion from (3.8) that

may be used in place of Zk_x; here <x2 can be any efficient estimator of cr2, for
example the residual mean square from the unconstrained model, <r§. When every
Wt — 0, substitutions from (3.6) allow the last expression to be written

(4.4)

a formula given by Armitage, Bailey, Petrie, Annable & Stack-Dunne (1974, eq. (11))
for the case a% known. Similarly Zx may be replaced by

If &z is an ordinary quadratic estimator of cr2 with / degrees of freedom, as it is
when equated to a% Z%_x can more plausibly be asserted to be distributed as
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(k — 1) F(k — 1,/), and we conjecture that the distribution of Zk_1 is better approxi-
mated by this than by xlk-t\- The distinction disappears when / becomes large.
Similarly, the distribution of F(l, / ) may be a better approximation than that of
Xfn for Z\ and Zx.

Another approach to an approximate test statistic is to obtain the asymptotic
variance of ju, by evaluating second derivatives of Lk with respect to /i, filt /?2, ..., fik

and a2, and inverting the matrix. This leads to

a result obtained in A for the particular case of t»f = 0. Hence an asymptotic Xm
statistic is

•"1 = (M~fio) / v a r (/<)> (4.7)

where 6U $x, a2 are inserted for 0t, fit, cr2 in (4.6) in order to permit evaluation of
var (/<). General theory shows Z\ and Z\* to be asymptotically equivalent, and
this can be verified directly by expanding Z\ as a power series in {fi—fi0).

In B, the suggestion was made that Hk could be tested by regarding the second
term of (3.7), which is asymptotically equivalent to Z1 + Zk_1> as being distributed
as kF(k, / ) , or approximately xfm- Similar proposals have been made elsewhere
(Brown, 1957; Sprent, 1966, 1969; Villegas, 1964). General considerations indicate
that a test based on Zx or Z* using F(l, f) or xfi\ will be more powerful in detecting
deviation of /i from the /t0 specified by Hk. Beale (1966) made a similar comment in
relation to interval estimation.

5. THE ESTIMATION OF POTENCY

Consider now the function

It can be regarded in three ways:
(i) By reference to (3.7), (3.9), minimization of J(/i) can be seen as equivalent

to maximization of the likelihood if cr2 is known, and as part of the condition for
maximizing the likelihood even if cr2 is unknown.

(ii) Under the hypothesis Hk_1, J(ji)/a2 is distributed as xz with k D.F. If an
estimate of cr2, say <r2 with / degrees of freedom, is available from a statistically
independent source, J(fi)jka2 is distributed as ~E(k,f).

(iii) Since E[Bi (/t - z^ — Dt] = 0, J{/i) can be regarded as a sum of squares of
deviations of the quantities {Bt (pi — z{) — Dt} from their expectations, each square
being weighted in inverse proportion to its variance.
Thus determination of p, to minimize J(ji) can be seen to be a maximum-likeli-
hood, minimum x2> a n d non-linear least-squares estimation procedure.

Evidently as /* becomes large, positive or negative, J(fi) approaches

«/«> = S — • (5.2)
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A graph of J(/i) against ji will show Jx as a horizontal asymptote at both extremes.
Note that necessarily ut > 0, and that the question of combining assay results
would not arise unless some Bt # 0, so that the asymptotic value exceeds zero. By
expansion in inverse powers of /i,

Hence in general the asymptote will be approached from opposite sides at the
positive and negative extremes of ju,. A necessary condition for the approach to be
from one side only is that

This condition does not represent any obviously interesting special case, though
undoubtedly it can be satisfied. The term in fi"3 in (5.3) would be more complicated
and is not shown here; certainly equation (5.4) does not oblige it also to vanish.
Consequently the usual situation is that J(ji) approaches its asymptote from
opposite sides, but approach from the same side at both ends may occur for certain
non-trivial conjunctions of values of the Bit Dit u{, vit w{.

Fig. 1 is a sketch of a typical curve for data in which all estimates of fi from the
single assays agree well so that Hk_1 is reasonable. The curve will take either this
form or its mirror image according to the sign of the expression on the left of
equation (5.4). It is qualitatively similar to the well-known graphical representa-
tion of Fieller's theorem, except that the minimum of J(/i) is greater than zero
unless the k terms of J(fi) differ only by known numerical factors. Of course if
k = 1 the curve is exactly Fieller's.

