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A duality theorem for a
nondifferentiable nonlinear

fractional programming problem

B. Mond and B.D. Craven

A duality theorem, and a converse duality theorem, are proved for
a nonlinear fractional program, where the numerator of the
objective function involves a concave function, not necessarily
differentiable, and also the support function of a convex set,
and the denominator involves a convex function, and the support
function of a convex set. Various known results are deduced as

special cases.

Introduction

Let f : R* >R , g R” =R ,and h : R” > R™ be continuous
functions, with -f and g convex. Let S cR" be a closed convex cone,
which may in particular be the nonnegative orthant RT 3 let the function
h be GS-convex [6]. Let Cl and 02 be closed convex sets in R .

Consider the nonlinear fractional programming problem

( () Aoelle) n(z)
1 P): imi bject t -hlx) €8
) maﬁz?;ze J@) (@ 02 subjec o ,

n
in which X, is an open convex set in R" , s('ICi) is the support

function of the set Ci (i =1, 2) , and it is assumed that
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(2) z € X, (or -h(z) €8) = g(x) + s(x]Cz) >0

Associate to (P) the problem

(D): minimize 2 subject to 220, y €S*, v € Cl » W EC,,
uGXO,y,z,v,w
(3) 0 € 3(-f+zg)(u) + B(yTh)(u) + (v+aw) ,
T T
(1) -flu) + zglu) + y"h(u) + (v+zw) u =z 0 .

In (D), S* is the dual cone to S [6], and 3 denotes subdifferential
[75].

Under suitable hypothesis, (D) will be shown to be a dual problem to
(P); under somewhat different assumptions, (P) will be shown to be a dual

problem to (D).

The constraint -k(x) € S is locally solvable [4]1, [5] at xy if

—h(xo) €5 and, for some § > 0 , whenever the direction d satisfies
—h(xo] - h'(xo; d) €5 and |d] <& (where h’(xO; d) denotes

directional derivative in direction d ), there exists a solution

x =zt ad + o(a) to -k(x) € S , valid for sufficiently small a > O .

(This requirement reduces to the Kuhn-Tucker constraint qualification for a

constraint system hi(x) =0 (£=1,2, ..., m .) The problem (P) will

be said to satisfy a constraint qualification at =z, if —h(xo) €5, and

0
either

(a) Slater's constraint qualification holds, namely

-h{x) € int S for some =z € XO , or
(p) -h(x) € S is locally solvable at z, € X, » and the set
(5) U {sh(z))} x a(sh)(zy)
5€S8*

is closed in R x R”

(The latter is automatic if S 1is a polyhedral cone and h is
[91.)

differentiable at xo
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Duality theorem
The assumptions stated in the Introduction will be assumed throughout.

THEOREM 1. Weak duality holds for (P) and (D), namely
sup(P) = inf(D) . If (P) reaches a maximum at x = zg € XO , if

max(P) =2 0, and if a constraint qualification holds for (P), then (D)

reaches a minimum at some (u, 2, y, v, w) with u = Zy s and
max(P) = min(D)
Thus (D) is a strong dual [7], [§] to (P).

Proof. Let % be feasible for (P), and let (u, 2z, y, v, w) be

feasible for (D). From a constraint for (D), 6 + ¢ + (v+aw) = 0 for some

6 € d(u) and some Y € B(y]%)(u) , where ¢ = ~-f + 2g . Since z =0

and -f and g are convex, ¢ is convex. Then

[f(x)-s [x|Cl)] - zfg(x)+s (x|02]]

flz) - zglz) - (vezw) T

-pix) - (v+aw) Tz

= —p(u) - 87(z—u) - (v+aw) (c-u) - (v+aw)u since © € do(w)
= —p{u) - (v+zw)Tu + wT(x-u) by a constraint for (D)

= yTh(u) + wT(x-u) by a constraint for (D)

= yTh(x) since yTh is a convex function

1A

0 since -h(x) €S and y € S* .

By hypothesis, g(z) + s(xlc2) >0 . Dividing by it,

[f'(x)—s(x|Cl)]/fg(x)+s(x|02)] <z .

Hence sup(P) = inf(D)
llow assume that (P) is maximized at zy with m = max(P) = 0 , and

also the constraint qualification. Then zq also maximizes

(6) l-f(x)-s(xlcl)] - mb(x)+s(x|02]]

subject to -h(x) € S . Applying the appropriate nondifferentiable version

of the Kuhn-Tucker Theorem, assuming constraint qualification (a) or (b)
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(see {9], Theorem k),
0 ¢ 3(_f4mg)(xo) + U+ + a(yzﬁ][xo] . yzh(xo] =0,

holds for some Yy € S* , v € Bs(onCl) , and w € Bs(xolce) . Then [15],

T
v €C v = s(xolcl) , W €C

1 o wa = s(xolcz) ; therefore all

2° 0
constraints of (D) except (4) hold for u = zy s

holds also from Ef(xo)-s(xo|Ci)]/[b(x0)+s(x0|02)] =m and yzﬁ(xo) =0 0O

z=m y, v, w , and (&)

Converse duality theorem

Again assume all assumptions of the Introduction, including (2).

