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A duality theorem for a

nondifferentiable nonlinear

fractional programming problem

B. Mond and B.D. Craven

A duality theorem, and a converse duality theorem, are proved for

a nonlinear fractional program, where the numerator of the

objective function involves a concave function, not necessarily

differentiable, and also the support function of a convex set,

and the denominator involves a convex function, and the support

function of a convex set. Various known results are deduced as

special cases.

Introduction

Let / : R" -* F , g : RW -»• F , and h : F* -> Fm be continuous

functions, with - / and g convex. Let S c F be a closed convex cone,

which may in par t icular be the nonnegative orthant F ; l e t the function

h be S-convex [ 6 ] . Let C and C be closed convex sets in F

Consider the nonlinear fractional programming problem

f(x)-e[x\c)
(i; (P): maximize , . i \n \ subject to -h(x) 6 S ,

in which X is an open convex set in F , s('|C.) is the support

function of the set C. (•£ = 1, 2) , and it is assumed that
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398 B. Mond and B . D . C r a v e n

(2) X € XQ (or -h(x) € 5) =» g(x) + s[x\C^\ > 0 .

Associate to (P) the problem

(D): minimize z subject to z > 0 , y € 5* , v i C , w 6 C. ,

(3) 0 € 3(-/+2g)(u) + d[yTh)(u) + (v+zw) ,

(U) - / ( M ) + 2#(M) + j A ( « ) + (v+zw)Tu 2 0 .

In (D), 5^ is the dual cone to S [6], and 8 denotes subdifferential

[75].

Under suitable hypothesis, (D) will be shown to be a dual problem to

(P); under somewhat different assumptions, (p) will be shown to be a dual

problem to (D).

The constraint -h(x) t S is locally solvable [4], [5] at x if

-h(xQ) € 5 and, for some <S > 0 , whenever the direction d satisfies

-h[xQ) - h'[xQ; d) € S and ||<2|| < 6 (where h'[xQ; d) denotes

directional derivative in direction d ) , there exists a solution

x = xQ + ad + o(a) to -h(x) 6 5 , valid for sufficiently small a > 0 .

(This requirement reduces to the Kuhn-Tucker constraint qualification for a

constraint system h.(x) 5 0 (i = 1, 2, ..., m) .) The problem (P) will

be said to satisfy a constraint qualification at xQ if -h{xS) € 5 , and

either

(a) Slater's constraint qualification holds, namely

-h(x) i int S for some x £ X , or

(b) -h(x) iS is locally solvable at x. £ X , and the set

(5) U {sh{x)} x 3(8|,) (a- )
sZS* ° °

is closed in K x F

(The lat ter is automatic if S is a polyhedral cone and h is

differentiable at x [9].)
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Duali ty theorem

The assumptions stated in the Introduction will be assumed throughout.

THEOREM 1. Weak duality holds for (P) and (D), namely

sup(P) 2 inf(D) . If (P) reaches a maximum at x = x f X , if

max(P) 2 0 j and if a constraint qualification holds for (p), then (D)

reaches a minimum at some (u, z, y, v, w) with u = x , and

max(P) = min(D) .

Thus (D) is a s t r o n g d u a l IT\, [ S ] to ( P ) .

P roo f . L e t x b e f e a s i b l e f o r ( P ) , and l e t (u, z, y, v, w) b e

f e a s i b l e f o r ( D ) . From a c o n s t r a i n t f o r ( D ) , 8 + ty + iv+zw) = 0 f o r some

9 £ 3cp(u) and some ty d 3 [y h){u) , where cp = - / + zg . S i n c e z > 0

and - / and g a r e c o n v e x , <p i s c o n v e x . Then

[f(x)-s{x\C1)] - z[g(x)+s{x\C2)]

rp

= f{x) - zg(x) - (v+zw) x

T
= -ip(a;) - (v+zw) x

2 -<p(u) - QT(x-u) - (v+zw)T(x-u) - [v+zw)Tu since 9 € 8cp(u)

= -<p(u) - iv+zw) u + ty (x-u) by a constraint for (D)

T T
- y h(u) + ty (x-u) by a constraint for (D)

T T
— y h{x) since y h i s a convex function

2 0 since -h{x) € S and i/ E S* .

By hypothesis, g(x) + s ( x | c j > 0 . Dividing by i t ,

[fU)-s{x\C1)]/lg(x)+s{x\C2y\ S z .

Hence sup(P) 5 inf(D) .

