# **REVIEW ARTICLE** Part II. Analysis of data gaps pertaining to *Shigella* infections in low and medium human development index countries, 1984–2005

P. K. RAM<sup>1,2\*</sup>, J. A. CRUMP<sup>2</sup>, S. K. GUPTA<sup>2</sup>, M. A. MILLER<sup>3</sup> and E. D. MINTZ<sup>2</sup>

<sup>1</sup> School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA

<sup>2</sup> Enteric Diseases Epidemiology Branch, National Center for Zoonotic, Vectorborne, and Enteric Diseases,

Centers for Disease Control and Prevention, Atlanta, GA, USA

<sup>3</sup> Fogarty International Center, National Institutes of Health, Bethesda, MD, USA

(Accepted 30 June 2007; first published online 9 August 2007)

# SUMMARY

The global incidence of *Shigella* infection has been estimated at 80–165 million episodes annually, with 99% of episodes occurring in the developing world. To identify contemporary gaps in the understanding of the global epidemiology of shigellosis, we conducted a review of the English-language scientific literature from 1984 to 2005, restricting the search to low and medium human development countries. Our review yielded 11 population-based studies of *Shigella* burden from seven countries. No population-based studies have been conducted in sub-Saharan Africa or in low human development countries. In studies done in all age groups, *Shigella* incidence varied from 0.6 to 107 episodes/1000 person-years. *S. flexneri* was the most commonly detected subgroup in the majority of studies. Case-fatality rates ranged from 0% to 2.6% in population-based studies and from 0% to 21% in facility-based studies. This review highlights the large gaps in data on the burden of *Shigella* infections for low human development index countries and, more specifically, for sub-Saharan Africa.

## **INTRODUCTION**

The global incidence of *Shigella* infections has been estimated at 80-165 million episodes annually. An estimated 99% of episodes occur in the developing world and children aged <5 years bear the majority of the burden [1]. Common presenting features of shigellosis can include diarrhoea that is bloody or watery, with or without mucus, fever, abdominal cramps, and tenesmus. The infectious dose, which can

(Email: pkram@buffalo.edu)

be as low as 10 organisms, facilitates person-to-person spread [2].

Members of the family Enterobacteriaceae, the Shigellae are Gram-negative, non-motile, lactosenon-fermenting rods. The four subgroups of Shigellae are S. dysenteriae, S. flexneri, S. boydii, and S. sonnei. S. dysenteriae type 1 produces Shiga toxin, among the most potent toxins known, and can cause large outbreaks of dysentery, particularly in conditions of overcrowding and poor water and hygiene infrastructure [1]. In general, S. sonnei and S. boydii tend to cause milder illness than S. flexneri and S. dysenteriae. Antimicrobial resistance is increasingly found among Shigellae worldwide, with a high prevalence of resistance to first-line drugs such as ampicillin and trimethoprim–sulfamethoxazole [1]. The Integrated Mangement of Childhood Illness strategy recommends 'the selection of effective first-line and

<sup>\*</sup> Author for correspondence: P. K. Ram, M.D., Research Assistant Professor, Department of Social and Preventive Medicine, School of Public Health and Health Professions, University at Buffalo, Rm. 273 Farber Hall, 3435 Main Street, Buffalo, NY 14214, USA.

This is the second of three papers, appearing in successive issues of the Journal, reviewing the analysis of data gaps pertaining to infections in low and medium human development index (HDI) countries.

second line antibiotics' for treating dysentery based on local antimicrobial resistance patterns [3]. Current guidelines from the World Health Organization encourage providers to use ciprofloxacin as first-line therapy for bloody diarrhoea where recent local data on antimicrobial resistance patterns are not available [1].

To identify contemporary gaps in the understanding of the global epidemiology of shigellosis, we conducted a review of the recent scientific literature. We summarize below recent available data on morbidity and mortality burden, the age, geographic and temporal distribution of shigellosis, the isolation of *Shigella* in context with various other diarrhoeagenic pathogens, and the frequency of the four *Shigella* subgroups. Because of the relevance to vaccine development, we examine the relative frequency of the numerous serotypes of *S. flexneri*. In order to provide context to the global epidemiology of shigellosis, we also describe *Shigella* diagnostics and pathogenspecific preventive measures. Finally, data gaps and existing research needs are discussed.

# METHODS

We systematically searched the English-language scientific literature published between 1984 and 2005 using the Medline database, restricting the search to low and medium human development countries according to the United Nations Development Programme's Human Development Index (HDI) (http:// hdr.undp.org/2004; accessed 15 January 2007). A set of articles including the relevant epidemiological terms were cross-linked with a set of articles including the relevant pathogen-specific terms (Table 1). The resulting cross-linked set was reviewed for publications addressing Shigella morbidity, mortality, age distribution, geographic distribution, temporal distribution, pathogen-specific preventive measures, and diagnostics. Particularly for morbidity and mortality burden, population-based studies with culture confirmation of cases were considered primary data sources. When these were limited, hospital- and clinicbased studies were included. Publications were then evaluated for their contribution to an understanding of the global epidemiology of shigellosis, and gaps in the data were identified.

Crude incidence figures are given, without correction for sensitivity of stool culture, or for the proportion of diarrhoeal episodes for which stool specimens were not collected. Publications were

 Table 1. Terms used in literature search to identify

 gaps in data on enteric disease burden

| Burden of disease                                    |
|------------------------------------------------------|
| Epidemiology                                         |
| Morbidity                                            |
| Mortality                                            |
| Disease outbreaks                                    |
| Incidence                                            |
| Prevalence                                           |
| Seasons                                              |
| Population surveillance                              |
| Age distribution                                     |
| Longitudinal survey                                  |
| Pathogen-specific terms for shigellosis              |
| Dysentery                                            |
| Bacillary dysentery                                  |
| Shigella                                             |
| Shigella, dysenteriae, flexneri, boydii, and sonnei. |

sought with information on the incidence of the infection by region according to the 21 regions of the United Nations Department of Social and Economic Affairs, Population Division (http://esa.un.org/ unpp/index.asp?panel=5; 2004 revision, accessed 15 January 2007). We examined the correlation between the incidence of Shigella infection and the national per capita gross domestic product (GDP) in year 2000 US dollars, adjusted for purchasing power parity (PPP), at the time that the studies were conducted (http://unstats.un.org/unsd/cdb/cdb series xrxx.asp? series code=29922; accessed 15 January 2007). We searched for publications with information on the age-specific incidence, morbidity, and mortality. We also examined the frequency of Shigella relative to other diarrhoea-causing pathogens including Salmonella, Vibrio cholerae O1, enterotoxigenic Escherichia coli (ETEC), Campylobacter, and rotavirus. In studies that included healthy controls in addition to persons with diarrhoea, we report the frequency of Shigella isolation only among those with diarrhoea. Where stools were tested at two different times of the year, we report data from the period during which a greater number of stool specimens were collected.

#### RESULTS

#### Morbidity

#### Incidence

A 1999 review of published data from 1966 to 1997 estimated the annual global incidence of shigellosis

to be approximately 164.7 million episodes, with 163.2 million of those occurring in the developing world [4]. These figures were derived by estimating the total number of diarrhoeal cases and multiplying that by the proportion attributable to shigellosis, as determined by the yield of *Shigella* in stool culture from persons with diarrhoea. While this review distinguished 'developing' countries from 'industrialized' countries, few studies were available from

sub-Saharan Africa or from low-HDI countries, which contributes to uncertainty regarding the true global incidence of shigellosis. Our review of the published literature from 1984 to 2005 yielded 11 population-based studies of *Shigella* burden from seven countries (Table 2) [5, 6, 7–16]. Incidence data were reported in six studies and calculated by one of the authors (P.K.R.) based on data provided for five studies. All 11 studies were conducted in medium-HDI countries; no population-

based incidence data were available from low-HDI countries. The geographical distribution of shigellosis has been modelled based on available populationbased data (Fig. 1). Studies were conducted in Asia (7), Africa (2), and Latin America (2), with both African studies conducted in Egypt. In this limited group of studies, *Shigella* incidence did not correlate with national GDP (R = -0.11, P = 0.75) (data not shown).

Among the five studies that included surveillance in all age groups, *Shigella* incidence varied from 0.6 episodes/1000 person-years in Thailand [6] to 107/1000 person-years in Egypt [7]. In six studies limited to infants and young children, annual incidence ranged from zero cases (Thai children aged <6 months) [14] to 949 cases/1000 person-years (Bangladeshi children aged <24 months with wasting) [10]. *Shigella* incidence was higher among Egyptian infants aged <6 months (30/1000 childyears) than among infants aged  $\geq$ 6 months (23 episodes/1000 child-years) [7]. In contrast, the incidence among Thai children aged 0–5 months was zero, compared to 86 episodes/1000 person years among children aged 6–11 months [14, 16].

# Frequency of Shigella relative to other diarrhoeagenic pathogens

Sixty-seven publications reported on the frequency of *Shigella* and other enteric pathogens in sporadic diarrhoeal illness. Twenty-two studies reported the frequency of *Shigella* isolation among subjects of all ages (Table 3*a*), and 45 studies reported on restricted age groups (Table 3*b*). Data were available from Asia (39 studies), Africa (20), and Latin America (7); one study reported data from four Asian countries [17].

Studies varied widely with respect to specific pathogens tested, and diagnostic techniques used. Often, it was not clear whether a given pathogen was tested for and not detected or whether it was not tested for at all. Notably, the frequency of ETEC isolation was reported by 11 of the 20 studies conducted in Africa, 31 out of 40 Asian studies, and four out of seven studies from Latin America. Rotavirus isolation results were reported in 10 (50%) African, 32 (80%) Asian, and four (57%) Latin American studies. Few investigations reported parasitic aetiologies of diarrhoea.

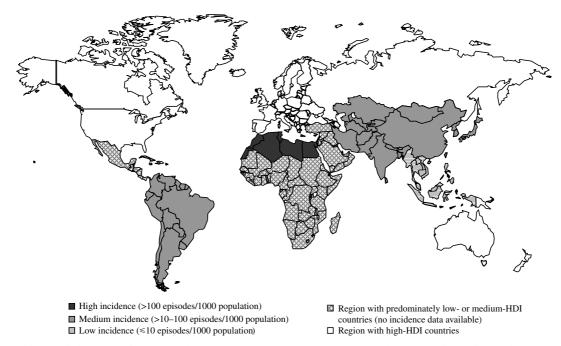
Shigella was isolated from diarrhoeal or dysenteric stools with similar frequency in Asia and Africa (median isolation rate 6%), and with lower frequency in Latin America and the Caribbean (median 3%) (Fig. 2). Shigella was the first or second most frequently isolated pathogen in 10 studies conducted in Africa (n=20), 15 studies in Asia (n=43), and two studies in Latin America (n=7). Rotavirus was tested for in two of the African studies in which Shigella ranked first or second, in six such studies from Asia, and in none of the studies from Latin America and the Caribbean.

The isolation rate of *Shigella* from diarrhoea stools was highest among children aged 1-5 years, with isolation among infants aged <6 months relatively similar to isolation among infants aged 6-12 months (Fig. 3) [18–31]. Measles may increase the risk of shigellosis among children, as noted in two papers describing outbreaks of shigellosis following outbreaks of measles [32, 33].

#### Subgroups

The relative frequency of the four *Shigella* subgroups in endemic shigellosis was reported by 56 studies (Table 4*a*). Studies reporting subgroups of fewer than five *Shigella* isolates were excluded. The median rate of isolation of *S. flexneri*, *S. dysenteriae*, *S. boydii*, and *S. sonnei* were 57 %, 10 %, 8 %, and 17 %, respectively (Fig. 4). *S. flexneri* was the most commonly detected subgroup in 48 studies and *S. dysenteriae* was most common in four studies.

The frequency of *S. dysenteriae* isolation was inversely correlated with *per capita* GDP (Fig. 5) (R = -0.54, P < 0.0001), and the frequency of *S. sonnei* isolation was directly correlated with *per capita* GDP at the time of the study (Fig. 6) (R = 0.55, P < 0.0001).


|                                | ·         |            |        |         |                                 |                                  |                                       |                     |                                            |                                           |            |                           |           |
|--------------------------------|-----------|------------|--------|---------|---------------------------------|----------------------------------|---------------------------------------|---------------------|--------------------------------------------|-------------------------------------------|------------|---------------------------|-----------|
| Area                           | Region    | Country    | HDI    | Year(s) | Age<br>groups<br>under<br>study | Persons<br>under<br>surveillance | No.<br>person-years<br>of observation | Crude<br>incidence* | High<br>incidence<br>group<br>(incidence)* | Low<br>incidence<br>group<br>(incidence)* | CFR<br>(%) | Incidence<br>calculation† | Ref.      |
| Africa                         | N Africa  | Egypt      | Medium | 1981-83 | All                             | 2563                             | 3458                                  | 14-107              | 1–2 yr (107)                               | >15 yr (14)                               | 2.6        | Author                    | [7]       |
|                                | N Africa  | Egypt      | Medium | 1995–98 | <3 yr                           | 397                              | 695                                   | 200                 | 12–23 mo.<br>(310)                         | 24–35 mo.<br>(110)                        | 0          | Author                    | [11]      |
| Asia                           | SC Asia   | Bangladesh | Medium | 1978–79 | <2 yr                           | 125                              | 14–38                                 | 657–949             | Weight for<br>length ≤79%<br>(949)         | Weight for<br>length ≥90 %<br>(657)       | n.r.       | PKR-calc                  | [10]      |
|                                | E Asia    | China      | Medium | 1986-87 | All                             | 20 488                           | 19 410                                | 12                  | n.r.                                       | n.r.                                      | n.r.       | PKR-calc                  | [13]      |
|                                | SC Asia   | Bangladesh | Medium | 1988-89 | <5 yr                           | 705                              | 573                                   | 35                  | n.r.                                       | n.r.                                      | n.r.       | PKR-calc                  | [8]       |
|                                | SE Asia   | Thailand   | Medium | 1988–89 | <5 yr                           | 452                              | 449                                   | 0-86                | 6–11 mo.<br>(864)                          | 0–5 mo.<br>(0)                            | 0          | Author                    | [14, 16]  |
|                                | SE Asia   | Vietnam    | Medium | 1998–99 | <5 yr                           | 1655                             | 1655                                  | 80                  | 0–11 mo.<br>(180)                          | 24–59 mo.<br>(50)                         | 0          | Author                    | [15]      |
|                                | SE Asia   | Thailand   | Medium | 2000-03 | All                             | 80 141                           | 240 423                               | 0.6                 | <5 yr<br>(4)                               | $\geq 5 \text{ yr}$<br>(0.3)              | 1.4        | Author                    | [6]       |
|                                | E Asia    | China      | Medium | 2002    | All                             | 75 630                           | 75 630                                | 3–32                | 3–4 yr<br>(32)                             | 10–30 yr<br>(3)                           | 0          | Author                    | [5]       |
| Latin<br>America/<br>Caribbean | S America | Brazil     | Medium | 1978–79 | All                             | 189                              | 304                                   | 52                  | n.r.                                       | n.r.                                      | n.r.       | PKR-calc                  | [9]       |
|                                | S America | Peru       | Medium | 1982–84 | <1 yr                           | 153                              | 132                                   | 144                 | n.r.                                       | n.r.                                      | n.r.       | PKR-calc                  | [12, 116] |

# Table 2. Population-based studies of Shigella incidence published 1984-2005

HDI, Human development index; CFR, case-fatality rate; n.r., not reported.

\* Crude incidence reported as no. cases/1000 persons per year.

<sup>†</sup> Author: incidence reported by author of paper; PKR-calc: incidence calculated by this investigator.