Denote by F(x) +the objective function for (P).
Suppose that (3) and (4) are satisfied for

(u, 2, y, v, W) = (uO’ zO’ yO’ vO’ wO) >

where Yo €5% v € Cl s Wy € 02 , and g(uo) + wguo > 0 . The system

(3) 0 € 3(-f+ag)(u) + B(y]%)(u) + (v+zw)

together with

(1) z = [flu) v uyTn(w)]/ [guw)w'u] |

will be called solvable near Uy if, vhenever y

+ B €EC

yo * B € 5%,

v = + BU € Cl ,and W =w for 0 <8 £ 1, then the system

Yo 0 2

(3) and (7) has a solution u = ug * U(B) for all sufficiently small

positive B , satisfying #u{(B) > 0 as B ¥ 0 .
This property holds, in particular, if -f + zog + ygh has a non-
singular hessian matrix, at u = uo , in consequence of the implicit

function theorem. However, the following converse duality theorem does not

assume any differentiability of the functions f, g, %

THEQREM 2. ~ILet (D) reach a minimuwn at

(u, 2, 4, v, 0) = (ug, 2g, ygs vy W) s
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where wuy € X, . If a5 =0, assure that F(x) = 0 for some T € X,

satisfying h(z) €85 . If 2y >0, assume that the system (3) and (7) is

solvable near uy - Then (P) reaches a maximum, and max(P) = min(D) .

Hence (P) is a strong dual to (D).

Proof, If % =0, then FZ) <z =0 by weak duality, also

0 ’ 0
F(z) = 0 by assumption. Hence F(Z) = 3y and weak duality implies that
z is optimal for (P), so that max(P) = min(D) . (Weak duality is
available from Theorem 1.)

Suppose now that 2; # 0 ; since 2,20 for (D), 7y > 0 . Choose
any ¥, U, ¥ so that Yo * y € 8%, vy * U € Cl > Wy * € €, . Since
5%, Cl , and 02 are convex sets, y =y, + By € S* , v = vy * BD € ¢ s
and W = Wy * B € 02 , whenever 0 = f8 =1 . By assumption

T . -
g(uo) + wouo >0 , and then (3) and (7) have a solution u = uy + 7(B) for

sufficiently small B > 0 . By continuity, g{u) + wjh >0 for
sufficiently small B > 0 ; hence (7) implies (). Hence this point

(u, 2, y, v, W) , with u =uj+ #(B) and z given by (7), is feasible
for (D), for sufficiently small B > O .

Since (uo, 25> Yg» vo, wo) minimizes (D),

(8) 2y = [f(u)—vTu—yZ%(u)]/[b(u)+w];] Zpl/q ,

using (7), where

(9) b= flug) + B (uys @) - viuy - Bola - 857uy - yinluy)

(10) g = g(uo) + Bg'(uo; u) + wguo + ngﬁ + Bﬁjh + o(B)

Combining these terms shows that

(11) (Po—zoqo) + BR - B[?T%(uo)+(5+zoﬁ) ué] +oB) =0,
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vhere p = f(uo) + ygh(uo) + vguo 4y = g[uo) + wguo , and

= ! ] ! Y] T ' - U T i
(12) R =Ff (uo, ) - 259" (g ) - [yoh} (ugs @) - v -z @ -
Then P, -2, 0 but p,-39,=0 by (4), so py -2, =0 .

Dividing (11) by B and letting B + O , then shows that

(13) R - gTh(uO) - (5+zozr;]Tuo >0 .

0 for some

Denote ¥ = -f + 2,9 + yTh . From (3), 6 + Vo * 3,

8 € Bw(uo) . Then w'[uo; %) = o’ . Since R = ¢'(uo; ) (v0+zowO)Tﬁ .

it follows that & = —(6+v +2 W )Tﬁ = 0 . Hence

0700
~T ~ ~\ 7T
(%) y h(uo] + (v+zdd) uy < 0 .
Setting ¥ =0 and & =0, ﬁTuO < 0 whenever v, + D € €, - Hence
T o_.T .7 .
v Ug = vouo for each v € Cl . Therefore s[uO,Cl) = VU - Since
T
1 >

vy € Cl , by a constraint of (D), s(uo|Cl) 2 VU, - Hence
vlu = s(u.]c.) . Since 2z, > 0, a similar argument applied to u
070 0'"1 0 ? 0
shows that wguo = s(uolcz) . Nowlet v =0 and % = 0 . Then