How assume that (P) is'maximized at xQ , with m = max(P) > 0 , and

also the constraint qualification. Then x_ also maximizes

(6) [f(x)-s[x\C1)] - m[g(x)+s{x\c2)]

subject to -h(x) £ S . Applying the appropriate nondifferentiable version

of the Kuhn-Tucker Theorem, assuming constraint qualif icat ion (a) or (b)
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(see [ 9 ] , Theorem it) ,

0 t H-f+mg)(xQ) + v + w + d{yTh){xQ) , yTh{xQ) = 0 ,

ho lds for some y € S* , v € B s ^ l ^ ) , and w € ds[xQ\C ) . Then [ 7 5 ] ,

v € C± , vTx.Q = s f x j c ^ ) , W € C2 , u T x 0 = s ( x Q | C 2 ) ; t h e r e f o r e a l l

c o n s t r a i n t s of (D) except (k) hold for u = x , z = m, y, V, w , and (h)

h o l d s a l s o from [ / ( « 0 ) - s (xQ 1 ^ ) ] / ^ ( x Q ) + s (xQ |C 2 )] = m and / f c ( x 0 ) = 0 .0

Converse d u a l i t y theorem

Again assume all assumptions of the Introduction, including (2).

Denote by F(x) the objective function for (P) .

Suppose that (3) and (I4) are satisfied for

(u, z, y, v, w) = {uQ, zQ, yQ, vQ, WQ) ,

where yQ € S* , vQ € C^ , WQ € C^ , and # ( " 0 ] + wQuQ > 0 . The system

(3) 0 € 3(-f+zg)(u) + Z{yTh){u) + {v+zw) ,

together with

(7) 2 = \f{u)-vTu-yTh{u)']/\3{u)«Jru'] ,

will be called solvable near u if, whenever y = y + &y € S* ,

V = V + &V f C and U = wQ + &3 € C , for 0 5 6 5 1 , then the system

(3) and (7) has a solution u = uQ + w(0) for all sufficiently small

positive 3 , satisfying u(B) •+ 0 as 3 + 0 .

T

This property holds, in par t icular , i f - / + z^ + y h has a non-

singular hessian matrix, a t u = u , in consequence of the implicit

function theorem. However, the following converse duality theorem does not

assume any d i f fe ren t iab i l i ty of the functions f,g,h .
THEOREM 2. Let (D) reach a minimum at

(u, z, y, v, u) = [uQ, zQ, yQ, vQ, wQ) ,
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where u € X . If z = 0 , assume that F(x) > 0 for some x (. XQ

satisfying -h(x) € S . If z > 0 , assume that the system (3) and (T) is

solvable near u . Then (p) reaches a maximum, and max(P) = min(D) .

Henae (P) is a strong dual to (D) .

Proof, i f 3 = 0 , then F(x) £ 2 = 0 by weak d u a l i t y , a l s o

F{x) > 0 by assumption. Hence F( x) = z , and weak d u a l i t y impl ies t h a t

x i s opt imal for ( P ) , so t h a t max(p) = min(D) . (Weak d u a l i t y i s

a v a i l a b l e from Theorem 1.)

Suppose now t h a t 2 * 0 ; s ince z 2 0 for (D), Z > 0 . Choose

any y, V, w so t h a t y + y € S* , v + v € C , w + w € C . Since

S*, C_^ , and C^ a r e convex s e t s , y = yQ + &y i S* , v = VQ + Bu € C± ,

and W = w + 6w € C whenever 0 5 3 S 1 . By assumpt ion

g{u ) + w M > 0 , and t h e n (3) and (7) have a s o l u t i o n M = u + S(3) for

s u f f i c i e n t l y smal l 3 > 0 . By c o n t i n u i t y , g(u) + w u > 0 for

s u f f i c i e n t l y smal l 3 > 0 ; hence (7) i m p l i e s (h). Hence t h i s p o i n t

(u , s , y, v, w) , w i th u = u + u(&) and 3 g iven by ( 7 ) , i s f e a s i b l e

for (D) , for s u f f i c i e n t l y smal l 3 > 0 .

S ince [uQ, zQ, yQ, VQ, WQ) minimizes (D) ,

(8) zQ 5 {f(u)-vTu-yTh(u)]/[g(u)+wTu'] = p/q ,

u s i n g ( 7 ) , where

(9) P = f{uQ) + &f'{uQ; u) - VT
Qu0 - f$VT

Qu - ZvTuQ - yT
Qh{u0)

- &y%i'[uQi u) - 8yTh{uQ) + o ( 3 ) ,

(10) q = g[uQ) + &g'{uQ; u) + wT
QuQ + 3 w ^ + $wTuQ

Combining these terms shows that
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where pQ = / ( u j + ̂ ( u j + y^Q , qQ = ^ + i#«0 , and

(12) i? = f(uQ; 2) - 3^'(w0; 2) - ( $ ) ' ( V 5) - V " W •

Then pQ - zQqQ > 0 ; but pQ - zQqQ 2 0 by (1*), so pQ - zQqQ = 0 .

Dividing (11) by 3 and letting 3 + 0 , then shows that

(13) R - yTh{uQ) - [v+zQw)Tu0 > 0 .