**Fig. 1.** Incidence of shigellosis, by geographic region, 1984–2005. Countries contributing incidence data: China [5], Thailand [6], Egypt [7], Bangladesh [8] and Brazil [9].

*S. sonnei* was the most frequently isolated subgroup in two studies from Thailand published in 2002 and 2005, one from Brazil published in 2005, and one from Turkey published in 2005 [6, 19, 21, 34].

None of the population-based studies provide agespecific incidence of Shigella subgroups or serotypes. Among studies reporting isolation rates, three provide data on age-specific isolation of Shigella subgroups [26, 28, 31]. In Bangladesh, S. flexneri was the most frequently isolated subgroup among all age groups except for the 5-9 years group, among whom S. dysenteriae type 1 was more common [31]. In every age group studied in the Philippines, S. flexneri accounted for at least 75% of Shigella infections including 75% among the 1–2 years age group and 88% among those aged 10-14 years [26]. Based on only 123 total isolates from Iran, S. flexneri was most common among children aged 1-5 years and persons aged ≥12 years; S. sonnei was most common among children aged <1 year and was as frequent as S. flexneri among children aged 5–12 years [28].

Fourteen studies assessed the relative frequency of *Shigella* subgroups during epidemics; 11 focused on persons with dysentery (variably defined as blood with or without mucus in stools) (Table 4*b*). None of these studies were conducted in Latin America and the Caribbean. Twelve identified a predominance of *S. dysenteriae* infections, specifically serotype 1,

and two identified a predominance of *S. flexneri* infections.

#### Serotypes

*S. dysenteriae* is comprised of 15 serotypes, of which type 1 has the capacity to cause large outbreaks [1]. Between 2002 and 2004, numerous publications documented circulating *S. dysenteriae* type 1 strains resistant to commonly used fluoroquinolones, including ciprofloxacin and ofloxacin [35–41]. The organism remained susceptible only to azithromycin, pivmecillinam, and third-generation cephalosporins.

The World Health Organization (WHO) Collaborating Centre for Shigella at the Centers for Disease Control and Prevention recognizes six serotypes of S. flexneri, which can be further classified into numerous subserotypes, as well as S. flexneri X and Y. Thirteen studies (eight published after 2000), report S. flexneri serotypes in endemic shigellosis (Table 5). Serotype 2a was the most commonly detected serotype in four studies, accounting for 35-67% of S. flexneri isolates; all four studies were conducted in Asia [6, 19, 42, 43]. Serotype 1a was the most frequently isolated in a population-based study in China [5]. Serotype 1b was the most frequently detected serotype in Malaysia and the Peruvian Amazon [44, 45]. Subservery 3c was reported from Malaysia and Pakistan, with reports of serotypes 7, 8, and 10 from Pakistan as well [45, 46]. Subservtype 1c has also been reported from Bangladesh and Egypt [47, 48].

# Complications

Few complications were reported in population-based studies of *Shigella* infection. Dehydration was reported in 11% and 16% of patients [11, 12]. Wang *et al.* reported no cases of rectal prolapse or other gastrointestinal complications in China [5]. *Shigella* diarrhoea was associated with decreased linear growth rates in a study by Black and colleagues, with the per cent of days of *Shigella* diarrhoea negatively correlated with linear growth [49]. Two studies reported a prolonged duration of diarrhoea with *S. flexneri* infection compared to infection with other *Shigella* subgroups [5, 6].

Facility-based studies of shigellosis, albeit probably skewed towards very ill patients and those who can access health-care services, provide additional insight. The rate of hospitalization has ranged from 11% to 47% [44, 50-53]. Dehydration was documented in 2-70% of patients [52, 54-56]. Gastrointestinal complications of Shigella infection include persistent diarrhoea (7-38%) [56-59], intestinal obstruction (3-5%) [56, 60], rectal prolapse (3-38%) [56, 58], and protein-losing enteropathy (3%) [61]. The risk of persistent diarrhoea following Shigella infection appears to be increased among young children, in dysenteric episodes of confirmed shigellosis, following infections caused by multiply-resistant Shigellae, or when nalidixic acid (NAL) is administered for infections caused by NAL-resistant organisms [59]. Intestinal perforation was reported anecdotally in one study [62].

Haemolytic–uraemic syndrome (HUS), was diagnosed in 1–24% of persons hospitalized with *S. dys*enteriae type 1 [58, 61, 63]. In Bangladesh, HUS was diagnosed in 27% of *Shigella*-confirmed patients with intestinal obstruction, and none without obstruction [60]. Three studies reported treatment with antimicrobial agents to which the pathogen is resistant as a risk factor for HUS [63–65]. Acute renal failure was documented in 1% [58] and 25% [56] of hospitalized patients; neither study specified the proportion of renal failure cases occurring in the context of HUS. Electrolyte imbalances were documented in 42% of patients; both hyponatraemia and hyperkalaemia have been reported [50, 56].

Central nervous system (CNS) manifestations of *Shigella* infection were noted in 45% of patients in one

series [50]. This, and other studies describe complications including seizures (5-27%) [50, 54, 66] and loss of consciousness (10%) [50, 56]. Factors significantly associated with CNS manifestations include age <15 years, electrolyte imbalance, severe dehydration, fever, shorter duration of illness, higher median weightfor-age, and increased immature leukocytes [50].

Although a recognized complication, this literature search yielded only three reports of reactive arthritis as sequelae to *S. flexneri* infections [64, 65, 67]. Bacteraemia is a relatively rare complication and young age is an important risk factor [68]. Among the handful of adult patients reported to have *Shigella* bacteraemia, immunocompromising conditions, such as HIV/AIDS are common. One case report from the United States documented recurrent infection with *S. boydii* in an HIV-infected patient despite 10 days of ceftriaxone therapy, suggesting the need for prolonged therapy in persons with HIV/AIDS and *Shigella* bacteraemia [69].

Poor nutritional status appears to increase the risk of shigellosis associated with fever, severe dehydration, severe neurological manifestations such as seizures or coma, or requiring hospitalization [53, 57, 70].

# Mortality

Only six population-based studies of *Shigella* incidence included case-fatality rates (CFR) (Table 2). These ranged from 0% [5, 11, 14] to 2.6% (Egypt) [6, 7]. In facility-based studies that reported deaths of hospitalized patients with culture-confirmed endemic *Shigella* infection, CFRs ranged from 0% to 21% (Table 6).

In one study from Bangladesh, patients with shigellosis who were discharged from the hospital (CFR 5%) had a significantly higher risk of posthospitalization death than persons with watery diarrhoea (CFR 3%) [71]. Reported risk factors for death include young age [31, 50, 56, 72], poor nutritional status [56, 72, 73], and CNS manifestations such as altered consciousness or seizures [50, 72]. In a series from North India, 75% of patients who died had renal failure and 25% had Shigella bacteraemia [56]. Notably, none of these hospital-based studies specifically reported HUS as a risk factor for death. Among severely malnourished children with S. dysenteriae type 1 and S. flexneri, risk factors for death included hypothermia, altered consciousness, low serum blood glucose, and pneumonia [74].

| Area                           | Region    | Country     | HDI    | Years   | Setting   | Age | Symptoms                         | No.<br>samples<br>tested | % pos.<br>for any<br>pathogen | ı Sa | ETEC      | VC O1<br>O139 | /<br>Ca | RV   | Sh  | Sh<br>rank | Ref.  |
|--------------------------------|-----------|-------------|--------|---------|-----------|-----|----------------------------------|--------------------------|-------------------------------|------|-----------|---------------|---------|------|-----|------------|-------|
| Africa                         | N Africa  | Egypt       | Medium | 1981-83 | Community | All | Diarrhoea                        | 3243                     | n.r.                          | 1%   | not clear | n.r.          | 1%      | 3%   | 2%  | 6          | [7]   |
|                                | N Africa  | Egypt       | Medium | 1986–93 | Facility  | All | 'Acute<br>enteric<br>infections' | 6278                     | 14%                           | 7 %  | n.r.      | n.r.          | 2%      | n.r. | 4%  | 2          | [117] |
|                                | E Africa  | Djibouti    | Low    | 1989    | Facility  | All | Diarrhoea                        | 209                      | n.r.                          | 3%   | 11%       | 0             | 3%      | n.t. | 8%  | 3*         | [118] |
|                                | E Africa  | Ethiopia    | Low    | 1992–93 | Facility  | All | Diarrhoea                        | 630                      | 27%                           | 3%   | n.r.      | n.r.          | 14%     | n.r. | 12% |            | [119] |
|                                | E Africa  | Ethiopia    | Low    | 1994–96 | 2         | All | Not clear                        | 1709                     | n.r.                          | 3%   | n.r.      | n.r.          | n.r.    | n.r. | 8%  | 1          | [120] |
|                                | W Africa  | Nigeria     | Low    | 1995–96 | Facility  | All | Diarrhoea                        | 852                      | 21 %                          | 4%   | 2%        | n.r.          | n.r.    | n.r. | 5%  | 2*         | [121] |
|                                | E Africa  | Kenya       | Low    | 1997–98 | Facility  | All | Diarrhoea                        | 729                      | 33 %                          | 5%   | n.t.      | 6%            | 10%     | n.r. | 15% | 1          | [122] |
| Asia                           | SC Asia   | Bangladesh  | Medium | 1980-81 | Facility  | All | Diarrhoea                        | 3251                     | n.r.                          | 3%   | n.r.      | 68 %          | n.r.    | n.r. | 13% | 2          | [73]  |
|                                | SC Asia   | India       | Medium | 1982-83 | Facility  | All | Diarrhoea                        | 240                      | n.r.                          | <1%  | 12%       | 33 %          | 7 %     | 9%   | 5%  | 5          | [123] |
|                                | SE Asia   | Thailand    | Medium | 1982-83 | Community | All | Diarrhoea                        | 177                      | n.r.                          | n.r. | 10%       | n.r.          | n.r.    | n.r. | 7%  | 3*         | [124] |
|                                | SE Asia   | Thailand    | Medium | 1982-83 | Facility  | All | Diarrhoea                        | 299                      | 41 %                          | n.r. | 17%       | n.r.          | n.r.    | n.r. | 9%  | 2          | [125] |
|                                | SC Asia   | Bangladesh  | Medium | 1983-84 | Facility  | All | Diarrhoea                        | 2635                     | 69 %                          | 1%   | 14%       | 39 %          | 11%     | n.r. | 11% | 3          | [18]  |
|                                | SE Asia   | Philippines | Medium | 1983-84 | Facility  | All | Diarrhoea                        | 2908                     | n.r.                          | 9%   | 4%        | 3%            | 3%      | 31 % | 12% | 2          | [126] |
|                                | E Asia    | China       | Medium | 1986-87 | Community | All | Diarrhoea                        | 2265                     | 39 %                          | <1%  | 14%       | <1%           | 3 %     | n.r. | 11% | 2          | [13]  |
|                                | SE Asia   | Thailand    | Medium | 1991    | Facility  | All | Diarrhoea                        | 363                      | n.r.                          | 8 %  | 7 %       | <1%           | 5%      | 19 % | 16% | 2          | [127] |
|                                | SC Asia   | Bangladesh  | Medium | 1995    | Facility  | All | Diarrhoea                        | 113                      | n.r.                          | 1 %  | 36 %      | 24 %          | 5%      | 10%  | 8 % | 5*         | [128] |
|                                | SE Asia   | Lao PDR     | Medium | 1996–97 | Facility  | All | Diarrhoea                        | 880                      | 43 %                          | <1%  | 20 %      | 0             | 4 %     | 6%   | 17% | n.c.†      | [30]  |
|                                | SE Asia   | Indonesia   | Medium | 1999-00 | Facility  | All | Diarrhoea                        | 6760                     | 9%                            | 2    | n.r.      | <1%           | <1%     | n.r. | 4   | 1          | [129] |
|                                | SE Asia   | Indonesia   | Medium | 2000-01 | Facility  | All | Diarrhoea                        | 489                      | n.r.                          | 3%   | 15%       | <1%           | <1%     | n.r. | 3%  | 2          | [130] |
|                                | SC Asia   | India       | Medium | 2002    | Community | All | Diarrhoea                        | 348                      | n.r.                          | 1 %  | n.r.      | n.r.          | 14 %    | n.r. | 3%  | 2          | [131] |
| Latin<br>America/<br>Caribbean | S America | Brazil      | Medium | 1984–86 | Facility  | All | Diarrhoea                        | 50                       | 52 %                          | n.r. | 14%       | n.r.          | n.r.    | 22 % | 2 % | 5*         | [132] |
| Carrobean                      | S America | Peru        | Medium | 1992–93 | Facility  | All | Diarrhoea                        | 143                      | 52%                           | 4%   | 22%       | 31 %          | 3%      | n.r. | 3%  | 4          | [133] |

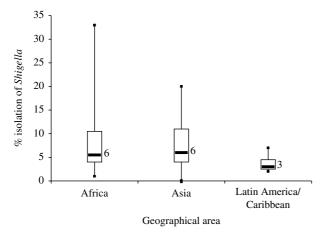
Table 3a. Relative frequency of endemic Shigella isolation, community- and facility-based studies conducted among all age groups, 1984–2005

HDI, Human development index; Sa, *Salmonella* (includes typhoidal and non-typhoidal serotypes); ETEC, enterotoxigenic *E. coli*; VC, *Vibrio cholerae*; Ca, Campylobacter; RV, Rotavirus; Sh, *Shigella*; n.t., not tested; n.r., not reported.

\* Ranking reported by study author based on identification of other pathogens.