¥ h(uo] < 0 whenever y € $* ; since S 1is a closed convex cone, it
follows that -h(uo) €S . Setting y = By s Yyt y € S* , and then
T
0

(—%yO)Th[uo) <0 . But also y h(uo) =0 since y, € S* , and —h(uo) €S

has Jjust been proved. Therefore ygh(u =0 .

o
Thus uo is feasible for (P), and the optimal objective function for
(D) equals

(15) 2 = [lug)wa (uyly) <1/ [ (ug) v (gl )] = Fluy)

Using weak duality, it follows that u is optimal for (P). Hence

0
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max(P) = min(D) . o

Discussion and examples

if f, g, and h are differentiable functions, then (3) reduces to

(16) 0 = (-fragry’h) "(w) + (v+aw) .
For nondifferentiable functions, an equivalent to (3) is (see [75])

(17) ’ (for all ¢t ) o¢'(u; t) + (viaw)t =20 ,

where ¢ = -f + zg + yTh .

The technique of proof for Theorem 2 is adapted from that of [9],

Theorem 6, and [5], Theorem 4.8.1. Since the "solvable near u. " require-

0
ment in Theorem 2 does not demand a umique solution for wu , the usual
implicit function theorem is assuming too much. A general verifiable
solvability criterion for the convex nondifferentiable case has yet to be
found. An inclusion of the form p € 3®(u) must be solved (nonuniquely)

for u , given p, € aé(uo] . For this it suffices if 3®(-) maps a
neighbourhood of u

let ®(u) = (uTu)%

0 onto some neighbourhood of po . As a simple example

+ %EuTu , for u ¢ Rn and € a positive constant; set
n

Uy = O . Denote B(r) = {E ¢R* : ||g]] = »} . Then BQ(uO] = B(1) , and

9®(+) maps B(8) onto B(1+e§) , so that the sufficient requirement is

fulfilled, provided that ”pOH <=1 , for this nondifferentiable function

$® . This is not so if € =0

Problem (P) includes various special cases. If fs g » and h are
affine, then (P) reduces to that considered by Mond and Schechter [13],

[74]. As noted in [13], if B is a positive semidefinite matrix, and @

is the compact set {Bv : vgbv = 1} , then

%
(18) s(xl@) = («7Bx)? .
Thus, if f, g , and h are differentiable functions, and s(’lCl) and
s('|C2) are defined as in (18) by positive semidefinite matrices B and

D , problem (P) becomes the nondifferentiable fractional programming
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problem considered in [77]. 1If also f, g , and h are affine, the
results of Chandra and Guiati [3] are obtained. If g(z) =1 , and
C2 = {o} , then s(xlc2) = 0 , so that a nonfractional nondifferentiable

objective function F(x) = flx) - SLE|Cl] is recovered.

If S is a k X»n matrix, then [73]

s(x|Q)

(19) lIszzll,

for p %21, where = {STu : ”u”q = l} , and p_l rgt =1 , and

1

P 1/p
g =« if p =1 . Here Hx”p = E:]xi!:] if p <® , and
Hx”Do = sup{lxil : %=1, 2, ...} . The set § , as defined, is convex and

compact.

Thus if f, g , and % are differentiable, s(- Cl] is defined as in
(19) by a matrix 5, and a scalar p, , and similarly s(']Cz) by a

matrix S, and a scalar P, » then problems (P) and (D) become

2
respectively
(P'): maximize [f(x)-lls xl_1/[g(x)+lSxll_ ] subject to h(z) <0 ,
1p 2p
x€X 1 2
0
(D'): minimize 2 subject toz =0,y =0, | =1, Wl =1,
uEXO,Z,y,v’w ql q2

Viy n-frag) (w) + 1o + Ty = 0,

-flu) + zglu) + yTh(u) + uT[Si’msgw) > 0

If, in particular, f, g , and h are affine functions, then some of the

problems discussed in [13] are obtained.
If f,g , and h are differentiable, and 02 consists only of the
zero vector in R” , and s('|Cl) is defined, as in (18), by a positive

semidefinite matrix B , then (P) and (D) reduce to the problems considered
by Aggarwal and Saxena [1], [2]. 1If also g(x) = 1 , one obtains the

(nonfractional) problems discussed in [10].
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If f, g, and h are differentiable, C, = {0} , g(z) =1, and
s('lCl) is defined as in (19) by a matrix S , then the present results

yield those of Mond and Schechter [12].
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