A duality theorem for a nondifferentiable nonlinear fractional programming problem
 B. Mond and B.D. Craven

Abstract

A duality theorem, and a converse duality theorem, are proved for a nonlinear fractional program, where the numerator of the objective function involves a concave function, not necessarily differentiable, and also the support function of a convex set, and the denominator involves a convex function, and the support function of a convex set. Various known results are deduced as special cases.

Introduction

Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}, g: \mathbf{R}^{n} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuous functions, with $-f$ and g convex. Let $S \subset \mathbb{R}^{m}$ be a closed convex cone, which may in particular be the nonnegative orthant $\mathbb{R}_{+}^{m} ;$ let the function h be S-convex [6]. Let C_{1} and C_{2} be closed convex sets in \mathbb{R}^{n}. Consider the nonlinear fractional programming problem

$$
\begin{equation*}
(\mathrm{P}): \underset{x \in X_{0}}{\operatorname{maximize}} \frac{f(x)-s\left(x \mid C_{1}\right)}{g(x)+s\left(x \mid C_{2}\right)} \text { subject to }-h(x) \in S, \tag{1}
\end{equation*}
$$

in which X_{0} is an open convex set in $\mathbf{R}^{n}, s\left(\cdot \mid C_{i}\right)$ is the support function of the set $C_{i}(i=1,2)$, and it is assumed that

Received 5 April 1979.

$$
\begin{equation*}
x \in X_{0}(\text { or }-h(x) \in S) \Rightarrow g(x)+s\left(x \mid C_{2}\right)>0 . \tag{2}
\end{equation*}
$$

Associate to (P) the problem
(D): $\underset{u \in X_{0}, y, z, v, w}{\operatorname{minimize}} z$ subject to $z \geq 0, y \in S^{*}, v \in C_{1}, w \in C_{2}$,

$$
\begin{gather*}
0 \in \partial(-f+z g)(u)+\partial\left(y^{T} h\right)(u)+(v+z w) \tag{3}\\
-f(u)+z g(u)+y^{T} h(u)+(v+z w)^{T} u \geq 0 . \tag{4}
\end{gather*}
$$

In (D), S^{*} is the dual cone to S [6], and ∂ denotes subdifferential [15].

Under suitable hypothesis, (D) will be shown to be a dual problem to (P); under somewhat different assumptions, (P) will be shown to be a dual problem to (D).

The constraint $-h(x) \in S$ is locally solvable [4], [5] at x_{0} if $-h\left(x_{0}\right) \in S$ and, for some $\delta>0$, whenever the direction d satisfies $-h\left(x_{0}\right)-h^{\prime}\left(x_{0} ; d\right) \in S$ and $\|d\|<\delta$ (where $h^{\prime}\left(x_{0} ; d\right)$ denotes directional derivative in direction d), there exists a solution $x=x_{0}+\alpha d+o(\alpha)$ to $-h(x) \in S$, valid for sufficiently small $\alpha>0$. (This requirement reduces to the Kuhn-Tucker constraint qualification for a constraint system $\left.h_{i}(x) \leq 0(i=1,2, \ldots, m).\right)$ The problem (P) will be said to satisfy a constraint qualification at x_{0} if $-h\left(x_{0}\right) \in S$, and either
(a) Slater's constraint qualification holds, namely $-h(x) \in \operatorname{int} S$ for some $x \in X_{0}$, or
(b) $-h(x) \in S$ is locally solvable at $x_{0} \in X_{0}$, and the set

$$
\begin{equation*}
\left.{\underset{s \in S^{*}}{ }}_{U} \operatorname{sh}\left(x_{0}\right)\right\} \times \partial(s h)\left(x_{0}\right) \tag{5}
\end{equation*}
$$

is closed in $\mathbb{R} \times \mathbf{R}^{m}$.
(The latter is automatic if S is a polyhedral cone and h is differentiable at x_{0} [9].)

Duality theorem

The assumptions stated in the Introduction will be assumed throughout.
THEOREM 1. Weak duality holds for (P) and (D), namely $\sup (P) \leq \inf (D)$. If (P) reaches a maximum at $x=x_{0} \in X_{0}$, if $\max (P) \geq 0$, and if a constraint qualification holds for (P), then (D) reaches a minimum at some (u, z, y, v, w) with $u=x_{0}$, and $\max (P)=\min (D)$.