† n.c., Ranking not calculable because testing performed on varying number of samples.

| Area                        | Region           | Country                        | HDI        | Years   | Setting  | Age                              | Symptoms                             | Number<br>samples<br>tested | % pos.<br>for any<br>pathogen | Sa   | ETEC | VC   | Ca   | RV   | Sh   | Sh<br>rank | Ref.  |
|-----------------------------|------------------|--------------------------------|------------|---------|----------|----------------------------------|--------------------------------------|-----------------------------|-------------------------------|------|------|------|------|------|------|------------|-------|
| Africa                      | E Africa         | Somalia                        | Not listed | 1992–93 | Facility | Adults                           | Diarrhoea                            | 113                         | 52 %                          | 1 %  | 16%  | n.r. | 0    | 1 %  | 33 % | 1          | [134] |
| Africa                      | E Africa         | Somalia                        | Not listed | 1983-84 | Facility | Children                         | Diarrhoea                            | 1667                        | n.r.                          | 4 %  | 11 % | 0    | 8 %  | 25 % | 9%   | 3          | [20]  |
| Asia                        | E Asia           | China                          | Medium     | 1989    | Facility | Children                         | Diarrhoea                            | 221                         | 57 %                          | 12 % | 20 % | n.r. | 2 %  | 7 %  | 3 %  | 9*         | [135] |
| Asia                        | SC Asia          | Iran                           | Medium     | 1986–87 | Facility | Infants and<br>young<br>children | Diarrhoea                            | 1158                        | n.r.                          | 7 %  | 17 % | 0    | n.r. | n.r. | 5%   | 4*         | [136] |
| Latin America/<br>Caribbean | S America        | Peru                           | Medium     | 1995    | Facility | ≥13 yr                           | Diarrhoea                            | 336                         | 62 %                          | 3%   | n.r. | 53 % | n.r. | n.r. | 4 %  | 2          | [137] |
| Africa                      | Middle<br>Africa | Central<br>African<br>Republic | Low        | 1981–82 | Facility | <15 yr                           | Diarrhoea                            | 1197                        | 64 %                          | 5%   | 3 %  | 0    | 11%  | 18 % | 3 %  | 3          | [138] |
| Latin America/<br>Caribbean | S America        | Brazil                         | Medium     | 2002–03 | Facility | <15 yr                           | Diarrhoea                            | 1991                        | 13 %                          | 5%   | n.r. | n.r. | n.r. | n.r. | 7%   | 1          | [21]  |
| Asia                        | W Asia           | Saudi Arabia                   | Medium     | 1990-91 | Facility | <12 yr                           | Diarrhoea                            | 210                         | 31 %                          | 11 % | n.r. | n.r. | 0    | n.r. | 17 % | 1          | [139] |
| Asia                        | SE Asia          | Thailand                       | Medium     | 1998-00 | Facility | <12 yr                           | Dysentery                            | 623                         | 55 %                          | 18   | 6    | <1   | 28   | n.r. | 9    | 3          | [19]  |
| Asia                        | SC Asia          | Bangladesh                     | Medium     | 1982-83 | Facility | <8 yr                            | Diarrhoea                            | 104                         | 59 %                          | n.r. | 9%   | 2 %  | 20%  | 17 % | 5%   | 8*         | [140] |
| Asia                        | SC Asia          | India                          | Medium     | 1985-86 | Facility | <6 yr                            | Diarrhoea                            | 222                         | 54 %                          | 3 %  | 14 % | 0    | 6%   | 2 %  | 2 %  | 8*         | [141] |
| Asia                        | SC Asia          | Pakistan                       | Low        | 1990    | Facility | <6 yr                            | Dysentery                            | 152                         | 32 %                          | 5 %  | n.r. | n.r. | 8 %  | n.r. | 19 % | 1          | [24]  |
| Latin America/<br>Caribbean | S America        | Bolivia                        | Medium     | 1991–92 | Facility | <6 yr                            | Diarrhoea                            | 192                         | n.r.                          | <1%  | 3 %  | n.r. | n.r. | n.r. | 3 %  | 11*        | [142] |
| Asia                        | SE Asia          | Thailand                       | Medium     | 1982    | Facility | <5 yr                            | Diarrhoea                            | 221                         | n.r.                          | 1 %  | 14 % | 2 %  | n.r. | n.r. | 9 %  | 2          | [143] |
| Asia                        | SE Asia          | Myanmar                        | Medium     | 1982-83 | Comm.    | <5 yr                            | Diarrhoea                            | 501                         | 39 %                          | <1%  | 18%  | n.t. | 2 %  | 5%   | 2 %  | 4          | [144] |
| Africa                      | W Africa         | Nigeria                        | Low        | 1984-85 | Facility | <5 yr                            | Diarrhoea                            | 914                         | n.r.                          | 2 %  | n.r. | 0 %  | 4 %  | n.r. | 13 % | 1          | [29]  |
| Asia                        | SC Asia          | Pakistan                       | Low        | 1985–91 | Comm.    | <5 yr                            | Diarrhoea                            | Varied                      | 73 %                          | 3 %  | 23 % | n.r. | 12%  | 20%  | 5%   | 4          | [25]  |
| Africa                      | N Africa         | Egypt                          | Medium     | 1986    | Facility | ≤5 yr                            | Diarrhoea                            | 151                         | n.r.                          | 7 %  | 17 % | n.r. | 7 %  | 18 % | 5%   | 7*         | [145] |
| Asia                        | SC Asia          | Bangladesh                     | Medium     | 1988–89 | Comm.    | <5 yr                            | Acute and<br>persistent<br>diarrhoea | 185                         | n.r.                          | 0    | 12%  | n.r. | 16%  | 4%   | 5%   | 5*         | [8]   |
| Asia                        | SE Asia          | Indonesia                      | Medium     | 1988-89 | Facility | ≤5 yr                            | Diarrhoea                            | 194                         | 28 %                          | 19 % | 8 %  | 3 %  | 6%   | n.r. | 2 %  | 5          | [146] |
| Asia                        | SE Asia          | Thailand                       | Medium     | 1988-89 | Comm.    | <5 yr                            | Diarrhoea                            | 345                         | 56 %                          | 9 %  | 7%   | <1%  | 9 %  | 9%   | 5 %  | 5          | [14]  |
| Asia                        | SE Asia          | Thailand                       | Medium     | 1988-89 | Comm.    | <5 yr                            | Diarrhoea                            | 345                         | 54 %                          | 13 % | 7%   | <1%  | 14 % | 12 % | 6 %  | 5          | [43]  |
| Asia                        | SE Asia          | Thailand                       | Medium     | 1989    | Facility | <5 yr                            | Diarrhoea                            | 1230                        | 63 %                          | 12 % | 9%   | 0    | 13 % | 20 % | 13 % | 3          | [147] |


Table 3b. Relative frequency of endemic Shigella isolation, community- and facility-based studies conducted among restricted age groups, 1984–2005

| Africa                         | W Africa  | Nigeria      | Low    | 1989–90 | Facility | <5 yr  | Diarrhoea                | 215  | 75%  | 3%   | 14%  | 0    | n.r. | 22%  | 5%    | 5* | [148] |
|--------------------------------|-----------|--------------|--------|---------|----------|--------|--------------------------|------|------|------|------|------|------|------|-------|----|-------|
| Asia                           | SC Asia   | Bangladesh   | Medium | 1991-92 | Facility | <5 yr  | Diarrhoea                | 451  | n.r. | 1%   | 12%  | n.r. | n.r. | 17%  | 10%   | 5* | [149] |
| Africa                         | E Africa  | Zambia       | Low    | 1992-93 | Facility | <5 yr  | Diarrhoea                | 639  | 30 % | 1%   | n.t. | n.r. | n.r. | n.r. | 10%   | 2* | [150] |
| Asia                           | SC Asia   | Bangladesh   | Medium | 1990–94 | Facility | <5 yr  | Diarrhoea                | 9993 | n.r. | n.r. | n.r. | 8%   | n.r. | 22%  | 10%   | 2* | [57]  |
| Asia                           | SC Asia   | Bangladesh   | Medium | 1993–94 | Facility | ≼5 yr  | Diarrhoea                | 814  | 75%  | 2%   | 17%  | 10 % | 17 % | 20%  | 9%    | 6* | [151] |
| Asia                           | W Asia    | Jordan       | Medium | 1993–94 | Facility | <5 yr  | Diarrhoea                | 265  | 51%  | 5%   | 6%   | 0    | 2%   | 33%  | 5%    | 5* | [152] |
| Asia                           | SE Asia   | Indonesia    | Medium | 1994    | Comm.    | <5 yr  | Diarrhoea                | 148  | n.r. | 2 %  | 14 % | 3 %  | 2 %  | n.r. | <1%   | 7* | [153] |
| Asia                           | SE Asia   | Vietnam      | Medium | 1998–99 | Comm.    | <5 yr  | Diarrhoea                | 2160 | 22 % | <1%  | 7 %  | n.r. | 7 %  | n.r. | 6%    | 3  | [15]  |
| Asia                           | SC Asia   | India        | Medium | 1995-00 | Facility | <5 yr  | Dysentery                | 2855 | 60 % | 3    | n.r. | n.r. | 2    | 7    | 6     | 2  | [42]  |
| Africa                         | E Africa  | Tanzania     | Low    | 1997    | Facility | <5 yr  | Diarrhoea                | 103  | 63 % | 0    | 16%  | n.r. | 0    | 4 %  | 13%   | 2  | [154] |
| Africa                         | W Africa  | Nigeria      | Low    | n.r.    | Facility | <5 yr  | Diarrhoea                | 187  | n.r. | <1%  | 2%   | n.r. | n.r. | n.r. | 1 %   | 6* | [155] |
| Asia                           | E Asia    | China        | Medium | 1982-85 | Facility | <3 yr  | Diarrhoea                | 594  |      | 5 %  | 6%   | 0    | 17 % | 13 % | 18 %  | 1  | [17]† |
| Asia                           | SC Asia   | India        | Medium | 1982-85 | Facility | <3 yr  | Diarrhoea                | 916  |      | 4 %  | 14 % | 2 %  | 15%  | 18 % | 20%   | 1  | [17]† |
| Asia                           | SC Asia   | Pakistan     | Low    | 1982-85 | Facility | <3 yr  | Diarrhoea                | 813  |      | 1 %  | 26%  | <1%  | 2 %  | 22 % | 3 %   | 3  | [17]† |
| Asia                           | SE Asia   | Myanmar      | Medium | 1982-85 | Facility | <3 yr  | Diarrhoea                | 758  |      | 3 %  | 17%  | 2 %  | 10%  | 14 % | 6%    | 4  | [17]† |
| Asia                           | SC Asia   | Pakistan     | Low    | 1983-84 | Facility | <3 yr  | Diarrhoea                | 250  | 76%  | 3 %  | 14 % | n.r. | n.r. | 10%  | 4 %   | 3* | [156] |
| Asia                           | SC Asia   | India        | Medium | 1985-86 | Comm.    | <3 yr  | Diarrhoea                | 179  | 44 % | 3 %  | 15%  | 0    | 6%   | 2 %  | 2 %   | 8* | [157] |
| Asia                           | SC Asia   | Bangladesh   | Medium | 1988-89 | Facility | <3 yr  | Diarrhoea                | 969  | 64 % | <1%  | 16%  | 5%   | 27 % | 29 % | 3 %   | 6  | [158] |
| Africa                         | S Africa  | South Africa | Medium | n.r.    | Facility | <3 yr  | Diarrhoea                | 78   | 77 % | 1 %  | 39 % | 0    | 14 % | 13%  | 4 %   | 8* | [159] |
| Africa                         | S Africa  | South Africa | Medium | 1981-83 | Facility | <2  yr | Diarrhoea                | 478  | 46 % | 6 %  | 4%   | 1 %  | 11%  | 12%  | 4 %   | 5* | [160] |
| Africa                         | N Africa  | Egypt        | Medium | 1995–98 | Comm.    | <2  yr | Diarrhoea                | 3477 | n.r. | n.r. | n.r. | n.r. | n.r. | n.r. | 2 %   | 1* | [11]  |
| Africa                         | S Africa  | South Africa | Medium | 1981-82 | Facility | <1 yr  | Dehydrating<br>diarrhoea | 545  | 49 % | 11%  | n.r. | n.r. | 18 % | 16%  | 6%    | 4  | [94]  |
| Latin<br>America/<br>Caribbean | S America | Peru         | Medium | 1982–84 | Comm.    | <1 yr  | Diarrhoea                | 952  | n.r. | <1%  | 7%   | <1%  | 10%  | 3%   | 2 %   | 5  | [12]  |
| Latin<br>America/<br>Caribbean | S America | Brazil       | Medium | 1985–86 | Facility | <1 yr  | Diarrhoea                | 500  | 55%  | 8 %  | 7%   | n.r. | 3 %  | 14%  | 5 %   | 5* | [161] |
| Asia                           | E Asia    | China        | Medium | 1989    | Facility | <1 yr  | Diarrhoea                | 174  | 34 % | 0    | 4%   | 0    | 10%  | 13%  | < 1 % | 4* | [162] |

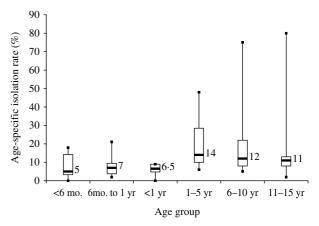
HDI, Human development index; Sa, Salmonella (includes typhoidal and non-typhoidal serotypes); ETEC, enterotoxigenic E. coli; VC, Vibrio cholerae; Ca, Campylobacter; RV, Rotavirus; Sh, Shigella; Comm., community; n.t., not tested; n.r., not reported.

\* Ranking reported by study author based on identification of other pathogens.

<sup>†</sup> Data from four countries reported in a single publication.



**Fig. 2.** Frequency of *Shigella* isolation in diarrhoeal or dysenteric stools for all age groups, by geographical area, in studies from medium and low human development index (HDI) countries (n = 70 studies).


A total of 21 studies, all from Africa or Asia, report CFRs of 0% [36, 75] to 40% [76] (median 4%) for epidemic *S. dysenteriae* type 1 (Table 7). In large epidemics, *S. dysenteriae* type 1 can account for 0.25-40% of all-cause mortality [51, 77, 78]. Young children are at increased risk of death from epidemic *S. dysenteriae* type 1 [33, 51, 61, 78–83]. Additional risk factors include CNS complications [38], malnutrition [61], the constellation of symptoms and signs associated with HUS [58, 84], intestinal perforation [84], and treatment with antimicrobial agents to which the pathogen is resistant [76].

#### **Temporal distribution**

Among 32 studies reporting on seasonal distribution of *Shigella* infection, 10 were conducted over a period of  $\leq 1$  year and four studies were conducted over a period of  $\geq 1$  year and < 2 years. A total of 17 studies were conducted over  $\geq 2$  years, among which seasonality was reported using a variety of terms, including the specific months of the year, the quarters of the year, or more vague terms such as 'rainy season' and 'dry season'. No clear patterns emerged, even when studies were segregated according to northern or southern hemisphere (data not shown).

#### Pathogen-specific preventive measures

A 2004 review summarizes the current status of *Shigella* vaccines [85]. Immunity to *Shigella* infection, which is directed against the O antigen, is



**Fig. 3.** Frequency of *Shigella* isolation in diarrhoeal or dysenteric stools by age group, among children aged <15 years, in studies from medium and low human development index (HDI) countries, 1984–2005 (n = 70 studies).

type-specific. Four candidate vaccines using oral formulations (SC 602, CVD 1203, CVD 1204, CVD 1208) and one candidate using the parenteral route (*S. flexneri* 2a LPS conjugated to recombinant *Pseudo-monas* exoprotein A) target *S. flexneri* 2a. One oral (WRSS1) and one parenteral vaccine (*S. sonnei* LPS conjugated to *Pseudomonas* exoprotein A) target *S. sonnei*.

Poor toilet and hand hygiene practices play an important role in facilitating Shigella transmission in industrialized and developing countries. Shigellae are also effectively transmitted through contaminated water and survival in water appears to vary by subgroup: S. dysenteriae (2-3 days), S. flexneri (6-47 days), and S. sonnei (35-39 days) [83, 86-89]. Foods, particularly contaminated produce, are wellrecognized as vehicles for Shigella transmission [52, 83, 90]. Flies have been implicated and may be especially important in settings where latrines are in close proximity to food preparation or consumption areas [91-94]. Promotion of handwashing with soap has been linked to reduced Shigella transmission in endemic and epidemic settings [95, 96]. Specific latrine behaviour may be important. Anal cleansing rags used communally were implicated in one outbreak of S. dysenteriae type 1 [51]. To the extent that the use of toilet paper reduces hand contamination with stool, this simple intervention may also be useful for reducing Shigella transmission [97]. Notably, one study has demonstrated dramatic reductions in Shigella incidence with aggressive measures to control houseflies, which may breed in latrines [92].

#### Diagnostics

Culture of whole stools or stool collected by rectal swab is the most widely used technique for diagnosis of Shigella infection. However, Shigellae are relatively fragile organisms compared with other enteric pathogens. Yield from stool culture is increased when the specimen is placed in transport medium and held at refrigeration temperatures (4 °C) if not cultured immediately [98]. Buffered glycerol saline is the preferred medium but Cary-Blair medium is also acceptable. Polymerase chain reaction (PCR) techniques have been used to identify Shigella genes coding for the invasion plasmid antigen H (*ipaH*), which is present in all Shigellae and in enteroinvasive E. coli, and Shiga toxin (stx), which is present in S. dysenteriae type 1 and in enterohaemorrhagic E. coli. When compared with PCR testing for *Shigella* primers, the sensitivity of culture has been estimated at 72 % [99].