Before variants of the curve are considered, the interpretation of the simple form
requires comment. The minimum is J{fi), where p, is the estimate of/* under Hk_1

obtained by equation (3.7). If a2 were known,

Jfflo* (5.5)

would be asymptotically distributed as Xik-u a n d could test Hk_x: evidently if the
minimum is large the hypothesis that the separate assays share a common fi is
implausible. This test is identical with the Zk_1 test of equation (4.1) for the special
case of a known cr2, since the minimum of J(ji) under Ho is zero. In practice, if
several assays are being combined with the assumption that cr2 is the same for all,
the number of degrees of freedom for estimating cr2 will usually be sufficiently
large to permit substitution of a2 for cr2 without much harm. One may expect
that, if a2 is taken from a composite intra-dose sum of squares with / degrees of
freedom, a better test would be to regard J(ju)j(k~l)a2 as having the F(k — l,f)
distribution, but general theory permits the Xik-u *es* *° ^ e used asymptotically
just as for Zk_x.

Probability limits can be assigned to ji by similar argument from the Zx test of
equation (4.2). When cr2 is known, the acceptable values of fi at probability P are
those for which

[JW-J&]\lo* < fa, (5-6)
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Fig. 1. The function J(ji) for k = 3 and

1 J5, Dt zi

1 1 1 0
2 1 2 0
3 1 0 0

[In order to show extremes more clearly, the scale of fi is drawn as linear in p} and
that of J{fi) as linear in log J.]

where the value of x2 is read for probability P. Replacement of a2 by a2 leaves the
test asymptotically unchanged, though substitution of F(\, f) for xfi\ may be an
improvement (Beale, 1960). In accordance with standard statistical practice, this
procedure is appropriate when Hk_1 is known to be true and limits are to be stated
irrespective of whether or not the test of (5.5) supports the hypothesis. If the truth
of Hk_1 is uncertain, either because of doubts whether the k assays are all concerned
with the same potency or because one or more assays have been contaminated in
some way, the test of (5.5) takes the role of a validity test. Limits calculated by use
of (5.6) are conditional on Hk_1, but judgement on whether to regard the limits as
meaningful, rather than rigid reliance upon a test of significance, seems desirable.

For k = 1, equation (5.6) or its modification with a value of F (or t2) in place of
X2 leads to the quadratic inequality that underlies Fieller's theorem. The values of
fi satisfying the inequality form a single finite interval if at the chosen probability
level

JJ<r* > tfi], (5-7)

and form an infinite interval from which a finite segment may be excluded if this
inequality is reversed. The situation is clear from consideration of placing a hori-
zontal line at height cr2x2u on Fig. 1, remembering that J(fi) = 0 when k = 1. If
cr2x2i] exceeds the maximum of J(ju), the whole range of (i from — oo to + oo must
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be regarded as not rejected at the stated probability. For larger k, the argument
remains the same except that the inequality corresponding to (5.7) is now

[J«,-J(£)]/a*>tfu, (5.8)

and the height of the horizontal inserted in Fig. 1 must be measured from J{p).
If the ratios u{: vt: wi are constant for all i, as would happen if all assays were the

same in design but might be differently replicated, the curve will certainly be of the
form of Fig. 1. Trials suggest that even quite large discrepancies in these ratios still
leave the curve with one minimum and one maximum. As will be illustrated in §6,
however, the function J(ji) can have two or more minima, which in general will not
be equal. Indeed, since a single term of J(ji), corresponding to one assay, itself
produces a curve with one minimum and one maximum and a horizontal asymp-
tote at each extreme, presumably the general expression can be so contrived as to
have k minima and k maxima. All that is necessary is to sum terms so displaced rela-
tive to one another that the minimum and maximum for each taken alone occur far out
towards the asymptote of every other one. A formal proof could doubtless be given,
but the nature of it should be apparent. Whether a J(ji) can ever have more than
k minima is unknown."f However many they are, the local minima will be separated
by maxima that can be of any height: some maxima may rise far above the asymptote,
others may be barely discernible separators of adjacent minima. The asymptote re-
mains at J^, and the most general situation, k minima (some of which may be above
the asymptote) and k maxima, will have an approach to the asymptote from above
beyond the outlying maximum. Figs. 2 and 3 illustrate examples for k = 2, 3.