Thus (D) is a strong dual [7], [8] to (P).
Proof. Let x be feasible for (P), and let (u,z,y,v,w) be feasible for (D). From a constraint for (D), $\theta+\psi+(v+z w)=0$ for some $\theta \in \partial \varphi(u)$ and some $\psi \in \partial\left(y^{T} h\right)(u)$, where $\varphi=-f+z g$. Since $z \geq 0$ and $-f$ and g are convex, φ is convex. Then

$$
\begin{aligned}
{\left[f(x)-s\left(x \mid C_{1}\right)\right] } & -z\left[g(x)+s\left(x \mid C_{2}\right)\right] \\
& =f(x)-z g(x)-(v+z w)^{T} x \\
& =-\varphi^{\prime}(x)-(v+z w)^{T} x \\
& \leq-\varphi(u)-\theta^{T}(x-u)-(v+z w)^{T}(x-u)-(v+z w)^{T} u \text { since } \theta \in \partial \varphi(u) \\
& =-\varphi(u)-(v+z w)^{T} u+\psi^{T}(x-u) \text { by a constraint for (D) } \\
& \leq y^{T} h(u)+\psi^{T}(x-u) \text { by a constraint for (D) } \\
& \leq y^{T} h(x) \text { since } y^{T} h \text { is a convex function } \\
& \leq 0 \text { since }-h(x) \in S \text { and } y \in S^{*} .
\end{aligned}
$$

By hypothesis, $g(x)+s\left(x \mid C_{2}\right)>0$. Dividing by it,

$$
\left[f(x)-s\left(x \mid C_{1}\right)\right] /\left[g(x)+s\left(x \mid C_{2}\right)\right] \leq z
$$

Hence $\sup (P) \leq \inf (D)$.
How assume that (P) is maximized at x_{0}, with $m=\max (\mathrm{P}) \geq 0$, and also the constraint qualification. Then x_{0} also maximizes

$$
\begin{equation*}
\left[f(x)-s\left(x \mid C_{1}\right)\right]-m\left[g(x)+s\left(x \mid C_{2}\right)\right] \tag{6}
\end{equation*}
$$

subject to $-h(x) \in S$. Applying the appropriate nondifferentiable version of the Kuhn-Tucker Theorem, assuming constraint qualification (a) or (b)
(see [9], Theorem 4),

$$
0 \in \partial(-f+m g)\left(x_{0}\right)+v+w+\partial\left(y^{T} h\right)\left(x_{0}\right), \quad y^{T} h\left(x_{0}\right)=0,
$$

holds for some $y \in S^{*}, \quad v \in \partial s\left(x_{0} \mid c_{1}\right)$, and $w \in \partial s\left(x_{0} \mid c_{2}\right)$. Then [15], $\imath \in C_{1}, \quad v^{T} x_{0}=s\left(x_{0} \mid C_{1}\right), w \in C_{2}, w^{T} x_{0}=s\left(x_{0} \mid C_{2}\right) ;$ therefore all constraints of (D) except (4) hold for $u=x_{0}, z=m, y, v, w$, and (4) holds also from $\left[f\left(x_{0}\right)-s\left(x_{0} \mid C_{1}\right)\right] /\left[g\left(x_{0}\right)+s\left(x_{0} \mid C_{2}\right)\right]=m$ and $y^{T} h\left(x_{0}\right)=0 . \square$

Converse duality theorem

Again assume all assumptions of the Introduction, including (2). Denote by $F(x)$ the objective function for (P).

Suppose that (3) and (4) are satisfied for

$$
(u, z, y, v, w)=\left(u_{0}, z_{0}, y_{0}, v_{0}, w_{0}\right),
$$

where $y_{0} \in S^{*}, v_{0} \in C_{1}, w_{0} \in C_{2}$, and $g\left(u_{0}\right)+w_{0}^{T} u_{0}>0$. The system

$$
\begin{equation*}
0 \in \partial(-f+z g)(u)+\partial\left(y^{T} h\right)(u)+(v+z w), \tag{3}
\end{equation*}
$$

together with

$$
\begin{equation*}
z=\left[f(u)-v^{T} u-y^{T} h(u)\right] /\left[g(u)+w^{T} u\right], \tag{7}
\end{equation*}
$$

will be called solvable near u_{0} if, whenever $y=y_{0}+\beta \tilde{y} \in S^{*}$, $v=v_{0}+\beta \tilde{v} \in C_{1}$, and $w=w_{0}+\beta \tilde{v} \in C_{2}$, for $0 \leq \beta \leq I$, then the system (3) and (7) has a solution $u=u_{0}+\tilde{u}(\beta)$ for all sufficiently small positive β, satisfying $\tilde{u}(\beta) \rightarrow 0$ as $\beta \downarrow 0$.