Recent data suggest that an innovative transport technique (DNA/RNA Protect<sup>TM</sup>, Sierra Diagnostics Inc., Sonora, CA, USA) permits detection of *ipaH* from stool specimens held for prolonged periods at room temperature [100]. An enzyme-linked immuno-sorbent assay (ELISA) is available for detection of Shiga toxin 1. The ELISA was evaluated in a single study in Bangladesh, and demonstrated 95% sensitivity and 85% specificity for detection of *S. dysenteriae* type 1 [101].

#### DISCUSSION

This review highlights the large gaps in data on the burden of *Shigella* infections for low-HDI countries and, more specifically, for sub-Saharan Africa (Table 8). It also identifies additional research needed with respect to the burden of disease among infants and population-based rates of *Shigella*-associated complications and mortality. Comprehensive microbiological, clinical, and epidemiological studies using newer and more sensitive diagnostic methods to determine the relative importance of *Shigella* and other diarrhoeal pathogens could help address these data gaps and further inform prevention efforts.

The absence of population-based incidence data from sub-Saharan Africa and from low-HDI countries is our most striking finding. Because of their low development status, and limited access to improved water supplies and sanitation facilities, these countries may be expected to have a higher burden of *Shigella* infections than the medium-HDI countries where population-based studies have been conducted. Moreover, given the additional lack of substantial data on shigellosis in the context of HIV disease, active population-based surveillance studies conducted in this important geographic region to elucidate overall disease burden, frequency of subgroups, serotypes, and subserotypes, are critical for understanding the true global burden of *Shigella* infections.

This review detected wide variation in the incidence of *Shigella* infections from the few available population-based studies, ranging from 0 episodes/1000 person-years [14] to 949 episodes/1000 person-years [10]. However, comparisons between these studies is challenging because of variations in the age groups under study, methodologies for surveillance, and techniques for specimen collection, transport, and culture.

Several population-based studies included only young children; others, which included all age groups, reported incidence data only by age group and not for the population as a whole. Where possible, future population-based studies should describe age groupspecific and total incidence, and include isolation rates for all *Shigella* and for the specific subgroups and serotypes.

The risk of shigellosis among young infants is poorly characterized. This review identified very few studies that separated out infants aged <6 months who are likely to be breastfeeding and, thus, exposed to maternal IgA [102]. Population-based data on the incidence of *Shigella* infections among infants aged <6 months and 6-11 months could help inform this discussion, which is critical to the development and deployment of *Shigella* vaccines.

Our attempts to estimate the frequency of *Shigella* relative to other diarrhoeal pathogens revealed important variations in the spectrum of pathogens sought. Rotavirus, the most common cause of severe diarrhoeal illness worldwide [103], was not tested for in a majority of the ten African studies that found *Shigella* to be the first or second leading cause of diarrhoea. This review underscores the need for comprehensive stool analyses, including identification of Rotavirus, the different groups of diarrhoeagenic *E. coli*, and parasitic infections, in aetiological studies of diarrhoeal disease. Moreover, such studies are particularly needed in sub-Saharan Africa.

A vast amount of data has been published between 1984 and 2005 regarding the relative frequency of the four *Shigella* subgroups. The predominance of *S. flexneri* above other subgroups, particularly in

| Area   | Region   | Country      | HDI    | Year(s) | Setting  | Facility<br>type* | Age     | Symptoms                           | No.<br><i>Shigella</i><br>isolates |      | % Sd1<br>among<br>dys‡     | %<br>flex† | %<br>boydii† | %<br>sonnei† | Ref.   |
|--------|----------|--------------|--------|---------|----------|-------------------|---------|------------------------------------|------------------------------------|------|----------------------------|------------|--------------|--------------|--------|
| Africa | S Africa | South Africa | Medium | 1968–85 | Facility | Hospital          | All     | Confirmed<br>Shigella<br>infection | 1562                               | 3 %  | 0                          | 72%        | 5 %          | 20%          | [111]  |
|        | N Africa | Libya        | Medium | 1975-80 | Facility | n.r.              | All     | Diarrhoea                          | 917                                | 7 %  | 5%                         | 66%        | 8 %          | 18 %         | [23]   |
|        | W Africa | Nigeria      | Low    | 1980-84 | Facility | Clinic            | All     | Diarrhoea                          | 368                                | 14 % | 6%                         | 60%        | 21 %         | 5%           | [163]  |
|        | W Africa | Nigeria      | Low    | 1984–85 | Facility | Clinic            | <5 yr   | Diarrhoea                          | 116                                | 37 % | n.r.                       | 60%        | 3%           | 0%           | [29]   |
|        | W Africa | Nigeria      | Low    | 1986–88 | Facility | Hospital          | All     | Diarrhoea                          | 108                                | 24 % | 50 %                       | 55%        | 16%          | 6%           | [22]   |
|        | N Africa | Egypt        | Medium | 1986–93 | Facility | Hospital          | All     | 'Acute enteric infections'         | 258                                | 18%  | n.r.                       | 48 %       | 15%          | 19%          | [117]  |
|        | E Africa | Djibouti     | Low    | 1989    | Facility |                   | All     | Diarrhoea                          | 16                                 | 13 % | n.r.                       |            | 13%          | 0%           | [118]  |
|        | W Africa | Nigeria      | Low    | 1989–90 | Facility | Hospital          | <5 yr   | Diarrhoea                          | 11                                 |      | n.r.                       | 45%        | 27 %         | 9%           | [148]  |
|        | E Africa | Zambia       | Low    |         |          | Hospital          |         | Diarrhoea                          | 65                                 | 68 % | n.r.                       | 15%        |              | 0%           | [149]  |
|        | E Africa | Ethiopia     | Low    | 1994–96 | Facility | Hospital          | All     | n.r.                               | 142                                | 37 % | 33 %                       | 59 %       |              | 0%           | [120]  |
|        | N Africa | Egypt        | Medium | 1995–98 |          |                   | <2 yr   | Diarrhoea                          | 134                                | 19 % | n.r.                       | 55%        | 2%           | 22%          | [11]   |
|        | E Africa | Tanzania     | Low    | 1997    | Facility | Clinic            | <5 yr   | Diarrhoea                          | 13                                 | 0%   | 0%                         | 92 %       |              | 8 %          | [154]  |
|        | W Africa | Nigeria      | Low    | 1997–98 | Facility | n.r.              | 0–65 yr | Diarrhoea                          | 25                                 | 8 %  | 0                          | 48 %       | 24 %         | 20 %         | [164]  |
|        | E Africa | Kenya        | Low    | 1997–98 | Facility | Both              | All     | Diarrhoea                          | 107                                | 44 % | 47 %                       | 48 %       | 2%           | 7 %          | [122]  |
|        | W Africa | Nigeria      | Low    | 1999–00 |          |                   | All     | Diarrhoea                          | 62                                 | 18 % | n.r.                       | 52 %       | 18 %         | 12%          | [165]  |
|        | E Africa | Ethiopia     | Low    | 2000    | Facility | Clinic            | ≼14 yr  | Diarrhoea                          | 77                                 | 30 % | n.r.                       | 40%        | 20%          | 10%          | [31, 1 |
| sia    | SC Asia  | Bangladesh   | Medium | 1978-87 | Facility | Hospital          | All     | Diarrhoea                          | 3440                               | 30%  | 91%                        | 53%        | 11%          | 6%           | [31]   |
|        | S Africa | South Africa |        |         |          | Hospital          |         | Dehydrating<br>diarrhoea           | 31                                 | 3%   | n.r.                       | 48 %       |              | 42 %         | [94]   |
|        | SC Asia  | Bangladesh   |        |         | -        | Hospital          |         | Confirmed<br>Shigella<br>infection | 540                                |      | 61 %                       | 75%        | 6%           | 8 %          | [53]   |
|        | SC Asia  | Bangladesh   |        |         |          | Hospital          | <8 yr   | Diarrhoea                          | 5                                  | 0%   | 0%                         |            | 40 %         | 0%           | [140]  |
|        | SE Asia  | Philippines  |        |         |          | Hospital          | All     | Diarrhoea                          | 343                                | 8 %  | n.r.                       | 70%        |              | 14%          | [26]   |
|        | SC Asia  | Bangladesh   | Medium | 1983    | Facility | Hospital          | All     | Confirmed<br>Shigella<br>infection | 9780                               | n.r. | 30 %#                      | 56%        | n.r.         | n.r.         | [72]   |
|        | SC Asia  | India        | Medium | 1984–87 | Facility | Hospital          | <5 yr   | Diarrhoea                          | 75                                 | 27 % | 100 %                      | 55%        | 8 %          | 1 %          | [167]  |
|        | SE Asia  | Thailand     |        | 1985–86 |          |                   | <5 yr   | Diarrhoea                          | 155                                | 0%   | 0%                         | 53 %       |              | 44 %         | [147]  |
|        | SE Asia  | Thailand     |        |         |          | Hospital          | All     | n.r.                               | 309                                | <1%  | 0%                         | 74 %       | 2 %          | 23 %         | [50, 6 |
|        | SC Asia  | Bangladesh   | Medium | 1987–88 | Facility | Hospital          | All     | Confirmed<br>Shigella<br>infection | 792                                | n.r. | 20 %<br>of all<br>Shigella | 64%        | n.r.         | n.r.         | [54]   |
|        | SC Asia  | Bangladesh   | Medium | 1987–89 | Comm.    | n.r.              | <5 yr   | Diarrhoea                          | 219                                | 22 % | 68 %                       | 60%        | 12%          | 6%           | [168]  |

Table 4a. Frequency of Shigella subgroups in endemic disease, 1984–2005

|                                | SC Asia   | Bangladesh   | Medium  | 1988-89 | Facility | Hospital | <3 yr     | Diarrhoea                          | 33        | n.r. | n.r. | 52 %  | 33 %  | 6%    | [158] |
|--------------------------------|-----------|--------------|---------|---------|----------|----------|-----------|------------------------------------|-----------|------|------|-------|-------|-------|-------|
|                                | SE Asia   | Thailand     | Medium  | 1988-89 | Comm.    | n.r.     | <5 yr     | Diarrhoea                          | 21        | 0%   | 0%   | 57 %  | 0%    | 43 %  | [43]  |
|                                | E Asia    | China        | Medium  | 1989    | Facility | Clinic   | Children  | Diarrhoea                          | 6         | 0%   | 0%   | 67 %  | 0%    | 33 %  | [135] |
|                                | SC Asia   | Pakistan     | Low     | 1990    | Facility | Hospital | <6 yr     | Dysentery                          | 29        | 35%  | n.r. | 42 %  | 17 %  | 7 %   | [24]  |
|                                | W Asia    | Saudi Arabia | Medium  | 1990-91 | Facility | Hospital | <12 yr    | Diarrhoea                          | 36        | 0%   | 0%   | 61 %  | 0%    | 39 %  | [139] |
|                                | SE Asia   | Thailand     | Medium  | 1991    | Facility | Both     | All       | Diarrhoea                          | 72        | n.r. | n.r. | 74 %  | n.r.  | 19%   | [127] |
|                                | W Asia    | Jordan       | Medium  | 1991–92 | Facility | Hospital | <15 yr    | Confirmed<br>Shigella<br>infection | 66        | 7 %  | n.r. | 65%   | 11%   | 17%   | [54]  |
|                                | SC Asia   | Bangladesh   | Medium  | 1995    | Facility | Hospital | All       | Diarrhoea                          | 63        | 59 % | 100% | 39 %  | 0     | 2 %   | [169] |
|                                | SC Asia   | India        | Medium  | 1995-00 | Facility | Hospital | <5 yr     | Dysentery                          | 166       | 5%   | n.r. | 57 %  | 8 %   | 28 %  | [42]  |
|                                | W Asia    | Turkey       | Medium  | 1995-02 | Facility | Hospital | Children  | Diarrhoea                          | 274       | 1 %  | n.r. | 23 %  | 2%    | 72 %  | [34]  |
|                                | SE Asia   | Lao PDR      | Medium  | 1996–97 | Facility | Both     | All       | Diarrhoea                          | 148       | 1 %  | 0%   | 55%   | 3%    | 41 %  | [30]  |
|                                | SE Asia   | Malaysia     | Medium  | 1997-00 | n.r.     | n.r.     | n.r.      | n.r.                               | 100       | 11 % | 0%   | 88%   | 1 %   | 0%    | [45]  |
|                                | SC Asia   | Pakistan     | Low     | 1997–99 | n.r.     | n.r.     | All       | Diarrhoea                          | 77        | 61 % | 16%  | 16%   | n.r.  | n.r.  | [170] |
|                                | SE Asia   | Vietnam      | Medium  | 1998–99 | Comm.    | n.r.     | <5 yr     | Diarrhoea                          | 143       | 7 %  | n.r. | 65%   | 17 %  | 11 %  | [15]  |
|                                | SE Asia   | Thailand     | Medium  | 1998-00 | Facility | Hospital | <12 yr    | Dysentery                          | 56        | 0%   | 0%   | 29 %  | 0%    | 71 %  | [19]  |
|                                | SE Asia   | Indonesia    | Medium  | 1999-00 | Facility | Hospital | All       | Diarrhoea                          | 286       | 5%   | n.r. | 81 %  | 0%    | 14%   | [129] |
|                                | SC Asia   | Bangladesh   | Medium  | 2000-01 | Facility | Hospital | All       | Blood and/                         | 227       | 20%  | 18 % | 54 %  | 16%   | 10%   | [171] |
|                                |           | 0            |         |         |          | -        |           | or mucus                           |           |      |      |       |       |       |       |
|                                | SE Asia   | Indonesia    |         | 2000-01 |          |          | All       | Diarrhoea                          | 16        | 0%   | 0%   | 75%   | 0%    | 25%   | [130] |
|                                | SE Asia   | Thailand     |         | 2000-03 |          |          | All       | Diarrhoea                          | 146       | 0%   | 0%   | 15%   | 0%    | 85%   | [5]   |
|                                | SC Asia   | India        | Medium  | 2001-02 | Facility | Hospital | Children  | Diarrhoea                          | 80        | 6%   | 60 % | 56%   | 13 %  | 29 %  | [41]  |
|                                | SC Asia   | Iran         | Medium  | 2001-02 | Facility | Both     | All       | Diarrhoea                          | 123       | 15%  | n.r. | 45 %  | 9%    | 31 %  | [28]  |
|                                | E Asia    | China        | Medium  | 2002    | Comm.    | n.r.     | All       | Diarrhoea                          | 331       | 0%   | 0%   | 93 %  | 0     | 7 %   | [3]   |
|                                | SC Asia   | Pakistan     | Low     | 2002-03 | Facility | n.r.     | Children  | Diarrhoea                          | 193       | 11 % | 5%   | 58 %  | 15%   | 16%   | [46]  |
|                                | SC Asia   | India        | Medium  | n.r.    | Facility | n.r.     | <12 yr    | Diarrhoea                          | 53        | 57%  | n.r. | 36%   | 4%    | 4 %   | [56]  |
| Latin<br>America/<br>Caribbean | S America | Brazil       | Medium  | 1978–79 | Comm.    | n.r.     | All       | Diarrhoea                          | 16        | 0%   | 0%   | 69 %  | 0%    | 31 %  | [9]   |
| Currobean                      | S America | Peru         | Medium  | 1987–90 | Comm     | n r      | 2–27 mo.  | Diarrhoea                          | 82        | 9%   | n.r. | 59%   | 13%   | 19%   | [172] |
|                                | S America |              |         | 1991–90 |          |          |           | Diarrhoea                          | 6         | 17%  | n.r. | 83%   | 0%    | 0%    | [142] |
|                                | S America |              | Medium  |         | Facility |          | 18-26  yr | Diarrhoea                          | 90        | 0%   | 0%   | 92%   | 8%    | 0%    | [44]  |
|                                | S America |              |         | 2002-03 | 2        |          | •         | Diarrhoea                          | 90<br>141 | 0 /0 | 0 /0 | 92 /0 | 20%   | 80%   | [21]  |
|                                | 5 America | DIAZII       | wiedium | 2002-03 | racinty  | Hospital | 0–13 yr   | Diarmoea                           | 141       | 0    | U    | U 70  | 20 70 | ðU 70 | [21]  |

HDI, Human development index; n.r., not reported; Comm., community.

