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ABSTRACT

We consider the classical risk model with subexponential claim size distribution.
Three methods are presented to simulate the probability of ultimate ruin and we
investigate their asymptotic efficiency. One, based upon a conditional Monte
Carlo idea involving the order statistics, is shown to be asymptotically efficient in
a certain sense. We use the simulation methods to study the accuracy of the
standard Embrechts-Veraverbeke [16] approximation for the ruin probability and
also suggest a new one based upon ideas of Hogan [21].
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1. INTRODUCTION

This paper is concerned with the simulation of the probability ip(u) of ruin in a
classical compound Poisson risk process U(t) with initial (large) reserve u = £/(0)
in the case where the claim size distribution B is heavy-tailed. Our main aim is to
investigate ways to improve upon crude Monte Carlo simulation.
We assume that the claim arrival process {N(t), t > 0} (N(0) = 0) is a
homogeneous Poisson process with rate A > 0. The claim sizes are assumed to
independent and identically distributed non-negative random variables £,-(/ € N)
with cumulative distribution function B(x) and finite mean fiB, and independent
of {N(t), t > 0}. The net premium is considered to be payable at a constant rate
c over time, where

c= {1

and 0 > 0 is the relative security loading. The insurance surplus at time t is U(t).
The total claim process R( [
Poisson process and thus

oadi
The total claim process R(t) = ]P ;=[ £,• is by the assumptions above a compound

U{t) = u + ct-R(t).

The probability of ruin is denned as

4>(u) = P(MU(t) <0).
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All simulation methods that we study are based upon representing the ruin
probability as ip(u) = z = EZ for some r.v. Z that can be generated by
simulation, simulate iid replicates Z\, ..., Zn of Z, estimate tp(u) by f = (Z\ +... +
Zn)/n and use the empirical variance of the Z, to produce confidence intervals.
The performance measure of a particular simulation method is the relative error
az/ip(u) where az = var(Z) (when comparing different simulation methods based
upon Z(l), Z(2), say, this in only reasonable if the computer times needed to
generate Z(l), Z(2) are roughly the same; we assume this to be the case without
further discussion). We face two difficulties:
1) The ruin problem has infinite horizon so that it is not straightforward to find

the desired representation ip(u) = z = E[Z] for some simulatable Z.
2) Since u is large, the ruin probability ip(u) is small and hence we are in the

framework of rare events simulation (see Heidelberger [20] or Asmussen &
Rubinstein [7] for surveys). Neglecting problem 1) for a moment, assume that
we can generate Z = I(r(u) < oo) where /(•) stands for the indicator function
and T(U) is the time of ruin with initial capital u. This procedure is known in
the literature as the the crude Monte Carlo method and leads to a relative
error

a?

In the case where B is light-tailed, a solution to both problems was suggested by
Siegmund [29] and Asmussen [4] who used importance sampling (Rubinstein [28]
or Glynn & Iglehart [18]). One then performs a change of measure, replacing
the given governing probability measure P by a different one P satisfying
P(T(U) < oo) = 1 and takes Z = dP/dP where the likelihood ratio (Radon-
Nikodym derivative) is computed on TT[uy More precisely, P corresponds to an
exponential change of measure involving the Lundberg exponent (adjustment
coefficient) R, such that the Poisson intensity and the claim size distribution is
changed in a certain way given by R. That problem 1) is solved follows from
P(T(U) < oo) = 1. Empirical evidence strongly suggests that also problem 2) is
solved, and the theoretical verification of this has been the subject of much
research. We follow here a standard current criterion (e.g. Heidelberger [20] or
Asmussen [7]) for calling a rare events simulation estimator asymptotically (or
logarithmically) efficient: one should have

« - » 10 • u - L ( 2 )

In particular, it suffices that

https://doi.org/10.2143/AST.27.2.542054 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.2.542054