T
D e n o t e ty = - / + z ^ + y h . From ( 3 ) , 9 + v + z w = 0 f o r some

9 € ty[uQ) . Then * ' ( M 0 ; U) 5 9f5 . Since R = <l>'{uQ; u) - {vo+zQw^Tu

i t f o l l o w s t h a t R S - ( 9 + u + 3 w ) 2 = 0 . H e n c e

Setting y = 0 and w = 0 , y M 2 0 whenever y + 5 € ̂  . Hence

v u.2 y u for each u € C . Therefore s (u |C ) 2 y M . Since

v i. C , by a cons t ra in t of (D), s (w. | c J 2 unwo ' H e n c e

y w = s(uo|(7 ) . Since 3 > 0 , a similar argument applied to W w.

shows tha t WQuQ = s[u |CJ . Now l e t y = 0 and U = 0 . Then

f̂ ^ ( " Q J - ° whenever y € 5* ; since S is a closed convex cone, i t

follows that -h\uJ\ i. S . Setting y = -%Q > y0
 + y * s* > and then

(-%yo)^("o) - 0 . But also yT
Qh{u^ 5 0 since yQ <i S* , and -h[uQ) € S

has jus t been proved. Therefore yJi(UrA - 0 .

Thus u i s feasible for (P), and the optimal objective function for

(D) equals

(15) zQ = [/(^-s^Jc^-OJ/k^MuJ^)] = F{u0) .

Using weak duality, i t follows that w is optimal for (P) . Hence
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max(P) = min(D) . Q

Discussion and examples

If /» 9 , a n d ^ a r e differentiable functions, then (3) reduces to

(16) 0 = [-f+zg+yTh] '(u) + (v+su) .

For nondifferentiable functions, an equivalent to (3) is (see [7 5])

(IT) ' (for all t ) <P'(M; t) + {v+zw)t 2 0 ,

T
where <p = -/ + zg + y h .

The technique of proof for Theorem 2 is adapted from that of [9],

Theorem 6, and [5], Theorem U.8.1. Since the "solvable near uQ " require-

ment in Theorem 2 does not demand a unique solution for u , the usual

implicit function theorem is assuming too much. A general verifiable

solvability criterion for the convex nondifferentiable case has yet to be

found. An inclusion of the form p ? 33>(w) must be solved (nonuniquely)

for u , given pQ € 3#(w0) . For this it suffices if 3<i>( •) maps a

neighbourhood of uQ onto some neighbourhood of p. . As a simple example

let *(u) = [u u) + %£w u , for u E P and e a positive constant; set

uQ = 0 . Denote B{r) = J H " ' 1 : ||5|| 5 r) . Then 2${uQ) = B(l) , and

3(i'( •) maps S(6) onto B ( 1 + E 6 ) , so that the sufficient requirement is

fulfilled, provided that ||p || 5 1 , for this nondifferentiable function

* . This is not so if e = 0 .

Problem (P) includes various special cases. If f, g , and h are

affine, then (P) reduces to that considered by Mond and Schechter [73],

['4]. As noted in ['3], if B is a positive semidefinite matrix, and Q

is the compact set \Bv : v Bv - l} , then

(18) s(x\Q) = O / B X ] * .

Thus, if f, g , and h are differentiable functions, and s(#|C ) and

s(*|CpJ are defined as in (l8) by positive semidefinite matrices B and

D , problem (P) becomes the nondifferentiable fractional programming
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problem considered in [ H ] . If also / , g , and h are aff ine, the

r e s u l t s of Chandra and Gulati [3] are obtained. If g(x) = 1 , and

C = (o) , then s(x|C J = 0 , so that a nonfractional nondifferentiable

object ive function F(x) = f{x) - s[x\C ) is recovered.

If 5 i s a k x n matrix, then [7 3]

(19) IISscJI = s ( x \ Q )

for p 2 1 , where Q = \sTu : \\u\\ < l | , and p " 1 + o" 1 = 1 , and

q = °° i f p = 1 . Here ||x|| = 7 \x. \P \ if p < oo 5 a n d
P L ^ J

IÎ IL = sup{|x.| : i = 1, 2, ...} . The set § , as defined, is convex and

compact.

Thus if /, g , and h are differentiable, s(-|C ) is defined as in

(19) by a matrix S and a scalar p , and similarly s(-|C ) by a

matrix S and a scalar p , then problems (P) and (D) become

respectively

(P1): maximize [f(x)-\\sM\ ] / [g(x)+\\S x\\ ] subject to h(x) S O ,
xiX L Pl d P2

(D1): minimize z subject to z > 0, y 2 0, ||w|| £ 1, ||u|| S 1 ,

[yTh-f+zg)(u) + S^v + 5̂ w = 0 ,

3ff(w) + y
Th(u) + u7 S^y+S^wj > 0 .

If, in particular, /, g , and h are affine functions, then some of the

problems discussed in ['3] are obtained.

If f, 9 i and ft are dif ferentiable, and C consists only of the

zero vector in R , and s[*|C ) is defined, as in (l8), by a positive

semidefinite matrix B , then (P) and (D) reduce to the problems considered

by Aggarwal and Saxena [/], [2]. If also g(x) = 1 , one obtains the

(nonfractional) problems discussed in ['0].
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If f , 9 , and h are d i f ferent iable , C = {0} , g(x) = 1 , and

s(*|C ] i s defined as in (19) by a matrix 5 , then the present resu l t s

yield those of Mond and Schechter [7 2 ] .
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