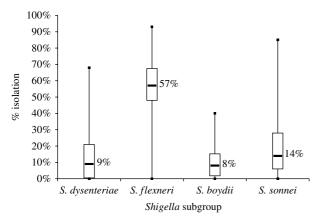
\* Facility type: 'both' refers to patient recruitment in both hospital and clinic.

† % dys (S. dysenteriae), % flex (S. flexneri), % boydii, and % sonnei reflect the proportion of the total number of Shigella isolates.

‡ % Sd1 among dys: Sd1 data is presented as % of total Sd1, except where indicated by #, in which case % Sd1 reflects % of all Shigella.

589

| Area   | Region        | Country   | HDI    | Years   | Setting  | Facility<br>type* | Symptoms  | No.<br><i>Shigella</i><br>isolates | %<br>dys† | % Sd1<br>among<br>dys‡ | %<br>flex† | %<br>boydii† | %<br>sonnei† | Ref.  |
|--------|---------------|-----------|--------|---------|----------|-------------------|-----------|------------------------------------|-----------|------------------------|------------|--------------|--------------|-------|
| Africa | Middle Africa | Zaire/DRC | Low    | 1981    | Facility | Hospital          | Dysentery | 13                                 | 92 %      | 92 %                   | 8%         | 0%           | 0%           | [75]  |
|        | E Africa      | Tanzania  | Low    | 1982    | Facility | Hospital          | Dysentery | 11                                 | 18 %      | 100%                   | 81 %       | n.r.         | n.r.         | [173] |
|        | E Africa      | Burundi   | Low    | 1990    | Facility | Clinic            | Dysentery | 115                                | 72 %      | 99 %                   | 20%        | 0 %          | 7 %          | [174] |
|        | E Africa      | Zambia    | Low    | 1990–91 | Facility | Hospital          | Dysentery | 56                                 | 75%       | 100%                   | 25%        | 0%           | 0%           | [83]  |
|        | E Africa      | Zimbabwe  | Low    | 1993–94 | Facility | Hospital          | Dysentery | 47                                 | 94 %      | 100%                   | 9%         | 0%           | 0%           | [58]  |
|        | Middle Africa | Zaire/DRC | Low    | 1994    | n.r.     | n.r.              | Diarrhoea | 9                                  | 89 %      | 100%                   | 11%        | 0%           | 0%           | [175] |
| Asia   | SE Asia       | Myanmar   | Medium | 1984-85 | Facility | Hospital          | Dysentery | 12                                 | 100 %     | 100 %                  | 0%         | 0%           | 0%           | [176] |
|        | SC Asia       | India     | Medium | 1985    | Comm.    | n.r.              | Dysentery | n.r.                               | 100%      | n.r.                   | n.r.       | n.r.         | n.r.         | [33]  |
|        | SC Asia       | India     | Medium | 1986    | Comm.    | n.r.              | Dysentery | 10                                 | 80 %      | 100%                   | 20%        | 0 %          | 0%           | [32]  |
|        | SC Asia       | India     | Medium | 1986    | Facility | Hospital          | Dysentery | 47                                 | n.r.      | 91 %#                  | n.r.       | n.r.         | n.r.         | [177] |
|        | SC Asia       | India     | Medium | 1988    | Facility | Both              | Dysentery | 26                                 | 69 %      | 100%                   | 31%        | 0 %          | 0%           | [178] |
|        | SC Asia       | India     | Medium | 1988    | Facility | Hospital          | Dysentery | 54                                 | 69 %      | 100%                   | 31%        | 0%           | 0%           | [82]  |
|        | SE Asia       | Thailand  | Medium | 1991    | Facility | Hospital          | Diarrhoea | 48                                 | n.r.      | n.r.                   | 30%        | n.r.         | n.r.         | [179] |
|        | SE Asia       | Thailand  | Medium | 1991–92 | Facility | Clinic            | Diarrhoea | 90                                 | 4 %       | 0%                     | 67         | 1 %          | 28 %         | [52]  |


Table 4b. Frequency of Shigella subgroups in epidemic context, 1984–2005

HDI, Human development index; n.r., not reported.

\* Facility type: 'both' refers to patient recruitment in both hospital and clinic.

† % dys (S. dysenteriae), % flex (S. flexneri), % boydii, and % sonnei reflect the proportion of the total number of Shigella isolates.

‡ %Sd1 among dys: Sd1 data is presented as % of total Sd1, except where indicated by #, in which case % Sd1 reflects % of all *Shigella*.



**Fig. 4.** Frequency of *Shigella* subgroups detected among *Shigella* isolates from medium and low human development index (HDI) countries, 1984–2005 (n = 56 studies).

endemic shigellosis, is clear. *S. sonnei* remains the most frequently isolated subgroup in industrialized countries [4]. Even among medium- and low-HDI countries, there is a significant correlation between the GDP of the country at the time of the study and the frequency of *S. sonnei* isolation. The predominance of *S. sonnei* over *S. flexneri* in recent studies from Thailand, Brazil, and Turkey probably reflects the expanding economies in these three countries.

Given their respective importance to epidemics and frequency of isolation, we focused this review on S. dysenteriae serotype 1 and on the serotypes of S. flexneri. Large epidemics of S. dysenteriae type 1 were documented in Central America in the 1960s and 1970s, across Africa during the 1980s and 1990s and in South Asia during the early part of each decade between 1970 and the present [104-106]. Studies reporting on the frequency of Shigella subgroups in the epidemic context indicate that during an epidemic period, a single subgroup, particularly S. dysenteriae serotype 1, can explain the majority of Shigella infections [77]. With each reemergence, S. dysenteriae type 1 has exhibited an expanding resistance profile. Most recently, strains of S. dysenteriae type 1 circulating in South Asia have demonstrated resistance to multiple fluoroquinolones, with susceptibility only to azithromycin, pivmecillinam and third-generation cephalosporins [35-42, 105]. Studies of the efficacy of these agents against S. dysenteriae type 1 are rare and have only been conducted in adults [107, 108]. It is vital to better characterize effective antimicrobial agents and regimens for the treatment of multiplyresistant S. dysenteriae type 1 infection in children and adults ahead of the next epidemic. Indeed, multi-drug

resistance (MDR) is a common feature of the other *Shigella* subgroups as well. Identifying the best therapeutic strategies for MDR *Shigella* remains a central research priority in the study of shigellosis.

Information on the subserotypes of *S. flexneri* is relevant because of the implications for vaccine development; most recent studies identified in this review provided that information. Currently, subserotypes 1c and 3c, and serotypes 7, 8, and 10, are not recognized by the WHO Collaborating Centre for Shigella at the Centers for Disease Control and Prevention (CDC). The International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Enterobacteriaceae recognized only two subserotypes within *S. flexneri* serotype 1 (1a and 1b) and serotype 3 (3a and 3b) in 1984 [109]. It is important to confirm the identification of serotypes 7, 8, and 10 reported from Pakistan and to assess their contribution to *S. flexneri* disease elsewhere.

A large number (18%) of untypable *S. flexneri* isolates was reported from Pakistan, a finding also noted in studies from Vietnam and Bangladesh, in which 40% and 12% of *S. flexneri*, respectively, could not be definitively serotyped [15, 46, 110]. Several studies reported the serotype of <100% of *S. flexneri* infections [6, 23, 44, 111], suggesting that some isolates could not be definitively serotyped. The prevalence of untypable *S. flexneri* isolates in geographical regions other than South and South East Asia, and the implications of these findings for vaccine development demand further study.

Reliable typing antisera for *S. flexneri* are not easily produced because of the need to absorb cross-reacting antibodies. In the past, quality assurance and quality control problems have been noted in commercially available typing antisera [112]. Improved quality assurance and quality control of commercially distributed typing antisera is necessary to better define the epidemiology of *S. flexneri*.

The literature search strategy yielded many reports about the complications of *Shigella* infection; however, most of these were from hospital-based studies that are biased towards the most severely ill patients with shigellosis. An important gap in the literature is the absence of population-based rates of *Shigella* complications. Such surveillance may require longerterm follow-up of larger populations than most demographic surveillance systems currently conduct.

Our review yielded *Shigella* mortality data from six population-based studies. None of the five population-based studies conducted before 1990 provided

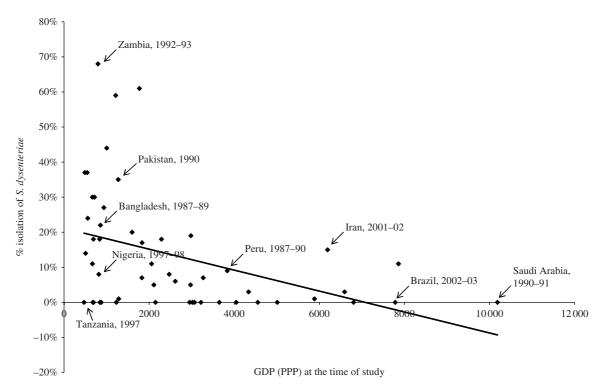
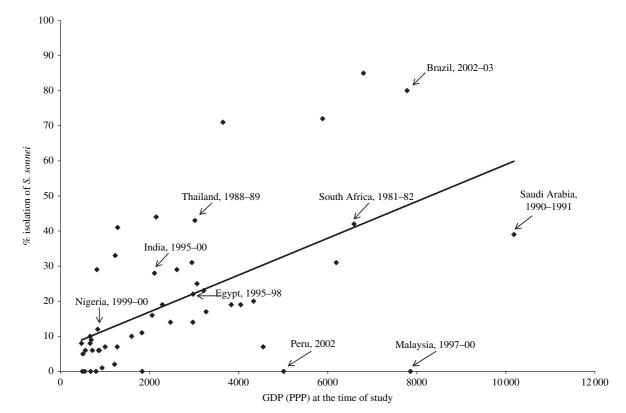




Fig. 5. Frequency of *S. dysenteriae* among *Shigella* isolates, by *per capita* gross domestic product (GDP) (adjusted for purchasing power parity, PPP) of medium and low human development index (HDI) countries, 1984–2005 (n=56 studies) (R=-0.54, P<0.0001). The names of study countries and the years of study are indicated for selected studies.



**Fig. 6.** Frequency of *S. sonnei* among *Shigella* isolates, by *per capita* gross domestic product (GDP) (adjusted for purchasing power parity, PPP) of medium and low human development index (HDI) countries, 1984–2005 (n = 56 studies) (R = 0.55, P < 0.0001). The names of study countries and the years of study are indicated for selected studies.

| Area                           | Region    | Country         | Years   | No.<br><i>flexneri</i><br>isolates | 1    | 1a   | 1b   | 2    | 2a   | 2b   | 3    | 3a   | 3b   | 4    | 4a  | 4b  | 4c | 5   | 5a | 5b  | 6    | X    | Y  | Non-<br>typable | Ref  |
|--------------------------------|-----------|-----------------|---------|------------------------------------|------|------|------|------|------|------|------|------|------|------|-----|-----|----|-----|----|-----|------|------|----|-----------------|------|
| Africa                         | S Africa  | South<br>Africa | 1968-85 | 1124                               |      |      |      | 33 % |      |      | 33 % |      |      | 15%  |     |     |    |     |    |     |      |      |    |                 | [111 |
|                                | N Africa  | Libya           | 1975-80 | 609                                | 29 % |      |      | 32 % |      |      | 7 %  |      |      | 14 % |     |     |    |     |    |     | 13 % |      |    |                 | [23  |
|                                | W Africa  | Nigeria         | 1980-84 | 221                                | 21 % |      |      | 67 % |      |      | 6 %  |      |      | 4 %  |     |     |    | 1 % |    |     | 1 %  |      |    |                 | [163 |
|                                | W Africa  | Nigeria         | 1986-88 | 59                                 | 7 %  |      |      | 15%  |      |      | 9 %  |      |      |      |     |     |    | 5%  |    |     | 64 % |      |    |                 | [22  |
| Asia                           | SE Asia   | Thailand        | 1988-89 | 12                                 |      |      |      |      | 67 % |      |      |      |      |      |     |     |    |     |    |     | 33 % |      |    |                 | [43  |
|                                | SC Asia   | India           | 1995-00 | 96                                 |      |      |      |      | 35 % | 11 % |      | 31 % |      | 9%   |     |     |    |     |    |     | 14 % |      |    |                 | [42  |
|                                | SE Asia   | Malaysia        | 1997-00 | *                                  |      | 3%   | 45 % |      | 31 % |      |      | 23 % | 1 %  |      | 11% |     |    |     |    |     | 1%   |      | 2% |                 | [45  |
|                                | SE Asia   | Vietnam         | 1998–99 | 93                                 | 13 % |      |      | 6%   |      |      | 4 %  |      |      | 10%  |     |     |    |     |    |     | 17%  |      | 9% | 40 %            | [15  |
|                                | SE Asia   | Thailand        | 1998-00 | 16                                 |      |      | 6%   |      | 56%  |      |      | 19 % |      | 6%   |     |     |    |     |    |     | 13%  |      |    |                 | [19  |
|                                | SE Asia   | Thailand        | 2000-03 | 22                                 |      |      | 23 % |      | 36 % |      |      |      | 28 % |      |     |     |    |     |    |     |      |      |    |                 | [5   |
|                                | E Asia    | China           | 2002    | 306                                |      | 34 % |      |      | 28 % | <1%  |      | <1%  |      | 2 %  |     |     |    | 2%  |    | <1% |      | 33 % | 2% | <1%             | [3   |
|                                | SC Asia   | Pakistan        | 2002-03 | 112                                | 13 % | 2 %  | 4 %  | 8%   | 6%   | 5%   | 4 %  | 5%   | 1 %  | 8 %  | 3%  | 1 % |    |     |    |     | 13 % |      |    | 18 %            | [46  |
| Latin<br>America/<br>Caribbean | S America | Peru            | 2002    | 83                                 |      | 25%  | 69 % |      |      |      |      |      |      |      |     |     |    |     |    |     |      |      |    |                 | [44  |

# Table 5. Frequency of S. flexneri serotypes in endemic setting, 1984–2005

\* Number of S. flexneri isolates for which serotype data is provided exceeds number of S. flexneri reportedly isolated in study.