SIMULATION OF RUIN PROBABILITIES FOR SUBEXPONENTIAL CLAIMS 299

for some polynomial p, and this is well-known to hold in the setting of
Siegmund [29], Asmussen [4] with p constant. Note that the CMC method can
never be efficient according to (2) because it always gives rise to the limit 1/2
rather than 1 there.
The present paper is concerned with the simulation of ip(u) in the case where B
does not have exponential moments so that R does not exist and the method of
Siegmund [29], Asmussen [4] is not applicable. Among such distributions we focus
on the class of subexponential distributions S. To be more precise:

Definition 1.1. A non negative random variable X with distribution function F is
called subexponential (F€ S), if for all n > 2,

+ - + Xn > x) = {
= {

(I i , ..., Xn) > x)
whereXh ..., Xn areiidcopiesofX.

This class is quite broad and contains many of the common' claim size
distributions, i.e. longtailed distributions such as Pareto, Lognormal or Weibull
with decreasing failure rate. Good summaries of the properties of this class are
given in Embrechts and Veraverbeke [16] and Kliippelberg [23].
Our vehicle to deal with problem 1) in this setting is the Pollaczeck-Khinchine
formula (see Asmussen [5])

p"B™{u)1 « > 0 , (4)

where P = ^o, B0(u) = j 0 " bo(s)ds and bo(s)=j-B(s) with B(s) = 1 - B(s);
B*o" denotes the n-th convolution of Bo with itself. Note that (4) means that
1 — ip(u) is a compound geometric distribution function,

-0(M) = P(SK > u), (5)

where SK = Xt + . . .+. . . XK, K is geometric with parameter p, independent of the
X/s, and the Xh X2, ••• are non-negative iid random variables with common
density bn. This means that the CMC method is applicable: 'ip(u) = z = E[Z]
where Z-I(SK> u). The algorithm is as follows:
1. Generate K, - geometric (p) , i.e. P(Kt = k) - (1 - p)pk (k = 0, 1, 2 ...).
2. Generate X\,..., X'K. from the density b0 and let SK. = X{ + ... + XKr

3. If SK > u then Z,-= 1, otherwise Z, = 0.
4. Repeat steps 1 to 3 n times.

5. Estimate E [Z] by z = ^ U z>-

As a CMC algorithm, this procedure (referred to as Algorithm I in the following)
cannot be efficient in the sense of (2). To deal with problem 2), we suggest (Section
2) two conditional Monte Carlo estimators. The idea is to replace the CMC
estimator Z by E(Z \ Q) for a suitable <r-field Q, which always leads to reduction in
variance, cf. Rubinstein [28]. We show that one of the estimators is efficient in the
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sense of (2) in the particular case where the tail of B is regularly varying. This
result is remarkable since, to our knowledge, it is the first example in the general
area of rare events simulation of an asymptotically efficient solution to a problem
involving heavy tails. It also has the unusual feature that the asymptotic efficient
solution is not given in terms of importance sampling.

In addition to simulation methodology, we also discuss analytic approxima-
tions, of which the most standard ones are Panjer's recursion (cf. Section 4.1) and

TP{U)~-B0(U), M ^ O O (6)

(Embrechts and Veraverbeke [16] and references therein) which will be refered to
as IJ)EV{U)

 m the sequel. The accuracy of (6) is for instance discussed in Abate,
Choudhury and Whitt [1]. They computed exact values by transform inversion
(for a summary of inversion methods and applicability of this approach see Abate
and Whitt [2] and references therein). In the latter paper, a class PME (Pareto
Mixtures of Exponentials, see further Section 4) with explicit Laplace transforms
was constructed and numerical comparisons of exact values and (6) were given
with rather negative results concerning the accuracy of (6). We present some
further numerical results along the same lines, computing the exact values by
simulation also for more general claim size distributions than the ones in PME.
Motivated by these negative findings, we suggest an alternative approximation,
essentially an adaptation of the correction due to Hogan [21] of the standard
diffusion approximation

if \ ( a M̂fi \ , - • >

ip(u) « exp 1-uO^——- , (7)

where a2
B denotes the variance of B. This approximation is introduced and

discussed in more detail in Section 3.