In most problems of applied statistics, likelihood functions appear to behave in a
simple fashion. Multiple maxima are unusual, except perhaps for trivial special
values of parameters, and the function is commonly approximated by a quadratic
satisfactorily over a large region. For the present problem in the special case of <r2

known, —J(/i) is proportional to the log-likelihood under hypothesis Hk_1. As
Figs. 2 and 3 indicate, this log-likelihood for a single parameter can manifest an
extraordinary diversity of form. Such remarkable behaviour by a univariate likeli-
hood for a relatively simple model has seldom received comment, though Edwards
(1972, §8.2) has an interesting example relating to estimation of the scale factor for
a Cauchy distribution (see also Barnett, 1966).

The absolute minimum of J(/i) still corresponds to p,, the maximum likelihood,
minimum #2, and least-squares estimate of /i. To express precision of this estimate
by an asymptotic variance will be most unwise, unless all other minima are at sub-
stantially larger values of J(ji): this is surely clear from consideration of what in-
ference is appropriate if a second minimum has J(ji) almost as small at a value of /i
very different from ft. Interval estimates, however, can be ascribed to ji by exactly
the same procedure as before. Using a chosen probability level, a horizontal line
can be placed on the diagram at a height

f Dr W. Knight has shown us a simple demonstration that as many as 2k — 1 minima
and 2k — 1 maxima can occur.
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The values of /i within the probability set are then those for which the curve lies
below the line. The set can consist of several disjoint segments, of which one may
include infinity. Segments can coalesce, and for some probabilities the number of
segments will be smaller, down even to 1.

Note that the form of J(/i) is independent of cr2. Whatever the value of cr2, for
some levels of probability all possible types of intersection with the horizontal will
occur; the pattern that corresponds to P = 0-95 for a small <r2 may become that
for the less interesting P = 0-08 when a2 is large. In practice, if the k assays are
reasonably precise and agree sufficiently well to make a combined estimate de-
sirable, it seems unlikely that the more bizarre types of probability set will be found
at levels of probability usually considered interesting. Only if the truth of Hk_1

rested upon firm knowledge outside the current assays could a set of values deter-
mined at a probability in the range 0-90-0-99 and found to consist of several dis-
joint segments be regarded as conveying useful information. More commonly, the
occurrence of a set at such a probability that consists of clearly separated segments
would correspond with evidence against Hk_1 sufficiently strong to force either re-
jection of the whole hypothesis or recognition that some of the constituent assays
are untrustworthy and possibly invalid.

6. TWO ARTIFICIAL EXAMPLES

When an attempt is made to combine assays that are individually precise and in
good agreement with one another, the curve for J(/i) will be qualitatively similar
to Fig. 1. Some study of the pathology of the problem is interesting, and two
examples will be considered here.

First suppose that k = 2, and take the hypothetical scheme of values:

1

2

0.

1 -d
1 d

Evidently

fa
fa

0

0

=

=

—

d.

a

1

d,

)

1

a

0

0

for any d > 0 and a

? ' (6.1)

This is not intended to represent a particularly realistic bioassay situation, but it
it is not impossible. Moreover, if (T2 is sufficiently small, the precision of each assay
can be assessed in terms of its asymptotic variance, here easily reduced to the form

These can be used safely only if each B2 is large relative to its variance, that is to
say if both cr2 and acr2 are small relative to unity. The weighted mean, which can be
written

(£)(£)
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can then be assigned the variance

The expressions for /Z and var (/Z) have various interesting features, the most im-
portant being that for all a, d

-d <Ji < d, (6.5)
as might be expected.

This approach certainly will give approximate results close to the truth under
ideal conditions. Other approximations will not be discussed here, as they are to
be regarded as superseded by the Bennett-Armitage approach and its present
development. For the example

^ ^ . (6.6)

The expression in (5.3) becomes

a \ a J a

From (6.6), (6.7) the asymptote is seen to be

Joo = • (6.8)
a

If a < 1, the approach to the asymptote will be from below at — oo, from above at
+ oo; these are reversed if a > 1. For a = 1,

i) (6-9>
and the curve is entirely above or entirely below the asymptote as d > 1 or d < 1.
At fi = 0,

J(0) = t P J , . (6.10)
Attention can be restricted to a > 1, because an element of symmetry is present:
replacement of a by I/a changes J(ji) to aJ(—/i), so that the same form of de-
pendence on fi is retained. When d > 1 and a = 1, the test statistic for hetero-
geneity of the two assays is

tf« = 2/<r*
irrespective of the value of d, a somewhat surprising result.