| Area   | Region   | Country    | HDI    | Year(s)                     | Age<br>group | No. patients<br>with<br><i>Shigella</i>                          | CFR     | Comments                                                                                                                                                           | Ref.  |
|--------|----------|------------|--------|-----------------------------|--------------|------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Africa | W Africa | Nigeria    | Low    | 1986–88                     | All          | 108                                                              | 0%      |                                                                                                                                                                    | [22]  |
| Asia   | SC Asia  | Bangladesh | Medium | 1974–88                     | All          | 9780                                                             | 9%      | Risk factors for death included decreased age, low serum protein, altered consciousness, and decreased platelets                                                   | [72]  |
|        | SC Asia  | Bangladesh | Medium | 1978-1987                   | All          | 3440                                                             | 0.96%   | CFR among children 5–9 years old was 2%                                                                                                                            | [31]  |
|        | SC Asia  | Bangladesh | Medium | 1980–81                     | All          | 436                                                              | 17%     | CFR was highest among persons aged >15 years but<br>total number of cases in this age group relatively small;<br>77% of those who died had poor nutritional status | [73]  |
|        | SC Asia  | Bangladesh | Medium | 1980-82                     | <35 mo.      | 540                                                              | 1 %     |                                                                                                                                                                    | [53]  |
|        | SC Asia  | India      | Medium | 1984-87                     | <5 yr        | 32                                                               | 21 %    |                                                                                                                                                                    | [167] |
|        | SC Asia  | Bangladesh | Medium | 1987-88                     | All          | 792                                                              | 11%     | All deaths occurred among persons aged <15 years                                                                                                                   | [50]  |
|        | SE Asia  | Thailand   | Medium | 1988-89                     | <5 yr        | 17                                                               | 0%      |                                                                                                                                                                    | [14]  |
|        | SC Asia  | Bangladesh | Medium | 1988                        | All          | 970                                                              | 11%     |                                                                                                                                                                    | [71]  |
|        | W Asia   | Jordan     | Medium | 1991–92                     | <15 yr       | 66                                                               | 3%      | Two deaths were documented, one in a child with<br>leukaemia and the second in a child with protracted<br>diarrhoea and protein-losing enteropathy                 | [54]  |
|        | SC Asia  | India      | Medium | n.r. (published<br>in 1995) | <12 yr       | 53                                                               | 15%     | All deaths occurred among patients aged <2 years<br>and/or severely malnourished patients; 75% had renal<br>failure; 25% had <i>Shigella</i> bacteremia            | [56]  |
|        | SC Asia  | Bangladesh | Medium | n.r. (published<br>in 1991) | All          | 30 with GI<br>obstruction<br>and 30<br>without GI<br>obstruction | 10-33 % | 10% of patients without obstruction and 33% of patients with obstruction died                                                                                      | [60]  |

Table 6. Case-fatality rates in hospital-based studies of endemic shigellosis, 1984–2005

HDI, Human development index; CFR, Case-fatality rate; n.r., not reported; GI, gastrointestinal.

| Area   | Region           | Country         | HDI           | Year(s)   | Age<br>group        | Symptoms  | No.<br>patients<br>with<br><i>Shigella</i> | CFR<br>(%) | Comments                                                                                                                                                                                         | Ref.  |
|--------|------------------|-----------------|---------------|-----------|---------------------|-----------|--------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Africa | W Africa         | Sierra<br>Leone | Not<br>listed | 1999–00   | All                 | Dysentery | 4218                                       | 3 %        | CFR among persons aged $<5$ yr was 6 % compared to CFR among persons $\ge 5$ yr at 2%.                                                                                                           | [80]  |
|        | S Africa         | South<br>Africa | Medium        | 1994-96 = | ≤10 yr              | HUS       | 81                                         | 17%        |                                                                                                                                                                                                  | [64]  |
|        | E Africa         | Burundi         | Low           | 1992      | All                 | Dysentery | n.r.                                       | n.r.       | Dysentery accounted for 12% of all-cause mortality during epidemic                                                                                                                               | [51]  |
|        | S Africa         | South<br>Africa | Medium        | 1995 -    | <12 yr              | Dysentery | 159                                        | 13%        | Severely malnourished and persons aged $<2$ yr were at increased risk of death                                                                                                                   | [61]  |
|        | S Africa         | South<br>Africa | Medium        | 1994      | Adults              | Dysentery | 10                                         | 40 %       | All who died were treated with agents to which pathogen was resistant.                                                                                                                           | [76]  |
|        | E Africa         | Zimbabwe        | Low           | 1993–94   | All                 | Dysentery | 106                                        | 4%         | Deaths occurred among patients with renal failure, HUS, anemia, rectal prolapse.                                                                                                                 | [58]  |
|        | E Africa         | Mozambique      | Low           | 1993      | All                 | Dysentery | n.r.                                       | 13%        | CFR of 13% was documented in a rural hospital population; CFR was 17% in paediatric wards of rural hospital. <i>S. dysenteriae</i> type 1 accounted for 0.25% of all-cause mortality nationwide. | [78]  |
|        | S Africa         | South Africa    | Medium        | 1994–95   | Paediatric patients | Dysentery | 72                                         | 11%        | Deaths occurred in context of shock, 'sudden collapse', intestinal perforation, and hemolytic-uremic syndrome.                                                                                   | [84]  |
|        | Middle Africa    | Zaire/DRC       | Low           | 1994      | All                 | Dysentery | n.r.                                       | n.r.       | About 40% of all deaths during the first month of the emergency<br>were associated with dysentery, several cases of which were con<br>firmed to be <i>S. dysenteriae</i> Type 1                  | [77]  |
|        | E Africa         | Zambia          | Low           | 1990–91   | All                 | Dysentery | Varied                                     | 4-15%      | Children were at increased risk of death with CFR of 15%, whereas adults had CFR of 4%                                                                                                           | [83]  |
|        | Middle<br>Africa | Zaire/DRC       | Low           | 1981      | All                 | Dysentery | 46                                         | 0%         |                                                                                                                                                                                                  | [75]  |
| Asia   | SC Asia          | Bangladesh      | Medium        | 2003      | All                 | Dysentery | 50                                         | 8 %        |                                                                                                                                                                                                  | [37]  |
|        | SC Asia          | India           | Medium        | 2003      | All                 | Dysentery | 169                                        | 0%         |                                                                                                                                                                                                  | [36]  |
|        | SC Asia          | India           | Medium        | 2002      | All                 | Dysentery | n.r.                                       | n.r.       | Deaths occurred among patients with anuria, hematuria, dyspnea, seizures, or encephalopathy                                                                                                      | [38]  |
|        | SC Asia          | India           | Medium        | 2002      | All                 | Dysentery | 1728                                       | 0.9%       |                                                                                                                                                                                                  | [39]  |
|        | SC Asia          | India           | Medium        | 1986      | All                 | Dysentery | 200                                        | 5%         |                                                                                                                                                                                                  | [32]  |
|        | SC Asia          | India           | Medium        | 1986      | All                 | Dysentery | 47                                         | 2%         |                                                                                                                                                                                                  | [177] |
|        | SC Asia          | Bangladesh      | Medium        | 1985      | All                 | Dysentery | 626                                        | 11%        | Community-based intervention led to decreased CFR (0.06%);<br>pre-intervention CFR was highest among ages 3–4 yr (36%)                                                                           | [81]  |
|        | SC Asia          | India           | Medium        | 1988      | All                 | Dysentery | 555                                        | 4 %        | About 75% of deaths occurred among pts aged $<2$ yr                                                                                                                                              | [82]  |
|        | SE Asia          | Myanmar         | Medium        | 1984–85   | All                 | Dysentery | 328                                        | 0.6%       |                                                                                                                                                                                                  | [176] |
|        | SC Asia          | India           | Medium        | 1985      | All                 | Dysentery | 950                                        | 2 %        | About 91% of deaths occurred among children                                                                                                                                                      | [33]  |
|        | SC Asia          | India           | Medium        | 1984      | All                 | n.r.      | 273                                        | 7 %        | All deaths occurred among children (age unspecified)                                                                                                                                             | [79]  |

Table 7. Case-fatality rates in epidemic S. dysenteriae type 1, 1984–2005

HDI, Human development index; CFR, Case-fatality rate; HUS, haemolytic-uraemic syndrome; n.r., not reported.

 Table 8. Data gaps and research needs for Shigella infections in medium and low human development index (HDI) countries

#### Morbidity

Incidence

- Population-based incidence data from sub-Saharan Africa
- Population-based incidence data from low-HDI countries

#### Age-related morbidity

• Population-based data reporting on surveillance of all age groups, including young infants (<6 months of age)

# Complications

• Population-based data on complications of Shigella infection

Burden of Shigella relative to other diarrheagenic pathogens

• Comprehensive stool analyses in population-based and facility-based studies of diarrhea etiology, with efforts to isolate *Rotavirus*, ETEC, EPEC, and parasitic infections

#### Subgroup-specific issues

- Confirmation of S. flexneri serotypes 7, 8, and 10 reported from Pakistan
- Prevalence of untypable S. flexneri isolates in geographic regions other than South and South East Asia

Shigellosis in the context of HIV co-infection

- Impact on incidence
- Occurrence of complications, in addition to bacteraemia

#### Mortality

- Population-based data on Shigella-associated mortality
- Identification of modifiable risk factors for Shigella mortality

#### Seasonality

• Reporting of seasonality data using standard terminology and study durations >2 years

#### Diagnosis

- · Validation of improved methods for transporting stool and rectal swabs in resource-poor settings
- Development of gene-based diagnostic techniques for detection of *Shigella* to serotype level
- Evaluation of gene-based methods to distinguish detection of clinically relevant infections from asymptomatic carriage
- Improved quality assurance and quality control of commercially distributed typing antisera

#### Treatment

- Enhancement of treatment strategies for multi-drug resistant Shigella infection
- Efficacy of pivmecillinam and third-generation cephalosporins against *S. dysenteriae* type 1 among adults and children

#### Prevention

- Identification of an antigen that can elicit cross-reacting antibodies to the various S. flexneri serotypes
- Development of widely applicable, acceptable, and affordable vaccines for the most common *S. flexneri* serotypes
- · Effectiveness of aggressive community-wide promotion of handwashing with soap
- Effectiveness of aggressive fly control measures
- Assessment of potential for modifying culturally based anal cleansing practices to prevent hand contamination

mortality information. Calculation of mortality rates in population-based studies are critical for estimating the true public health impact of shigellosis; however, such studies are rightfully conducted under strict human subjects research guidelines, mandating prompt and appropriate treatment for bloody diarrhoea. Thus, it is difficult to study the natural history of *Shigella* complications or mortality in such a research setting. Although unbiased estimates of *Shigella* mortality may be difficult to obtain, the consistent use of verbal autopsy data and molecular diagnostic techniques in population-based surveillance may help. Risk factors for death in endemic shigellosis were available only from papers from South Central Asia and from one study in Jordan. Identification of modifiable risk factors for death from all regions and strategies for prevention of these risk factors are important needs in the study of *Shigella*.

Despite a number of studies reporting on the temporal distribution of *Shigella* infections, no clear patterns emerged with respect to seasonality. The use of non-standard terminology and data collection for <2 consecutive years make comparisons of seasonal trends across studies difficult. We recommend the collection and analysis of temporal distribution data for shigellosis over multi-year periods, using consistent descriptors and contextual environmental information such as rainfall and flooding.

Since Shigellae, like many other enteric pathogens, are transmitted through consumption of contaminated food and drinking water, improvements in sanitation, drinking water quality, and food preparation and storage practices in homes and in communities are expected to have dramatic impacts on the burden of shigellosis. Because the pathogen has a low infectious dose, the promotion of handwashing with soap after defecation would be expected to reduce the risk of *Shigella* transmission [1]. However, specific data regarding the beneficial effects and feasibility of scaling up of household-level control measures, such as promotion of handwashing with soap, improved latrine design to include handwashing stations, aggressive fly control, and modification of culturally ingrained anal cleansing habits are largely lacking.

A number of candidate *Shigella* vaccines are under development. Oral formulations would probably be most useful for the developing world. In September 2006, the International Vaccine Institute, with partners in various Asian countries, estimated the burden of *Shigella* infections and identified the frequency of subgroups and serotypes. Their work demonstrates that 90% of *S. flexneri* infections are caused by eight different serotypes and subserotypes [113, 114]. This diversity suggests that the identification of an antigen common to most or all of the *S. flexneri* serotypes would facilitate vaccine development significantly. While extensive attention has been paid to the development of *Shigella* vaccines, and data has been gathered regarding *Shigella* burden in Asia, relatively little information is available regarding the epidemiology of shigellosis and, importantly, the feasibility of introducing these vaccines in sub-Saharan Africa.

Finally, any estimation of the burden of Shigella infections must take into account the limitations of currently utilized specimen transport and diagnostic methods [98]. Thus, even the culture-based estimates of Shigella incidence reported above may underestimate the true burden of disease. Improved transport methods, such as the DNA/RNA Protect<sup>TM</sup> specimen collection system, must be validated for the detection of Shigella in clinical settings, especially in remote areas. Population-based surveillance for Shigella incidence using potentially more sensitive methods, such as PCR techniques, in addition to culture, may improve Shigella incidence estimates [115]. Moreover, development and evaluation of rapid gene-based diagnostic techniques for faecal specimen testing, available to the serotype level, may enhance measurement of the burden of Shigella and its various serotypes. However, given their potential for high sensitivity, these methods should be evaluated to understand the extent to which they detect clinically relevant infections vs. asymptomatic carriage.

In summary, this paper describes the acute need for population-based studies of *Shigella* morbidity and mortality from sub-Saharan Africa, and from low-HDI countries in general. Such information would be invaluable for the prioritization of precious public health resources for pathogen-specific interventions, such as vaccination programmes targeting *Shigella*. Additional data regarding complications, modifiable risk factors for mortality, the burden of disease among infants, effectiveness of non-vaccine prevention measures, and improved diagnostics would add greatly to our knowledge of *Shigella* infections.

# ACKNOWLEDGEMENTS

This work was supported in part by the U.S. National Institutes of Health Fogarty International Center and by grant number 32143 from the Bill and Melinda Gates Foundation 'Assessment of diarrhea disease burden and public health programs to control diarrhea in Asian subcontinent and Africa'.

#### **DECLARATION OF INTEREST**

None.

# REFERENCES

- WHO. Guidelines for the Control of Shigellosis, including Epidemics due to Shigella dysenteriae 1. Geneva, Switzerland: World Health Organization, 2005.
- DuPont HL, et al. Inoculum size in shigellosis and implications for expected mode of transmission. *Journal of Infectious Diseases* 1989; 159: 1126–1128.
- 3. WHO. Model Chapter for Textbooks: IMCI Integrated Management of Childhood Illness. UNICEF. Geneva: WHO, 2001.
- 4. Kotloff KL, et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. *Bulletin of the World Health Organization* 1999; 77: 651–666.
- 5. Wang XY, et al. Occurrence of shigellosis in the young and elderly in rural China: results of a 12-month population-based surveillance study. American Journal of Tropical Medicine & Hygiene 2005; 73: 416–422.
- Chompook P, et al. Estimating the burden of shigellosis in Thailand: 36-month population-based surveillance study. Bulletin of the World Health Organization 2005; 83: 739–746.
- 7. Zaki AM, *et al.* The detection of enteropathogens in acute diarrhea in a family cohort population in rural Egypt. *American Journal of Tropical Medicine & Hygiene* 1986; **35**: 1013–1022.
- Baqui AH, et al. Enteropathogens associated with acute and persistent diarrhea in Bangladeshi children less than 5 years of age. *Journal of Infectious Diseases* 1992; 166: 792–796.
- Giugliano LG, et al. Longitudinal study of diarrhoeal disease in a peri-urban community in Manaus (Amazon-Brazil). Annals of Tropical Medicine & Parasitology 1986; 80: 443–450.
- Black RE, et al. Malnutrition is a determining factor in diarrheal duration, but not incidence, among young children in a longitudinal study in rural Bangladesh. *American Journal of Clinical Nutrition* 1984; 39: 87–94.
- Abu-Elyazeed RR, et al. Epidemiology of Shigellaassociated diarrhea in rural Egyptian children. American Journal of Tropical Medicine & Hygiene 2004; 71: 367–372.
- Black RE, et al. Incidence and etiology of infantile diarrhea and major routes of transmission in Huascar, Peru. American Journal of Epidemiology 1989; 129: 785–799.
- Chen KC, et al. The epidemiology of diarrhoeal diseases in southeastern China. Journal of Diarrhoeal Diseases Research 1991; 9: 94–99.
- 14. **Punyaratabandhu P**, *et al.* Childhood diarrhoea in a low-income urban community in Bangkok: incidence, clinical features, and child caretaker's behaviours.

Journal of Diarrhoeal Diseases Research 1991; 9: 244–249.