2. CONDITIONAL MONTE CARLO ARALGORITHMS

In this section random variables are mostly denoted with capital letters (e.g. Z, K,
SK, Xj, X2,...), the realization of simulation / (/= 1, ..., n) with indexed capital
letters (e.g. Zh Kh Xi

x,X\,...).
Recall that we refer to the CMC method as Algorithm I and that a conditional

Monte Carlo estimator always reduces variance.
The 95% asymptotic confidence intervals are given by:

i>(u)± 1.964=,

where xj)(u) stands for the estimated ruin probability and a1 = ~\Y^i=\ {^i — Z) .
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2.1. Algorithm II. Write

... + XK > u)

= E[P(X{ + ... + XK > u\Xu ...,XK^)}

= E[B0(u-Xl- ... - * * _ , ) ] .

Thus we generate only Xh ..., XK_\, compute Y=u — X\ - ... - Xk-\ and set
Z = Bo(Y), the probability that the next claim causes ruin. More precisely:

1. Generate K,-~ geometric {p) i.e. P(Kt = k) = (1 - p)pk{k = 0, 1, 2, ...).
2. Generate JT',,..., X'K. i from the density bo and let y,• = u - Xi

x - ... - Xi
K._{.

3. Let Z, = 7?o( ^/) (Z, = 1 if Y,- < 0)
4. Repeat steps 1 to 3 n times.

5. Estimate E[Z] by z = X-Y!l=\ z«
Again z is an unbiased estimator for ip(u). However, even if the variance must be
smaller than for Algorithm I, the performance as measured by (2) is not
asymptotically better:

Proposition 2.1. Assume that B e <S. Then for Algorithm II,

Proof.

E[Z2} = E[B2
{)(U ~ Xx - ... -XK_X)

> E\Bl{u)\ K < lj + E\Bl{u - Xi); K > 2

)fi(

BI(U - X l ) ; X i > u , K > 2 ] = ( \ - P2)BI(U) + P
2Bn(u).

The last equality follows from the fact that the event (Xj > u) occurs with
probability BQ{U) and then Ba(u — X\) = 1. Since

^(u)~Bl(u),

it follows that az is of the order of magnitude at least Bo ~ (6tp(u))x^2. Hence
log az cannot go to — oo faster than log i\>{u)j2 so that 1/2 is an upper bound for
lim inf in (2). That 1/2 is also a lower bound for lim sup follows since the
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algorithm, based upon conditional Monte Carlo, is an improvement of the CMC
algorithm

•

2.2. Algorithm III. The third algorithm is slightly more complicated. The main
idea underlying this algorithm is that for subexponential distributions only the
largest claim and not the sum of all claims causes ruin as stated in Definition 1.1.
The following two lemmas will elaborate on this idea.

Lemma 2.1. Let Xu X2, ..., Xn ~ Bo be non negative iidrandom variables andde-
note by X(\) < X(2) < ••• < X(n) the order statistic. Furthermore let T(n-i)

 =

( )
Then

io(^-i)VJt)
P{X(n) > x F(n-\)) = -5 ,Y N—

where a V b stands for max (a, b).

Proof. Suppose Xu ..., Xn iid and Xfs are absolutely continuous, then the order
statistics form a Markov chain.

and

P{X(n) > X\X{n_l} =y) = l J i c , x ( u \ y ) d u , x > y ,, x (

where

B0(y)

(see for instance Arnold, Balakrishnan and Nagaraja [3], p. 23). Hence

*(„-!