For a > 1, in the limiting case of d = 0 the curve is wholly below the asymptote
with a single minimum at /i = 0. As d is increased, the curve develops a small
'bulge' above the asymptote at large positive fi. Only when d is moderately large
do two minima appear. Fig. 2 shows the situation when d = 4 for various a. As is
evident from Fig. 2, for d = 4 and a = 1 the function has no minimum at finite /i.
The only 'point estimate' of /i is + oo, and any interval calculated is either infinite
except for exclusion of a central segment or the whole range from — co to + oo.
This particular case is interesting as it is one that could easily occur in parallel line
assays with two doses of each preparation. For one such assay, with appropriate
conventions on scales (Finney, 1964, §5.3),

var (B{) = var (D*), cov (Bt, Dt) = 0;
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Fig. 2. The function J(ji) for k = 2 and

- 4
4

a
1

The curves shown are for a = 1, 2, 5, 20, 50, 200.

1
a

0
0

for a pair of assays, the situation could chance to be that of equation (6.6), except
for a multiplicative factor that has no effect on the form of the curve. Thus under
Hk_x a pair of 4-point assays could give the apparently absurd conclusions described
above. The position would be entirely different under a 'stronger' hypothesis that
requires

instead of merely nx = fi2. Obviously one would then form, for the simple sym-
metric case,

£ = (B1+B2)I2,

S = (D1+D2)I2,

and estimate /i as 3j6. Since numerator and denominator are linear in the obser-
vations, an interval is determined by a standard application of Fieller's theorem,
and indeed the whole problem is reduced to that of k = 1. The distinction between
Hk_1 and a hypothesis that states relations between the /Si and between the St is
clearly important.

As soon as a is increased (still with d = 4), the pattern changes. Thus for a = 2,
when fi < 0 the curve is similar to that for a = 1 except for the lower asymptote,
a steady increase to a maximum high above the asymptote occurring near fi = 0.
As n increases, the decline is rapid; J(ji) falls below the asymptote near fi = 6-0,
reaches a minimum near /i = 12-0, and slowly increases again to approach the
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asymptote from below. Thus, despite the separate estimates p.x = — 4-0, ju2 = 4-0,
the combined estimate is approximately ju, = 11-6.

Further increase in a at first leaves the form unchanged, but makes ju more
reasonable yet still outside the interval (/ilt fi2); it is about 6-0 for a = 5, about
5-0 for a = 20, and about 4-5 for a = 50. A new phenomenon appears from about
a = 20 onwards, the appearance of a second minimum. Thus at a = 20 there is a
slight dip in the curve at fi = —1-5 and a well-marked minimum near ju, = 5-0.
At a = 200, the first minimum is still near /i = —1-5 but is now well below the
asymptote, and the second is still near 4-5 where J(ju) comes down close to zero.
By inspection of (6-6), when a is very large and /i finite, J(fi) is approximated by

for large enough a, this can be made to approach closely to zero at fi = — 4-0 and
at /i = 4-0.

The example is a little absurd for real assays. It implies that the regression
coefficients are estimated as 1-0 ±aicr and 1-0 + <x: the design or replication must be
rather inadequate if these coefficients have standard errors equal to or exceeding
the standard deviation per response. However, the situation in which all propor-
tionalities are the same except that standard errors are much smaller is algebraic-
ally equivalent to one in which cr2 is taken numerically smaller. For interest, look
first at a = 2 with a2 = 0-5 (still with d = 4 throughout). The weighted mean
formulae, (6-3) and (6-4), yield

Ji, = 1-18 + 2-41,

a reasonable enough estimate but with a standard error so large as to suggest that
the estimate is useless. The minimum minimorum of J(ju), at p, = 11-6 as already
noted, gives

J(/*)/o-2 = 2-65;

tested as ^py, this raises no doubts about Hk_1. The 0-95 limits to be assigned to fi
are obtained by ruling a horizontal at 3-84(r2 above J(Ju), that is to say at

J(/i) = 3-24,

and taking the interval to consist of all /i for which J(ji) is smaller. This interval is
the whole continuum except for that part from about —4-5 to about +2-6. Now
suppose that a2 is much smaller, say a2 = 0-02. The only change for the weighted
mean is that now

•p, = 1-18 ±0-48.
Again p, = 11-6, but

J{jL)\(T2 = 66-2.