This property holds, in particular, if $-f+z_{0} g+y_{0}^{T h}$ has a nonsingular hessian matrix, at $u=u_{0}$, in consequence of the implicit function theorem. However, the following converse duality theorem does not assume any differentiability of the functions f, g, h.

THEOREM 2. Let (D) reach a minimum at

$$
(u, z, y, v, w)=\left(u_{0}, z_{0}, y_{0}, v_{0}, w_{0}\right),
$$

where $u_{0} \in X_{0}$. If $z_{0}=0$, assume that $F(\hat{x}) \geq 0$ for some $\hat{x} \in X_{0}$ satisfying $-h(\hat{x}) \in S$. If $z_{0}>0$, assume that the system (3) and (7) is solvable near u_{0}. Then (P) reaches a maximm, and $\max (P)=\min (D)$. Hence (P) is a strong dual to (D).

Proof. If $z_{0}=0$, then $F(\hat{x}) \leq z_{0}=0$ by weak duality, also $F(\hat{x}) \geq 0$ by assumption. Hence $F(\hat{x})=z_{0}$, and weak duality implies that \hat{x} is optimal for (P), so that $\max (P)=\min (D)$. (Weak duality is available from Theorem l.)

Suppose now that $z_{0} \neq 0$; since $z_{0} \geq 0$ for (D), $z_{0}>0$. Choose any $\tilde{y}, \tilde{v}, \tilde{w}$ so that $y_{0}+\tilde{y} \in S^{*}, v_{0}+\tilde{v} \in C_{1}, w_{0}+\tilde{w} \in C_{2}$. Since S^{*}, C_{1}, and C_{2} are convex sets, $y=y_{0}+\beta \tilde{y} \in S^{*}, v=v_{0}+B \tilde{v} \in C_{1}$, and $w=w_{0}+\beta \tilde{\omega} \in C_{2}$, whenever $0 \leq \beta \leq 1$. By assumption $g\left(u_{0}\right)+w_{0}^{T} u_{0}>0$, and then (3) and (7) have a solution $u=u_{0}+\tilde{u}(\beta)$ for sufficiently small $\beta>0$. By continuity, $g(u)+w^{T} u>0$ for sufficiently small $\beta>0$; hence (7) implies (4). Hence this point (u, z, y, v, w), with $u=u_{0}+\tilde{u}(\beta)$ and z given by (7), is feasible for (D), for sufficiently small $\beta>0$.

Since $\left(u_{0}, z_{0}, y_{0}, v_{0}, w_{0}\right)$ minimizes (D),

$$
\begin{equation*}
z_{0} \leq\left[f(u)-v^{T} u-y^{T} h(u)\right] /\left[g(u)+w^{T} u\right] \equiv p / q, \tag{8}
\end{equation*}
$$

using (7), where

$$
\begin{align*}
& p=f\left(u_{0}\right)+\beta f^{\prime}\left(u_{0} ; \tilde{u}\right)-v_{0}^{T} u_{0}-\beta v_{0}^{T} \tilde{u}-\beta \tilde{v}^{T} u_{0}-y_{0}^{T} h\left(u_{0}\right) \tag{9}\\
&-\beta y_{0}^{T} h^{\prime}\left(u_{0} ; \tilde{u}\right)-\beta \tilde{y}^{T} h\left(u_{0}\right)+o(\beta)
\end{align*}
$$

$$
\begin{equation*}
q=g\left(u_{0}\right)+\beta g^{\prime}\left(u_{0} ; \tilde{u}\right)+w_{0}^{T} u_{0}+\beta w_{0}^{T} \tilde{u}+\beta \tilde{w}^{T} u_{0}+o(\beta) \tag{10}
\end{equation*}
$$