Remark: If the Xfs are not absolutely continuous a different proof can be given
using combinatorical arguments.
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Lemma2.2. LetSn = X] + ... + Xn and S(k) = X0) + ... + X(k)(\ <k <n). Then

P(Sn >u) = E Mi"-_S("-l)) V *(„-/;

Proof By conditioning,

P(Sn>u) = E[P(Sn>u\T{n_i])}

= £[f(Ar(B) + 5(n_i) > u

= E\P\X(n) > U — "S'(n-l)

and applying Lemma 2.1 completes the proof.
•

Algorithm III can then be written as:
1. Generate Kt as geometric (p), i.e. P[K, = k] = (\ - p)pk(k = 0, 1, 2, ...).
2. Generate Xi

l,..., X'K. from the density b0 and set T = u - Ai,̂  -... - Xi,K_X) and

T c ^ T ^ ( ^ Vm,)
3. Set Z, = —.=——•—.

4. Repeat steps 1 to 3 n times.

5. Estimate E [Z] by z = \Y^]=\ ^\
The main result of the paper is the following

Theorem 2.1. Assume that BQ(X) = L(x)/xa(a > 1) with L slowly varying (i.e.
1;™ Lif^- = \ for all X > 0). Then Algorithm III satisfiesL(x

hminf-

In order to proof Theorem 2.1 we first give three Lemmas.

Lemma 2.3. For Algorithm III we have

(8)

Proof We first derive the conditional density fX/K (x) of the random variable
X{K i, given K:

P{XK-\ <X) = P{X(X) < x, ...,

'K
P{X\ < x, ..., ATJC-1 < JC, XK > x)
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< X, ..., XK-\ <X,XK< X)

Hence the density is:

Next we calculate

E[Z2\K] =E

= E

+E

^ix) = K{K- l)B«-2(x)B0(x)b0(x) (9)

<-\)j

Bo (X(K-\))

K-l))

. U «

The first summand (10) can be bounded as follows. If
2?o(w - •V-i)) < #o(f), so that

\ 2

;A(K-\) s -pi

(10)

(11)

(12)

^ then

B0(X,,

<B -^
IK
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The second summand (11) can be bounded in the same way. For
-!) < f, 5o((« - V- i ) ) v X(K-\)) < ̂ o(f), yieldingf <

u u

r
u/K

O(X

= -K{K- l)BJ-

To find an upper bound for (12) we write

fxIK_lt(x)dx

= K{K-\) H B*-2(x)Bo(x)bo(x)dx
Ju/2

<K(K-\) [ Bo(x)bo(x)dx
Ju/2

Adding the above inequalities leads to

and hence
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Lemma 2.4. If BQ(X) = -~, L slowly varying then for any e > 0 there exist con-
stants C (e) and C+ (e) such that

C^{e)da-ex-n-E < 5 0 Q < C+{s)d"-£x-n-£, Vx > 0 V d > 0.

Proof. From B~0(x)xa-£ = x~£L(x) it follows that ]imx^0 x~E L{x) = 0 and that L
is a continuous function. Since L is slowly varying also \\mx^oox~£L(x) = 0.
Hence there exists a constant C+(e) such that L(x) < C+(e).x;£ for all x and hence

- /XN = L(x/d) < C+(£)(x/J)£

f - {x/d)n

For the lower bound the proof is similar. Just note that if L is slowly varying
then also 1/L is slowly varying.

Lemma 2.5. IfBQ(X) = ^p-, L slowly varying then for any e > 0 there exist con-
stants D\ (e) andD2(s) such that

E[Z2} <(D](e) + D2(e)\\ogu\)u2£-2".

Proof. From Lemma 2.3 we have

Lemma 2.4 yields

+E[C2
+{e)K2"-2£+2u-2n+2E\\og{C^(e)2"-£u-

where /),(e) = E[K2] \C2
+{e)22"-2£ + E[K2n-2£+2}C2

+(e)\log(C4s)2"-£) \

and D2(s) = E[K2"'2£+2]C2
+(e)(a + e).