This enormous value for xfv must raise the gravest doubts about Hk_1: the data
strongly conflict with the assertion that both assays are estimating the same true
relative potency. If belief in Hk_1 is too firmly entrenched to be shaken by this
evidence, the 0-95 interval for ju, will consist of those values for which J(ji) is less
than 1-40. The interval therefore is from 7-0 to about 30-0. In both instances, the
weighted mean is totally misleading.
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Enough has been said about this particular J(/i), which has little intrinsic
interest. If so simple a conjunction of design parameters and data, with only two
component assays, can produce such a variety of curves and point and interval
estimates, a less symmetric pattern and k > 2 may generate far more complexities.
A number of other special cases have been explored, and these have demonstrated
that the various types of phenomena may occur simultaneously in the manner
exemplified by Fig. 3.

Theory and numerical examples combine to show that the possibility of a
probability set consisting of several discrete segments must be accepted. As stated
earlier, however, real data for a problem in which Hk_1 is a reasonable hypo-
thesis will seldom produce apparently absurd estimates and limits at moderate
probabilities.

7. A REAL EXAMPLE

Smith, Marks, Fieller & Broom (1944) present data from four assays of the same
preparation of insulin. These data have been considered also by Finney (1964,
§14-6; see also §10-3 for a detailed study of one of the assays) and by Bennett
(1962). All assays had twin cross-over designs with three rabbits on each of the four
sequences of doses. The doses of standard insulin were 1 and 2 i.u./ml., and the test
doses were prepared so as to be equally potent on the provisional assumption that
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Table 1. Summary of four assays of the same preparation of insulin

Residual

Assay
number, i

1
2
3
4

• B .

3-500
3-262
5-584
5-759

A
0-833

-3-942
-0-432

2-150

3/64
1/24
1/24
1/24

3/16
1/6
1/6
1/6

wt

-1/96
0
0
0

degrees
of

freedom
7
8
8
8

sum of
squares

70-67
151-87
267-32
325-40

the potency of the test preparation was 22 i.u./mg. The response was the percentage
reduction in blood sugar with an adjustment for initial blood sugar level. The
analysis of each assay proceeds on the usual assumption of a linear relation
between response and log dose. In the first assay one rabbit was lost; the appro-
priate method of analysis is described in § 10-8 of Finney (1964).

Table 1 summarizes the essential information for the four assays. The residual
mean squares do not differ significantly, and we shall use the pooled mean square

s2 = 815-26/31

= 26-299

with 31 degrees of freedom, as the best estimate of residual variance. The four
estimates of slope, jBi; also do not differ significantly, but we shall play safe by as-
suming that the true slopes, /?i( may differ. (The slopes in Table 1 are measured in
terms of half the log dose interval, i.e. 0-1505 log units.) Since the nominal doses of
test and standard are the same, we may take zt = 0.

The function J(/i) is, from (5-1) and Table 1,

J(fi) = 192 (3-500/t-0-833)2/(9/t2 + 4^ + 36)

+ 24(3-262^ + 3-942)2/(/t2 + 4)

+ 24(5-584/< + 0-432)2/(/*2 + 4)

+ 24(5-759/* - 2-150)2/(/t2 + 4).

By direct evaluation of this function by computer, for a range of values of fi, the
unique minimum is found to occur at

ju, = -0-0032.

This is the maximum-likelihood estimate of the common value of fi, and corres-
ponds to an estimated relative potency (in i.u. per mg.) of

22-0 antilog (-0-0032 x 0-1505) = 22-0.

At this minimum, J(p.) = 125-79. As a heterogeneity test, from (4-3), we can take

Z*_x = J(ju)js2 = 125-79/26-299

= 4-78
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as a x2 variate with 3 degrees of freedom (P == 0-2) showing no significant difference
between the potency estimates for the four assays. Alternatively, as discussed in
the paragraph following (4-5), we could take

J(ju,)/3s2 = 1 - 5 9

as F with 3 and 31 degrees of freedom, giving virtually the same result.
Probability limits for /i follow from (5-6), or by replacing xfu by F(l, 31) as

indicated below (5-6). The 5% tabular value of F(l, 31) is 4-16, and 0-95 limits for
/i are thus determined by

J(fi) = 125-79 + (4-16)(26-299)

= 235-18.

Tabulation of J(/i) shows that this value corresponds to ft = — 0-489 and 0-486, with
limits for the potency at 18-6 and 26-0 i.u. per mg. Finney (1964, §14-6), using a
different method of combining assay results, obtained a similar estimate, 21-4, with
limits of 18-0 and 25-3 i.u./mg. The function J(ji) is well behaved in this example,
and the possible complications discussed in the previous section do not arise.

We are indebted to Mr D. A. Williams for drawing our attention to various
references relating to linear functional relations.
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