Combining these terms shows that

$$
\begin{equation*}
\left(p_{0}-z_{0} q_{0}\right)+\beta R-\beta\left[\tilde{y}^{T} h\left(u_{0}\right)+\left(\tilde{v}+z_{0} \tilde{w}\right)^{T} u_{0}\right]+o(\beta) \geq 0 \tag{11}
\end{equation*}
$$

where $p_{0}=f\left(u_{0}\right)+y_{0}^{T} h\left(u_{0}\right)+v_{0}^{T} u_{0}, \quad q_{0}=g\left(u_{0}\right)+w_{0}^{T} u_{0}$, and

$$
\begin{equation*}
R=f^{\prime}\left(u_{0} ; \tilde{u}\right)-z_{0} g^{\prime}\left(u_{0} ; \tilde{u}\right)-\left(y_{0}^{T}\right)^{\prime}\left(u_{0} ; \tilde{u}\right)-v_{0}^{T} \tilde{u}-z_{0} w_{0}^{T} \tilde{u} \tag{12}
\end{equation*}
$$

Then $p_{0}-z_{0} q_{0} \geq 0$; but $p_{0}-z_{0} q_{0} \leq 0$ by (4), so $p_{0}-z_{0} q_{0}=0$. Dividing (ll) by β and letting $\beta+0$, then shows that

$$
\begin{equation*}
R-\tilde{y}^{T} h\left(u_{0}\right)-\left(\tilde{v}+z_{0} \tilde{w}\right)^{T} u_{0} \geq 0 \tag{13}
\end{equation*}
$$

Denote $\psi=-f+z_{0} g+y^{T} h$. From (3), $\theta+v_{0}+z_{0} \omega_{0}=0$ for some $\theta \in \partial \psi\left(u_{0}\right)$. Then $\psi^{\prime}\left(u_{0} ; \tilde{u}\right) \geq \theta^{T} \tilde{u}$. Since $R=\psi^{\prime}\left(u_{0} ; \tilde{u}\right)-\left(v_{0}+z_{0} \omega_{0}\right)^{T} \tilde{u}$, it follows that $R \leq-\left(\theta+v_{0}+z_{0} \omega_{0}\right)^{T} \tilde{u}=0$. Hence

$$
\begin{equation*}
\tilde{y}^{T} h\left(u_{0}\right)+\left(\tilde{v}+z_{0} \tilde{w}\right)^{T} u_{0} \leq 0 \tag{14}
\end{equation*}
$$

Setting $\tilde{y}=0$ and $\tilde{w}=0, \tilde{v}^{T} u_{0} \leq 0$ whenever $v_{0}+\tilde{v} \in C_{1}$. Hence $v^{T} u_{0} \leq v_{0}^{T} u_{0}$ for each $v \in C_{1}$. Therefore $s\left(u_{0} \mid C_{1}\right) \leq v_{0}^{T} u_{0}$. Since $v_{0} \in C_{1}$, by a constraint of ($\left.D\right), s\left(u_{0} \mid C_{1}\right) \geq v_{0}^{T} u_{0}$. Hence $v_{0}^{T} u_{0}=s\left(u_{0} \mid C_{1}\right)$. Since $z_{0}>0$, a similar argument applied to $\tilde{w}^{T} u_{0}$ shows that $w_{0}^{T} u_{0}=s\left(u_{0} \mid C_{2}\right)$. Now let $\tilde{v}=0$ and $\tilde{w}=0$. Then $\tilde{y}^{T} h\left(u_{0}\right) \leq 0$ whenever $\tilde{y} \in S^{*}$; since S is a closed convex cone, it follows that $-h\left(u_{0}\right) \in S$. Setting $\tilde{y}=-\frac{3}{2} y_{0}, y_{0}+\tilde{y} \in S^{*}$, and then $\left(-\frac{b_{2}}{0}\right)^{T} h\left(u_{0}\right) \leq 0$. But also $y_{0}^{T} h\left(u_{0}\right) \leq 0$ since $y_{0} \in S^{*}$, and $-h\left(u_{0}\right) \in S$ has just been proved. Therefore $y_{0}^{T} h\left(u_{0}\right)=0$.