Now we have all the tools needed to prove Theorem 2.1.
Proof of Theorem 2.1. From Lemma 2.5 we get

= ilog(Z>i(e) + £>2(e)|log«|) + (e - a) logu
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and therefore

logo-z > 5

l 0 ( ) ~

D2(e)\\ogu\) + (e - a)logu

using (6) yields

= Urn -

=

3log(Di (e) + D2(e)|log u|) + (e - a) log u

log(5o(«)/0)

D, (e) + D2(e)|log u|) + (e - a)log u
—log 0 + log L(u) — a log u

e — a E

—a a

Now let £ —> 0 which completes the proof.
•

Remark:
1. For lognormal claimsizes Algorithm III is also asymptotically efficient. The
proof is given in Binswanger [8].

TABLE 1

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) EOR PARETO DISTRIBUTED

CLAIMS (ALL NUMBERS ARE ROUNDED TO THEIR LAST DIGIT).

Pareio(\, 2), 0 = 0.L n = 1000

•0(u) ±1.96-^=

log(<r)/log(•(/;)

u = 10

u = 50

u = 100

u = 500

u = 1000

Algorithm I

(5.6 ± 0.3) • 10 '
1.21

(2.0 ± 0.2) • 10 '
0.57

(8.1 ± 1.7) • 10 2

0.52

(1.2 ± 0.7) • 10 2

0.50

(6.0 ± 4.8) • 10 3

0.50

Algorithm II

(6.0 ± 0.3) • 10 '
1.56

(2.0 ± 0.2) • 10 '
0.60

(9.0 ± 1.7) • 10 2

0.54

(0.9 ± 0.5) • 10 2

0.51

(9.5 ± 5.9) • 10 3

0.51

Algorithm III

(5.5 ± 0.3) • 10 '
1.38

(1.9 ± 0.2) • 10"'
0.72

(8.6 ± 1.2) • 10~"2

0.69

(1.0 ± 0.2) • 10 2

0.77

(5.3 ± 0.6) • 10 3

0.88

•4>P(u)

5.5 • 10 '

1.9 • 10" '

8.5 • 10~2

1.2 • 10 2

5.4 • 10 3
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TABLE 2

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) KOR PME DISTRIBUTED

CLAIMS (ALL NUMBERS ARE ROUNDED TO THEIR LAST DIGIT)

PME(3), 0 = 0.25, n = 1000

#u)±i.96A

log(<7)/log(v)

u = 50

u = 60

u = 70

u = 80

u = 90

u = 100

Algorithm I

(5.0 ± 4.4) • 10"3

0.50

(3.0 ± 3.4) • 10 3

0.50

(2.0 ± 2.8) • 10 3

0.50

0

(1.0 ± 2.0) • 10"3

0.50

(1.0 ± 2.0) • 10 3

0.50

Algorithm II

(1.8 ± 2.0) • 10 3

0.54

(4.3 ± 3.9) • 10 3

0.51

(1.8 ± 0.1) • 10 3

1.04

(1.4 ± 0.1) • 10 4

1.05

(1.0 ± 0.1) • 10 4

1.01

(8.2 ± 0.3) • 10 5

1.06

Algorithm III

(3.0 ± 0.9) • 10 3

0.74

(2.4 ± 2.0) • 10 3

0.57

(1.0 ± 0.2) • 10 3

0.84

(8.8 ± 2.0) • 10 4

0.82

(5.6 ± 1.1) • 10 4

0.84

(4.1 ± 0.7) • 10 4

0.87

iiu)

3.1 • 10 3

1.8 • 10 3

1.2 • 10 3

8.2 • 10 4

6.1 • 10 4

4.7 • 10 4

TABLE 3

SIMULATED RUIN PROBABILITIES AND THEIR PRECISION MEASURED BY (2) i OR LOGNORMAL
DISTRIBUTED CLAIMS (ALL NUMBERS ARE ROUNDED TO THEIR LAST DIGIT)