- 15. **Isenbarger DW**, *et al.* Prospective study of the incidence of diarrhoea and prevalence of bacterial pathogens in a cohort of Vietnamese children along the Red River. *Epidemiology & Infection* 2001; **127**: 229–236.
- Lee H, et al. Shigellosis remains an important problem in children less than 5 years of age in Thailand. Epidemiology & Infection 2005; 133: 469–474.
- Huilan S, et al. Etiology of acute diarrhoea among children in developing countries: a multicentre study in five countries. Bulletin of the World Health Organization 1991; 69: 549–555.
- Baqui AH, et al. Surveillance of patients attending a rural diarrhoea treatment centre in Bangladesh. Tropical & Geographical Medicine 1991; 43: 17–22.
- Bodhidatta L, et al. Bacterial enteric pathogens in children with acute dysentery in Thailand: increasing importance of quinolone-resistant Campylobacter. Southeast Asian Journal of Tropical Medicine & Public Health 2002; 33: 752–757.
- Casalino M, et al. A two-year study of enteric infections associated with diarrhoeal diseases in children in urban Somalia. Transactions of the Royal Society of Tropical Medicine & Hygiene 1988; 82: 637–641.
- Diniz-Santos DR, et al. Epidemiological and microbiological aspects of acute bacterial diarrhea in children from Salvador, Bahia, Brazil. Brazilian Journal of Infectious Diseases 2005; 9: 77–83.
- Eko FO, Utsalo SJ. Antimicrobial resistance trends of shigellae isolates from Calabar, Nigeria. *Journal of Tropical Medicine & Hygiene* 1991; 94: 407–410.
- El Nageh MM. Shigella dysentery in Tripoli, Libya. Journal of Tropical Medicine & Hygiene 1984; 87: 1–5.
- Khalil K, et al. Occurrence and susceptibility to antibiotics of Shigella species in stools of hospitalized children with bloody diarrhea in Pakistan. American Journal of Tropical Medicine & Hygiene 1998; 58: 800–803.
- Khalil K, et al. Early child health in Lahore, Pakistan: VIII. Microbiology. Acta Paediatrica 1993; 82 (Suppl. 390): 87–94.
- Leano FT, et al. Prevalent serogroups and antimicrobial susceptibility of Shigella strains in Metro Manila, 1982–1988. Southeast Asian Journal of Tropical Medicine & Public Health 1990; 21: 207–213.
- Macaden R, Bhat P. Changing pattern of Shigella serotypes in a southern Indian population. *Journal of Diarrhoeal Diseases Research* 1986; 4: 77–80.
- MoezArdalan K, et al. Prevalence and pattern of antimicrobial resistance of Shigella species among patients with acute diarrhoea in Karaj, Tehran, Iran. Journal of Health, Population & Nutrition 2003; 21: 96–102.
- Osisanya JO, et al. Acute diarrhoeal disease in Nigeria: detection of enteropathogens in a rural sub-Saharan population. Transactions of the Royal Society of Tropical Medicine & Hygiene 1988; 82: 773–777.
- 30. Yamashiro T, et al. Etiological study of diarrheal patients in Vientiane, Lao People's Democratic

Republic. Journal of Clinical Microbiology 1998; 36: 2195–2199.

- Zaman K, et al. Surveillance of shigellosis in rural Bangladesh: a 10 years review. Journal of the Pakistan Medical Association 1991; 41: 75–78.
- Mathur R, et al. An outbreak of shigellosis in central India: higher death rate in post-measles shigellosis. Journal of Diarrhoeal Diseases Research 1989; 7: 28–29.
- Gupta MK, et al. Outbreak of post-measles gastroenteritis due to Shigella dysenteriae type-I in Karsog Tehsil, District Mandi (H.P). Journal of Communicable Diseases 1986; 18: 124–127.
- Ozmert EN, et al. Shigella antibiotic resistance in central Turkey: comparison of the years 1987–1994 and 1995–2002. Journal of Pediatric Gastroenterology & Nutrition 2005; 40: 359–362.
- Pazhani GP, et al. Clonal multidrug-resistant Shigella dysenteriae type 1 strains associated with epidemic and sporadic dysenteries in eastern India. Antimicrobial Agents & Chemotherapy 2004; 48: 681–684.
- 36. Niyogi SK, et al. An outbreak of bacillary dysentery caused by quinolone-resistant Shigella dysenteriae type 1 in a northeastern state of India. Journal of Health, Population & Nutrition 2004; 22: 97.
- Naheed A, et al. Fluoroquinolone-resistant Shigella dysenteriae type 1 in northeastern Bangladesh [Comment]. Lancet Infectious Diseases 2004; 4: 607–608.
- Sarkar K, et al. Shigella dysenteriae type 1 with reduced susceptibility to fluoroquinolones. Lancet 2003; 361: 785.
- Sur D, et al. Multidrug-resistant Shigella dysenteriae type 1: forerunners of a new epidemic strain in eastern India? Emerging Infectious Diseases 2003; 9: 404–405.
- 40. Dutta D, et al. Emergence of multidrug-resistant Shigella dysenteriae type 1 causing sporadic outbreak in and around Kolkata, India. Journal of Health, Population & Nutrition 2003; 21: 79–80.
- Dutta S, et al. Shigella dysenteriae serotype 1, Kolkata, India. Emerging Infectious Diseases 2003; 9: 1471– 1474.
- Dutta S, et al. Shifting serotypes, plasmid profile analysis and antimicrobial resistance pattern of shigellae strains isolated from Kolkata, India during 1995–2000. Epidemiology & Infection 2002; 129: 235–243.
- 43. Varavithya W, et al. Importance of salmonellae and Campylobacter jejuni in the etiology of diarrheal disease among children less than 5 years of age in a community in Bangkok, Thailand [Erratum appears in Journal of Clinical Microbiology 1991; 29: 418]. Journal of Clinical Microbiology 1990; 28: 2507–2510.
- Jones FR, et al. Short report: High incidence of shigellosis among Peruvian soldiers deployed in the Amazon River basin. American Journal of Tropical Medicine & Hygiene 2004; 70: 663–665.
- Thong KL, et al. Prevalence of multidrug-resistant Shigella isolated in Malaysia. Journal of Health, Population & Nutrition 2002; 20: 356–358.

- Zafar A, et al. Frequency of isolation of shigella serogroups/serotypes and their antimicrobial susceptibility pattern in children from slum areas in Karachi. *Journal of the Pakistan Medical Association* 2005; 55: 184–188.
- 47. El-Gendy A, et al. Identification of Shigella flexneri subserotype 1c in rural Egypt. Journal of Clinical Microbiology 1999; 37: 873–874.
- Talukder KA, et al. Phenotypic and genotypic characterization of provisional serotype Shigella flexneri 1c and clonal relationships with 1a and 1b strains isolated in Bangladesh. Journal of Clinical Microbiology 2003; 41: 110–117.
- Black RE, et al. Effects of diarrhea associated with specific enteropathogens on the growth of children in rural Bangladesh. *Pediatrics* 1984; 73: 799– 805.
- Khan WA, et al. Central nervous system manifestations of childhood shigellosis: prevalence, risk factors, and outcome. *Pediatrics* 1999; 103: E18.
- Birmingham ME, et al. A household survey of dysentery in Burundi: implications for the current pandemic in sub-Saharan Africa. Bulletin of the World Health Organization 1997; 75: 45–53.
- Hoge CW, et al. Emergence of nalidixic acid resistant Shigella dysenteriae type 1 in Thailand: an outbreak associated with consumption of a coconut milk dessert. International Journal of Epidemiology 1995; 24: 1228–1232.
- 53. Clemens JD, *et al.* Breast feeding as a determinant of severity in shigellosis. Evidence for protection throughout the first three years of life in Bangladeshi children. *American Journal of Epidemiology* 1986; **123**: 710–720.
- Rawashdeh MO, et al. Shigellosis in Jordanian children: a clinico-epidemiologic prospective study and susceptibility to antibiotics. Journal of Tropical Pediatrics 1994; 40: 355–359.
- Taylor DN, et al. Introduction and spread of multiresistant Shigella dysenteriae I in Thailand. American Journal of Tropical Medicine & Hygiene 1989; 40: 77–85.
- Thapa BR, et al. Shigellosis in children from north India: a clinicopathological study. Journal of Tropical Pediatrics 1995; 41: 303–307.
- Dewan N, et al. Nutritional status and diarrhoeal pathogen in hospitalized children in Bangladesh. Acta Paediatrica 1998; 87: 627–630.
- Mudzamiri WS, et al. Hospitalized dysentery cases during an outbreak of *Shigella dysenteriae* type I: Ndanga District Hospital, Zimbabwe. *Central African Journal of Medicine* 1996; 42: 177–179.
- Ahmed F, et al. Epidemiology of postshigellosis persistent diarrhea in young children. *Pediatric Infectious Disease Journal* 2001; 20: 525–530.
- Bennish ML, et al. Intestinal obstruction during shigellosis: incidence, clinical features, risk factors, and outcome. Gastroenterology 1991; 101: 626–634.
- 61. Chopra M, et al. Epidemic shigella dysentery in children in northern KwaZulu-Natal [see Comment].

South African Medical Journal/Suid-Afrikaanse Tydskrif Vir Geneeskunde 1997; **87**: 48–51.

- 62. Grant HW, et al. Surgical lessons learned from the Shigella dysenteriae type I epidemic. Journal of the Royal College of Surgeons of Edinburgh 1998; 43: 160–162.
- Al-Qarawi S, et al. An outbreak of hemolytic uremic syndrome associated with antibiotic treatment of hospital inpatients for dysentery. *Emerging Infectious Diseases* 1995; 1: 138–140.
- Bhimma R, et al. Post-dysenteric hemolytic uremic syndrome in children during an epidemic of Shigella dysentery in Kwazulu/Natal. *Pediatric Nephrology* 1997; 11: 560–564.
- Butler T, et al. Risk factors for development of hemolytic uremic syndrome during shigellosis. Journal of Pediatrics 1987; 110: 894–897.
- 66. Srison D, Pornpatkul V. Shigellosis in Thai children: experience from a rural hospital 1985–1993. Southeast Asian Journal of Tropical Medicine & Public Health 1995; 26: 347–349.
- Mazumder RN, et al. Reactive arthritis associated with Shigella dysenteriae type 1 infection. Journal of Diarrhoeal Diseases Research 1997; 15: 21–24.
- Martin T, et al. Shigellosis with bacteremia: a report of two cases and a review of the literature. *Pediatric Infectious Disease* 1983; 2: 21–26.
- Kristjansson M, et al. Polymicrobial and recurrent bacteremia with Shigella in a patient with AIDS [see Comment]. Scandinavian Journal of Infectious Diseases 1994; 26: 411–416.
- Khan A, et al. Presumptive shigellosis: clinical and laboratory characteristics of Bangladeshi patients. Scandinavian Journal of Infectious Diseases 2005; 37: 96–100.
- Bennish ML, Wojtyniak BJ. Mortality due to shigellosis: community and hospital data. *Reviews of Infectious Diseases* 1991; 13 (Suppl. 4): S245–251.
- Bennish ML, et al. Death in shigellosis: incidence and risk factors in hospitalized patients [Erratum appears in Journal of Infectious Diseases 1990; 162: 573]. Journal of Infectious Diseases 1990; 161: 500– 506.
- Islam SS, Shahid NS. Morbidity and mortality in a diarrhoeal diseases hospital in Bangladesh. *Trans*actions of the Royal Society of Tropical Medicine & Hygiene 1986; 80: 748–752.
- 74. van den Broek JM, et al. Risk factors for mortality due to shigellosis: a case-control study among severelymalnourished children in Bangladesh. Journal of Health, Population & Nutrition 2005; 23: 259–265.
- Ebright JR, et al. Epidemic Shiga bacillus dysentery in Central Africa. American Journal of Tropical Medicine & Hygiene 1984; 33: 1192–1197.
- Pillay DG, et al. Nosocomial transmission of Shigella dysenteriae type 1. Journal of Hospital Infection 1997; 37: 199–205.
- 77. Goma EG. Public health impact of Rwandan refugee crisis: what happened in Goma, Zaire, in July, 1994? *Lancet* 1995; 345: 339–344.

- Aragon M, et al. Shigellosis in Mozambique: the 1993 outbreak rehabilitation – a follow-up study. *Tropical Doctor* 1995; 25: 159–162.
- 79. Aggarwal P, Basu RN. An epidemic of bacillary dysentery at Raipur. *Journal of Diarrhoeal Diseases Research* 1985; **3**: 32.
- Guerin PJ, et al. Shigella dysenteriae serotype 1 in west Africa: intervention strategy for an outbreak in Sierra Leone. Lancet 2003; 362: 705–706.
- Islam Q, et al. A steep decline of death in a shigellosis epidemic in Bangladesh by a community-participated intervention. Journal of Diarrhoeal Diseases Research 1988; 6: 215–220.
- Sen D, et al. Nalidixic-acid resistant Shigella dysenteriae type 1 in eastern India. Lancet 1988; 2: 911.
- Tuttle J, et al. Antimicrobial-resistant epidemic Shigella dysenteriae type 1 in Zambia: modes of transmission. Journal of Infectious Diseases 1995; 171: 371–375.
- Rollins NC, et al. Epidemic Shigella dysenteriae type 1 in Natal. Journal of Tropical Pediatrics 1995; 41: 281– 284.
- Nataro JP. Vaccines against diarrheal diseases. Seminars in Pediatric Infectious Diseases 2004; 15: 272–279.
- Iwamoto M, et al. Shigellosis among swimmers in a freshwater lake. Southern Medical Journal 2005; 98: 774–778.
- Maurer AM, Sturchler D. A waterborne outbreak of small round structured virus, campylobacter and shigella co-infections in La Neuveville, Switzerland, 1998. *Epidemiology & Infection* 2000; 125: 325– 332.
- Midzi SM, et al. An outbreak of dysentery in a rural district of Zimbabwe: the role of personal hygiene at public gatherings. *Central African Journal of Medicine* 2000; 46: 150–153.
- 89. **Mitscherlich E.** *Microbial Survival in the Environment*. New York: Springer-Verlag, 1984.
- Naimi TS, et al. Concurrent outbreaks of Shigella sonnei and enterotoxigenic Escherichia coli infections associated with parsley: implications for surveillance and control of foodborne illness. Journal of Food Protection 2003; 66: 535–541.
- Levine OS, Levine MM. Houseflies (Musca domestica) as mechanical vectors of shigellosis. Reviews of Infectious Diseases 1991; 13: 688–696.
- Cohen D, et al. Reduction of transmission of shigellosis by control of houseflies (*Musca domestica*). *Lancet* 1991; 337: 993–997.
- 93. Echeverria P, et al. Flies as a source of enteric pathogens in a rural village in Thailand. Applied & Environmental Microbiology 1983; 46: 32–36.
- 94. Househam KC, et al. Enteropathogens associated with acute infantile diarrhoea in Cape Town. South African Medical Journal/Suid-Afrikaanse Tydskrif Vir Geneeskunde 1988; 73: 83–87.
- 95. Khan MU. Interruption of shigellosis by hand washing. *Transactions of the Royal Society of Tropical Medicine & Hygiene* 1982; **76**: 164–168.