Thus u_{0} is feasible for (P), and the optimal objective function for (D) equals

$$
\begin{equation*}
z_{0}=\left[f\left(u_{0}\right)-s\left(u_{0} \mid C_{1}\right)-0\right] /\left[g\left(u_{0}\right)+s\left(u_{0} \mid C_{2}\right)\right]=F\left(u_{0}\right) . \tag{15}
\end{equation*}
$$

Using weak duality, it follows that u_{0} is optimal for (P). Hence
$\max (P)=\min (D)$.

Discussion and examples

If f, g, and h are differentiable functions, then (3) reduces to

$$
\begin{equation*}
0=\left(-f+z g+y^{T} h\right)^{\prime}(u)+(v+z w) \tag{16}
\end{equation*}
$$

For nondifferentiable functions, an equivalent to (3) is (see [15])

$$
\begin{equation*}
\text { (for all } t \text {) } \varphi^{\prime}(u ; t)+(v+z w) t \geq 0 \tag{17}
\end{equation*}
$$

where $\varphi=-f+z g+y^{T} h$.
The technique of proof for Theorem 2 is adapted from that of [9], Theorem 6, and [5], Theorem 4.8.1. Since the "solvable near u_{0} "requirement in Theorem 2 does not demand a unique solution for u, the usual implicit function theorem is assuming too much. A general verifiable solvability criterion for the convex nondifferentiable case has yet to be found. An inclusion of the form $\rho \in \partial \Phi(u)$ must be solved (nonuniquely) for u, given $\rho_{0} \in \partial \Phi\left(u_{0}\right)$. For this it suffices if $\partial \Phi(\cdot)$ maps a neighbourhood of u_{0} onto some neighbourhood of ρ_{0}. As a simple example let $\Phi(u)=\left(u^{T} u\right)^{\frac{3}{2}}+\frac{1}{2} \varepsilon u^{T} u$, for $u \in \mathbf{R}^{n}$ and ε a positive constant; set $u_{0}=0$. Denote $B(r)=\left\{\xi \in \mathbf{R}^{n}:\|\xi\| \leq r\right\}$. Then $\partial \Phi\left(u_{0}\right)=B(1)$, and $\partial \Phi(\cdot)$ maps $B(\delta)$ onto $B(1+\varepsilon \delta)$, so that the sufficient requirement is fulfilled, provided that $\left\|\rho_{0}\right\| \leq 1$, for this nondifferentiable function Φ. This is not so if $\varepsilon=0$.

Problem (P) includes various special cases. If f, g, and h are affine, then (P) reduces to that considered by Mond and Schechter [13], [14]. As noted in [13], if B is a positive semidefinite matrix, and Q is the compact set $\left\{B v: v^{T} B v \leq 1\right\}$, then

$$
\begin{equation*}
s(x \mid Q)=\left(x^{T} B x\right)^{\frac{1}{2}} . \tag{18}
\end{equation*}
$$

Thus, if f, g, and h are differentiable functions, and $s\left(\cdot \mid C_{1}\right)$ and $s\left(\cdot \mid C_{2}\right)$ are defined as in (18) by positive semidefinite matrices B and D, problem (P) becomes the nondifferentiable fractional programming
problem considered in [11]. If also f, g, and h are affine, the results of Chandra and Gulati [3] are obtained. If $g(x) \equiv 1$, and $C_{2}=\{0\}$, then $s\left(x \mid C_{2}\right)=0$, so that a nonfractional nondifferentiable objective function $F(x)=f(x)-s\left(x \mid C_{1}\right)$ is recovered.

If S is a $k \times n$ matrix, then [13]

$$
\begin{equation*}
\|S x\|_{p}=s(x \mid Q) \tag{19}
\end{equation*}
$$

for $p \geq 1$, where $Q=\left\{S^{T} u:\|u\|_{q} \leq 1\right\}$, and $p^{-1}+q^{-1}=1$, and
$q=\infty$ if $p=1$. Here $\|x\|_{p}=\left[\sum\left|x_{i}\right|^{p}\right]^{1 / p}$ if $p<\infty$, and $\|x\|_{\infty}=\sup \left\{\left|x_{i}\right|: i=1,2, \ldots\right\}$. The set Q, as defined, is convex and compact.