Lognormal (-

Mv) ±1.96 —

log(<r)/log (•(/>)

u = 0

u = 100

u = 1000

u = 10 000

Algorithm I

(8.3 ± 0.2) • 10 '
5.35

(3.5 ± 0.3) • 10 '
0.70

(1.2 ± 0.7) • 10 2

0.50

0

.62, 1.8), 0 = 0.1,n = 1000

Algorithm II

(8.9 ± 0.2) • 10 '
11.1

(3.9 ± 0.3) • 10 '
0.82

(7.4 ± 4.8) • 10 3

0.52

(3.3 ± 0.1) • 10 6

1.09

Algorithm III

(9.0 ± 0.2) - 10 *
11.4

(3.4 ± 0.3) 10 '
0.84

(8.0 ± 2.2) • 10 3

0.69

(3.5 ± 0.4) • 10 5

0.93

9.1 • 10 '

3.4 • 10 '

1.1 • 10 2

4 • 10 5
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2. If So (or B) is a Weibull distribution,

bo(x) — vx"~ie"x , So(x) = e~x ,

Algorithm III is not efficient in the sense of (2). Indeed, we get

r"/2 ~R2f,/ _ vt
E[Z*\K=2]> f !&LfXm{y)dy

Jo B0(y)

= 2 Bl(u-y)vy'-ldy
Jo

/ " %(u-y)dy
o

= 2v(«/2)v-' / " B2
0(y)dy

Ju/2

> f 2vf-%(y)dy
Ju/2

_ e-2W =

So we get

log(B0(u)/6)

/ ,. 2'-V/2 1 ,< hm — = — < 1

Of course we should mention that this does not imply that the algorithm does not
work well in the Weibull setting; and indeed the numerical experience is
convincing. It should be noted that, as a conditional MC algorithm, Algorithm
III is always an improvement on the crude MC method, even in the light tailed
case. (Though here we do not obtain any improvement of the asymptotic
efficiency and the algorithms of Asmussen [4], Siegmund [29] are superior.)

3. THE CORRECTED DIFFUSION APPROXIMATION

The standard diffusion approximation (Iglehart [22] or Grandell [19]) is given by
(7). For light-tailed random walk problems Siegmund [30] derived a correction
which was adapted to ruin probabilities by Asmussen [6] and shown to be
extremely accurate. An alternative covering also certain heavy-tailed cases was
given in Theorem 2 of Hogan [21]. As in Asmussen [6], it requires some
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adaptation to ruin probabilities which we shall next present. The result will be an
approximation of the type

ipH(u) = exp(-c,w)(l + c2u - c3), (13)

where

29m i 462m\m^
C\ = , C2 = — T — , C'3 =

and ntj is the i-th moment of B. Note that formally the conditions of Theorem 2
in Hogan [21] lead to the requirement that w5 < oo though our numerical
experience indicates that this is not crucial.

To derive (13) from Hogan [21], substitute first v = £/•# to get

P-«{TV < oo) « ^ " 1 +^~ V ^ • (14)

Next we consider a RW with drift —fi and a2 = E0X\ not necessarily = 1, and TU.
The normalized RW Sn/a has drift -d = —/V<r, 7 = E0X\/(r3,v = w/cr. Similar
substitutions for the ladder height moments yield

3(T6 <T2E0ST+

In the next step, we take the RW as a discrete skeleton of the risk process,
Sn=R(nh)-cnh. Then

jj, = h9Xni\, a = h\rri2, EQX\ = fiXmy.

Further the risk process corresponding to •& = 0 has ladder height distribution B(>
so that

E0S
2
T+ J^x2BQ(dx)=2m, h

E0ST+ J^ x B0(dx) 3w2'

Taking the limit h [ 0 in (15) we thus get
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Various other approximations and bounds for ip(u) are known. For an overview
see Embrechts and Kliippelberg [15], Feilmeier and Bertram [17], Panjer [26],
Buchwald, Chevallier and Kliippelberg [9] and references therein.