- Mohle-Boetani JC, et al. Communitywide shigellosis: control of an outbreak and risk factors in child daycare centers. *American Journal of Public Health* 1995; 85: 812–816.
- Aung Myo H, et al. Personal toilet after defaecation and the degree of hand contamination according to different methods used. Journal of Tropical Medicine & Hygiene 1986; 89: 237–241.
- WHO. Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World. Geneva: WHO, 2003.
- Islam MS, et al. Detection of Shigellae from stools of dysentery patients by culture and polymerase chain reaction techniques. Journal of Diarrhoeal Diseases Research 1998; 16: 248–251.
- 100. Hyytiä-Trees E, et al. Use of DNA/RNA Protect<sup>™</sup> swabs to detect and isolate Shigella sonnei from stool samples. In: 104th General Meeting of the American Society for Microbiology. New Orleans, LA, USA, 2004.
- 101. Salam M, et al. Evaluation of the Premier Enterohemorrhagic Escherichia coli (EHEC) assay for detection of Shigella dysenteriae type 1 (Sd 1) infection. In: Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago: American Society of Microbiology, 2001.
- 102. Hayani KC, et al. Concentration of milk secretory immunoglobulin A against Shigella virulence plasmidassociated antigens as a predictor of symptom status in Shigella-infected breast-fed infants. Journal of Pediatrics 1992; 121: 852–856.
- Parashar UD, et al. Global illness and deaths caused by rotavirus disease in children. *Emerging Infectious* Diseases 2003; 9: 565–572.
- 104. Reller LB, et al. Epidemic shiga-bacillus dysentery in Central America. Evolution of the outbreak in El Salvador, 1969–70. American Journal of Tropical Medicine & Hygiene 1971; 20: 934–940.
- 105. Jahan Y, Hossain A. Multiple drug-resistant Shigella dysenteriae type 1 in Rajbari district, Bangladesh. Journal of Diarrhoeal Diseases Research 1997; 15: 17–20.
- 106. Wittenberg DF. The spread of Shigella dysenteriae type I in Africa. Japanese Journal of Medical Science & Biology 1998; 51 (Suppl.): S36–42.
- 107. Kabir I, et al. Comparative efficacies of single intravenous doses of ceftriaxone and ampicillin for shigellosis in a placebo-controlled trial. Antimicrobial Agents & Chemotherapy 1986; 29: 645–648.
- Kabir I, et al. Comparative efficacies of pivmecillinam and ampicillin in acute shigellosis. Antimicrobial Agents & Chemotherapy 1984; 25: 643–645.
- Brenner D. Recommendations on Recent Proposals for the Classification of Shigellae. *International Journal* of Systematic Bacteriology 1984; 34: 87–88.
- Talukder KA, et al. Altering trends in the dominance of Shigella flexneri serotypes and emergence of serologically atypical S. flexneri strains in Dhaka, Bangladesh. Journal of Clinical Microbiology 2001; 39: 3757–3759.

- Donald PR, et al. Shigellosis in the south-western Cape of Good Hope 1968–85. Epidemiology & Infection 1987; 98: 165–170.
- 112. Evins GM, et al. Quality of commercially produced Shigella serogrouping and serotyping antisera. Journal of Clinical Microbiology 1988; 26: 438–442.
- 113. Von Seidlein L, et al. A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLOS Medicine 2006; 3.
- 114. Sansonetti PJ. Shigellosis: an old disease in new clothes. *PLOS Medicine* 2006; **3**: e354.
- 115. Vu DT, et al. Detection of Shigella by a PCR assay targeting the ipaH gene suggests increased prevalence of shigellosis in Nha Trang, Vietnam. Journal of Clinical Microbiology 2004; 42: 2031–2035.
- 116. Lopez de Romana G, et al. Longitudinal studies of infectious diseases and physical growth of infants in Huascar, an underprivileged peri-urban community in Lima, Peru. American Journal of Epidemiology 1989; 129: 769–784.
- 117. Wasfy MO, et al. Isolation and antibiotic susceptibility of Salmonella, Shigella, and Campylobacter from acute enteric infections in Egypt. Journal of Health, Population & Nutrition 2000; 18: 33–38.
- 118. Mikhail IA, et al. Epidemiology of bacterial pathogens associated with infectious diarrhea in Djibouti. *Journal of Clinical Microbiology* 1990; 28: 956–961.
- Asrat D, et al. Studies on enteric campylobacteriosis in Tikur Anbessa and Ethio-Swedish children's hospital, Addis Ababa, Ethiopia. *Ethiopian Medical Journal* 1999; 37: 71–84.
- Aseffa A, et al. Antibiotic resistance of prevalent Salmonella and Shigella strains in northwest Ethiopia. East African Medical Journal 1997; 74: 708–713.
- 121. Akinyemi KO, et al. Escherichia coli in patients with acute gastroenteritis in Lagos, Nigeria. East African Medical Journal 1998; 75: 512–515.
- Shapiro RL, et al. Antimicrobial-resistant bacterial diarrhea in rural western Kenya. Journal of Infectious Diseases 2001; 183: 1701–1704.
- 123. Sen D, et al. Studies on Escherichia coli as a cause of acute diarrhoea in Calcutta. Journal of Medical Microbiology 1984; 17: 53–58.
- 124. Echeverria P, et al. Identification by DNA hybridization of enterotoxigenic Escherichia coli in a longitudinal study of villages in Thailand. Journal of Infectious Diseases 1985; 151: 124–130.
- 125. Echeverria P, et al. A comparative study of enterotoxigenic Escherichia coli, Shigella, Aeromonas, and Vibrio as etiologies of diarrhea in northeastern Thailand. American Journal of Tropical Medicine & Hygiene 1985; 34: 547–554.
- 126. Adkins HJ, et al. Two-year survey of etiologic agents of diarrheal disease at San Lazaro Hospital, Manila, Republic of the Philippines. Journal of Clinical Microbiology 1987; 25: 1143–1147.
- 127. Echeverria P, et al. Etiology of diarrhea in a rural community in western Thailand: importance of enteric viruses and enterovirulent Escherichia

coli. Journal of Infectious Diseases 1994; **169**: 916–919.

- 128. Faruque AS, et al. Aetiological, clinical and epidemiological characteristics of a seasonal peak of diarrhoea in Dhaka, Bangladesh. Scandinavian Journal of Infectious Diseases 1998; 30: 393–396.
- Oyofo BA, et al. Surveillance of bacterial pathogens of diarrhea disease in Indonesia. *Diagnostic Microbiology* & Infectious Disease 2002; 44: 227–234.
- Subekti DS, et al. Prevalence of enterotoxigenic Escherichia coli (ETEC) in hospitalized acute diarrhea patients in Denpasar, Bali, Indonesia. Diagnostic Microbiology & Infectious Disease 2003; 47: 399–405.
- 131. Jain SK, et al. Antimicrobial-resistant Shigella sonnei: limited antimicrobial treatment options for children and challenges of interpreting in vitro azithromycin susceptibility. Pediatric Infectious Disease Journal 2005; 24: 494–497.
- 132. Schorling JB, et al. A prospective study of persistent diarrhea among children in an urban Brazilian slum. Patterns of occurrence and etiologic agents. *American Journal of Epidemiology* 1990; 132: 144–156.
- 133. Begue RE, et al. Diarrheal disease in Peru after the introduction of cholera. American Journal of Tropical Medicine & Hygiene 1994; 51: 585–589.
- 134. Sharp TW, et al. Diarrheal disease among military personnel during Operation Restore Hope, Somalia, 1992–1993. American Journal of Tropical Medicine & Hygiene 1995; 52: 188–193.
- Kain KC, et al. Etiology of childhood diarrhea in Beijing, China. Journal of Clinical Microbiology 1991; 29: 90–95.
- 136. Katouli M, et al. Aetiological studies of diarrhoeal diseases in infants and young children in Iran. Journal of Tropical Medicine & Hygiene 1990; 93: 22–27.
- 137. Seas C, et al. Surveillance of bacterial pathogens associated with acute diarrhea in Lima, Peru. International Journal of Infectious Diseases 2000; 4: 96–99.
- 138. Georges MC, et al. Parasitic, bacterial, and viral enteric pathogens associated with diarrhea in the Central African Republic. Journal of Clinical Microbiology 1984; 19: 571–575.
- 139. al-Jurayyan NA, et al. Childhood bacterial diarrhoea in a regional hospital in Saudi Arabia: clinicoaetiological features. Journal of Tropical Medicine & Hygiene 1994; 97: 87–90.
- 140. Moyenuddin M, et al. The aetiology of diarrhoea in children at an urban hospital in Bangladesh. Transactions of the Royal Society of Tropical Medicine & Hygiene 1987; 81: 299–302.
- Bhan MK, et al. Descriptive epidemiology of persistent diarrhoea among young children in rural northern India. Bulletin of the World Health Organization 1989; 67: 281–288.
- 142. Ise T, et al. Clinical evaluation and bacterial survey in infants and young children with diarrhoea in the Santa Cruz district, Bolivia. Journal of Tropical Pediatrics 1994; 40: 369–374.
- 143. Echeverria P, et al. Identification by DNA hybridisation of enterotoxigenic Escherichia coli in

homes of children with diarrhoea. *Lancet* 1984; 1: 63–66.

- 144. TinAye, et al. Epidemiology and aetiology of acute childhood diarrhoea in Burma: a rural community survey. Transactions of the Royal Society of Tropical Medicine & Hygiene 1989; 83: 827–830.
- 145. Mikhail IA, et al. Microbiologic and clinical study of acute diarrhea in children in Aswan, Egypt. Scandinavian Journal of Infectious Diseases 1989; 21: 59–65.
- 146. Subekti D, et al. Enterotoxigenic Escherichia coli and other causes of infectious pediatric diarrheas in Jakarta, Indonesia. Southeast Asian Journal of Tropical Medicine & Public Health 1993; 24: 420–424.
- 147. Echeverria P, et al. Case-control study of endemic diarrheal disease in Thai children [Erratum appears in Journal of Infectious Diseases 1989; 160: 182]. Journal of Infectious Diseases 1989; 159: 543–548.
- 148. Ogunsanya TI, et al. A study of the aetiological agents of childhood diarrhoea in Lagos, Nigeria. Journal of Medical Microbiology 1994; 40: 10–14.
- 149. Albert MJ, et al. Controlled study of *Escherichia coli* diarrheal infections in Bangladeshi children. *Journal* of *Clinical Microbiology* 1995; **33**: 973–977.
- Nakano T, et al. Diagnosis of bacterial enteric infections in children in Zambia. Acta Paediatrica Japonica 1998; 40: 259–263.
- Albert MJ, et al. Case-control study of enteropathogens associated with childhood diarrhea in Dhaka, Bangladesh. Journal of Clinical Microbiology 1999; 37: 3458–3464.
- 152. Youssef M, et al. Bacterial, viral and parasitic enteric pathogens associated with acute diarrhea in hospitalized children from northern Jordan. FEMS Immunology & Medical Microbiology 2000; 28: 257– 263.
- 153. Richie E, et al. Enterotoxigenic Escherichia coli diarrhea among young children in Jakarta, Indonesia. American Journal of Tropical Medicine & Hygiene 1997; 57: 85–90.
- 154. Gascon J, et al. Diarrhea in children under 5 years of age from Ifakara, Tanzania: a case-control study. Journal of Clinical Microbiology 2000; 38: 4459–4462.
- 155. Okeke IN, et al. Characterization of Escherichia coli strains from cases of childhood diarrhea in provincial southwestern Nigeria. Journal of Clinical Microbiology 2000; 38: 7–12.
- 156. Khan MM, et al. Aetiologic agents of diarrhoeal diseases in hospitalised children in Rawalpindi, Pakistan. Journal of Diarrhoeal Diseases Research 1988; 6: 228–231.
- Bhan MK, et al. Enteroaggregative Escherichia coli associated with persistent diarrhea in a cohort of rural children in India. Journal of Infectious Diseases 1989; 159: 1061–1064.
- 158. Faruque AS, et al. Common diarrhea pathogens and the risk of dehydration in young children with acute watery diarrhea: a case-control study. American Journal of Tropical Medicine & Hygiene 1993; 49: 93–100.

- Geyer A, et al. The microbial aetiology of summer paediatric gastroenteritis at Ga-Rankuwa Hospital in South Africa. East African Medical Journal 1993; 70: 78–81.
- 160. Mackenjee MK, et al. Actiology of diarrhoea in adequately nourished young African children in Durban, South Africa. Annals of Tropical Paediatrics 1984; 4: 183–187.
- 161. Gomes TA, et al. Enteropathogens associated with acute diarrheal disease in urban infants in Sao Paulo, Brazil. Journal of Infectious Diseases 1991; 164: 331–337.
- 162. Ming ZF, et al. Diarrhoeal disease in children less than one year of age at a children's hospital in Guangzhou, People's Republic of China. Transactions of the Royal Society of Tropical Medicine & Hygiene 1991; 85: 667–669.
- 163. Lawande RV, Joshi RM. Shigellosis in Zaria, northern Nigeria. Transactions of the Royal Society of Tropical Medicine & Hygiene 1987; 81: 1014–1016.
- 164. Egah DZ, et al. Multiple drug resistant strains of Shigella isolated in Jos, central Nigeria. Nigerian Postgraduate Medical Journal 2003; 10: 154–156.
- 165. Iwalokun BA, et al. Epidemiology of shigellosis in Lagos, Nigeria: trends in antimicrobial resistance. Journal of Health, Population & Nutrition 2001; 19: 183–190.
- 166. Mache A. Antibiotic resistance and serogroups of shigella among paediatric out-patients in southwest Ethiopia. *East African Medical Journal* 2001; 78: 296–299.
- Dutta P, et al. Clinical and bacteriological profiles of shigellosis in Calcutta before & after an epidemic (1984–87). Indian Journal of Medical Research 1989; 89: 132–137.
- 168. Ahmed F, et al. Epidemiology of shigellosis among children exposed to cases of Shigella dysentery: a multivariate assessment. American Journal of Tropical Medicine & Hygiene 1997; 56: 258–264.
- 169. Mamun KZ, et al. Antimicrobial susceptibility of Shigella from a rural community in Bangladesh.

Annals of Tropical Medicine & Parasitology 1997; **91**: 643–647.

- Ahmed K, et al. Actiology of shigellosis in northern Pakistan. Journal of Health, Population & Nutrition 2003; 21: 32–39.
- 171. Khan AI, et al. Shigella serotypes among hospitalized patients in urban Bangladesh and their antimicrobial resistance. Epidemiology & Infection 2004; 132: 773– 777.
- 172. Nguyen BM, et al. Age-related prevalence of Shigella and Salmonella antibodies and their association with diarrhoeal diseases in Peruvian children. Scandinavian Journal of Infectious Diseases 1998; **30**: 159–164.
- 173. Mhalu FS, et al. A bacillary dysentery epidemic in Dar es Salaam, Tanzania. Journal of Diarrhoeal Diseases Research 1984; 2: 217–222.
- 174. **Ries AA**, *et al.* Epidemic Shigella dysenteriae type 1 in Burundi: panresistance and implications for prevention. *Journal of Infectious Diseases* 1994; **169**: 1035–1041.
- 175. Islam MS, et al. Microbiological investigation of diarrhoea epidemics among Rwandan refugees in Zaire. Transactions of the Royal Society of Tropical Medicine & Hygiene 1995; 89: 506.
- 176. Han AM, et al. An outbreak of dysentery due to Shigella dysenteriae type 1 in Rangoon, Burma. Journal of Diarrhoeal Diseases Research 1987; 5: 30–35.
- 177. Bhattacharya SK, et al. Extraintestinal manifestations of Shigellosis during an epidemic of bacillary dysentery in Port Blair, Andaman & Nicobar Island (India). *Journal of the Association of Physicians of India* 1988; 36: 319–320.
- 178. Datta P, Sen D. Outbreak of dysentery due to nalidixic acid resistant S. dysenteriae 1 at Agartala, Tripura: a hospital based study. Indian Journal of Public Health 1990; 34: 11–14.
- 179. Swaddiwudhipong W, et al. A common-source outbreak of shigellosis involving a piped public water supply in northern Thai communities. Journal of Tropical Medicine & Hygiene 1995; 98: 145–150.