Thus if f, g, and h are differentiable, $s\left(\cdot \mid C_{1}\right)$ is defined as in (19) by a matrix S_{1} and a scalar p_{1}, and similarly $s\left(\cdot \mid C_{2}\right)$ by a matrix S_{2} and a scalar p_{2}, then problems (P) and (D) become respectively

$$
\begin{gathered}
\left(\mathrm{P}^{\prime}\right): \underset{x \in X_{0}}{\operatorname{maximize}}\left[f(x)-\left\|S_{1} x\right\|_{p_{1}}\right] /\left[g(x)+\left\|S_{2} x\right\|_{p_{2}}\right] \text { subject to } h(x) \leq 0 \\
\left(D^{\prime}\right): \operatorname{minimize}_{u \in X_{0}, z, y, v, w} z \text { subject to } z \geq 0, y \geq 0,\|v\|_{q_{1}} \leq 1,\|w\|_{q_{2}} \leq 1 \\
\nabla\left(y^{T} h-f+z g\right)(u)+S_{1}^{T} v+S_{2}^{T}=0 \\
\quad-f(u)+z g(u)+y^{T} h(u)+u^{T}\left(S_{1}^{T} v+S_{2}^{T} w\right) \geq 0
\end{gathered}
$$

If, in particular, f, g, and h are affine functions, then some of the problems discussed in [13] are obtained.

If f, g, and h are differentiable, and C_{2} consists only of the zero vector in \mathbb{R}^{n}, and $s\left(\cdot \mid C_{1}\right)$ is defined, as in (18), by a positive semidefinite matrix B, then (P) and (D) reduce to the problems considered by Aggarwal and Saxena [1], [2]. If also $g(x) \equiv 1$, one obtains the (nonfractional) problems discussed in [10].

If f, g, and h are differentiable, $C_{2}=\{0\}, g(x) \equiv 1$, and $s\left(\cdot \mid C_{1}\right)$ is defined as in (19) by a matrix S, then the present results yield those of Mond and Schechter [12].

References

[1] S.P. Aggarwal, P.C. Saxena, "Duality theorems for non-linear fractional programs", 2. Angew. Math. Mech. 55 (1975), 523-525.
[2] S.P.'Aggarwal \& P.C. Saxena, "A class of fractional functional programming problems", New Zealand Oper. Res. 7 (1979), 79-90.
[3] Suresh Chandra and T.R. Gulati, "A duality theorem for a nondifferentiable fractional programming problem", Management Sci. 23 (1976/77), 32-37.
[4] B.D. Craven, "Lagrangean conditions and quasiduality", Bull. AustraZ. Math. Soc. 16 (1977), 325-339.
[5] B.D. Craven, Mathematical programming and control theory (Chapman and Hall, London; John Wiley \& Sons, New York; 1978).
[6] B.D. Craven and B. Mond, "Transposition theorems for cone-convex functions", SIAM J. Appl. Math. 24 (1973), 603-612.
[7] B.D. Craven and B. Mond, "The dual of a fractional linear program", J. Math. Anal. Appl. 42 (1973), 507-512.
[8] B.D. Craven and B. Mond, "The dual of a fractional linear program: Erratum", J. Math. Anal. App2. 55 (1976), 807.
[9] B.D. Craven and B. Mond, "Lagrangean conditions for quasidifferentiable optimization", Survey of mathematical programing I (Proc. Ninth Intern. Sympos. Mathematical Programming, Budapest, 1976. Morth-Holland, to appear).
[10] Bertram ifond, "A class of nondifferentiable mathematical programing problems", J. Bath. Anal. Appl. 46 (1974), 169-174.
[11] B. :Mond, "A class of nondifferentiable fractional programming problems", 2. Angew. Wath. Hech. 58 (1978), 337-341.
[12] Bertram Mond and Murray Schechter, "A programming problem wi.th an L_{p} norm in the objective function", J. Austral. Math. Soc. Ser. B 19 (1975/1976), 333-342.
[13] B. Mond and M. Schechter, "A duality theorem for a homogeneous fractional programming problem", J. Optim. Theory Appl. 25 (1978), 349-359.
[14] B. Mond and M. Schechter, "Converse duality in homogeneous fractional programming", preprint, 1979.
[15] R. Tyrrell Rockafellar, Convex analysis (Princeton University Press, Princeton, New Jersey, 1970).

Department of Pure Mathematics,
La Trobe University,
Bundoora,
Victoria;
Department of Mathematics,
University of Melbourne,
Parkville,
Victoria.