4. NUMERICAL RESULTS

In this section we present the numerical evaluation of the algorithms for the PME,
the Pareto and the Lognormal case. For the PME distributions Abate,
Choudhury and Whitt [1] have calculated the exact values of the ruin
probabilities. Therefore we choose the parameters in such a way that we can
compare the simulation and the exact results. For the Pareto and the Lognormal
case only few exact values are available. The Panjer approximation t[>p(u) (see
below) is chosen as a benchmark.
The simulation has been done with MATLAB 4.2a. To construct B$ distributed
random variables we used the inversion method for the Pareto case and the
inversion/rejection method by Newton-Raphson iteration for the other two. For
more details see for instance Devroye [11].

4.1. The Panjer recursion. Panjer [27] suggested to use a recursion formula for
calculating the probability of ultimate survival <j> — I — ip. The recursion formula
is based on a discretisation of the density 0' which we denote by 4>* leading to

= l 2

with

' v ' 1 +0-8(0)

where g is a discretised version of the density b0. Finally we get

u

.1-0

The time to evaluate this procedure increases for large u since the recursion
always has to start with u = 0. A great advantage of this method is that it leads to
upper and lower bounds for tp(u) by choosing g in such a way that gi(x) < bo(x)
for the lower bound and g,,(x) > bo(x) for the upper bound. Since b0 is a
decreasing function we can set g/(x) = Bo([x] + \) — BQ([X]) and g,,(x) =
Bo([x\) — -6o([x] — 1) ([x] stands for the integer part of x). For the approximation
of tp(u) denoted by ipP(u) we choose ga(x) = B0([x] + 1/2) - B0([x] - 1/2).
Panjer's recursion method has meanwhile become the standard tool for actuaries;
see for instance Dickson [13] for a comprehensive review.
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4.2. Pareto Distribution (PAR(a, b)). The distribution function of the Pareto
distribution is given by:

B(x) = (1 - ( - ) ) / ( * > a) where a > 0, h > 1, and x> 0.

The mean is \iB = ab/(b - 1), and the density b0 and the cdf Bo of the integrated
tail distribution are respectively

a)+0 ~ lQh ' ) / ( x -
For the simulation with the inversion method we also need B$' (x) which is

„ ,, , ab J b-\\ a / b-\

4.3. Pareto Mixture of Exponentials Distribution (PME(r)). This class of
distribution was defined in order to have subexponential distributions with an
explicit Laplace transform. Starting from a Pareto distribution the PME is
defined as follows.

Definition 4.1. Let for r > 1

Y - ( ' + 1 > / ( )
be the density function of a Pareto distribution with mean 1. Then the density of a
Pareto Mixture of Exponentials is defined as

b(x):= ^\f(y)~cxp(--)dy =
jr^x y y

where j(a, u) = / f~[ exp( — /) dt is the incomplete Gamma function.
Jo

The tail behavior of the density of a PME distribution is the same as for the
Pareto distribution, namely ~ crx~(r+i'1 (cr a constant depending only on r). The
distribution function B0(x) can be calculated explicitly for some values of r, for
example for r = 3:

B0(x) = 1 - ~ U - (8 + 12x)exp(-y)Y
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4.4. Lognormal Distribution (LN(m, s)). The density of a Lognormal distri-
bution is given by

and the k-th moment MB° = exp(km + \k2s2). B(x) = $(w(x)) where $(•)
denotes the c.d.f. of a standard normal distribution and w(x) = j(log(x) - m).
For efficient programming the following representation of B0(x) is useful:

\\-B(x))dx

U - — = / / cxp(-y2/2)dy
\ y/ZirJo J-oo

/ /
irJ-oc Jn--'(y)

= — (M - M$(W(M) w(u)-s)).

10'

FIGURE 1: PAR(1,1.5), 9 = 0.3.
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FIGURE 2: PAR(1,2), 9 = 0.1
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FIGURE 3: PAR(1,5), 0 = 0.1
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FIGURE 4: Weibull(l/2), 9 = 0.2
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FIGURE 5: Weibull(l/3), 9 = 0.1
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Thorin and Wikstad [31] have calculated the exact ruin probabilities for some
values of u and 9. Therefore we compare our estimates with those values.

4.5. Results. The Tables 1-3 contain the estimates for different initial reserve u de-
rived from the three algorithms together with their confidence intervals and the
precision measured by (2). The estimates for PAR(1,2) distributed claims with se-
curity loading # = 0.1 are presented in Table 1. The results for PME(3) distributed
claims with 8 = 0.25 are shown in Table 2 and for Lognormal (-1.62, 1.8) claims
with 0 = 0.1 in Table 3.
In the Figures 1-5 we give the simulated values from Algorithm III based upon n
= 200 replications, the approximation ipEv(u) and T/V/(M) (if the third moment
exists). These values are compared with the estimates, lower and upper bound
derived from Panjer's approximation. Figure 1 shows the values for PAR(1,1.5),
6 = 0.3, Figure 2 for PAR(1,2), 9 = 0.1 and Figure 3 for PAR(1,5), 9 = 0.1. For
the Weibull distribution we give the figure for v = 1/2, 9 = 0.2 and for
v= 1/3, 0 = 0.1.

5. CONCLUSION

Below we give an overview of the most important properties of the algorithms
and approximations we considered. The key observations from the above tables
and figures as well as other examples, see Binswanger [8], are:
01 Algorithm I works fine for 'small' initial capital and underestimates ip{u)

when u is 'large'.
02 Algorithm II usually overestimates ip{u) for 'small' u and underestimates for

'large' u.
03 Algorithm III is always of the right order of magnitude.
04 The precision measured by (2) is usually around j for Algorithm I. For

Algorithm II it is also around \ as long as the estimates are valid and around
1 when the estimates are wrong. The precision of the third algorithm is
always around 1 even when the claim size distribution is Weibull.

05 The corrected diffusion approximation (13) gives very satisfactory results for
'small' initial capitals and is poor for 'large' initial reserves. The less heavy
tailed the distribution of the claims is, the better the approximation is.

06 The asymptotic approximation (6) often requires u to be so large that the
resulting ruin probability becomes extremely small, in fact much smaller than
typical values of practical interest. The approximation turns out to be better
the more heavy-tailed B is. In particular, it is much better for Pareto then for
Weibull distributed claims.

Of course it would be nice to know what 'large' and 'small' initial capitals mean.
The interpretation of'large' or 'small' depends on the kind of distribution and on
the choice of its parameter as well as on the security loading 9.
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A comparative study of the accuracy of the various bounds and approxima-
tions in De Vylder and Goovaerts [10], Dickson [12], Omey and Willekens [24]
and Omey and Willekens [25] is given by Binswanger [8]. In the latter, also
alternative variance reduction techniques, like the use of regression-adjusted
control variates, are to be found.

We point out also that Algorithm III applies to the total claims as well. That is,
rather than the ruin probability, one wants to compute

by simulation where M is the number of claims in a given period. The simplest
case is where M is Poisson with parameter A, say, and one can proceed just as for
the ruin probability, generating M as Poisson rather than geometric. One again
obtains the efficiency property (2). More generally, M could be allowed to have
any distribution with finite second moment. For example, one could treat risk
processes where the arrivals occur according to some Cox process in this way.

Besides Panjer's recursion also transform inversion via FFT offers an
interesting estimation method. See for instance Embrechts, Griibel and Pitts
[14] and Buchwald, Chevallier and Kliippelberg [9] for a discussion in the context
of insurance.

For a broad overview of the application of numerical methods in risk theory,
see Feilmeier and Bertram [17].
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