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GENERALIZED SPECTRAL THEORY IN COMPLEX 
BANACH ALGEBRAS 

G. N. HILE AND W. E. PFAFFENBERGER 

Introduction. Let A be an element of a complex Banach algebra 38 with 
identity /. The ordinary spectrum of A, sp(̂ 4 ), consists of those points z in 
the complex plane such that A — zl has no inverse in 38. If Q is any other 
element of 38, we define spç(A ), the spectrum of A relative to Q, or 
Q-spectrum of A, as those points z such that A — zl — ~zQ has no inverse in 
38. Thus if Q = 0 the g-spectrum of A is the same as the ordinary 
spectrum of A. 

The generalized notion of spectrum, spg(A), retains many of the 
properties of the ordinary spectrum, particularly when A and Q commute 
and the ordinary spectrum of Q does not meet the unit circle. Under these 
conditions the g-spectrum of A is a nonempty compact subset of the 
plane, and if both sp(^4) and sp(<2) are finite (or countable), so is spç(A). 
The ordinary functional calculus has an analogue in the case of the 
g-spectrum, and one may integrate the "g-resolvent", (A — zl — z~Q)~\ 
around suitable contours and thereby generate idempotents which 
commute with both A and Q. One obtains in the usual way a Laurent 
series expansion of the Q-resolvent around an isolated singularity. 

We also obtain an analogue of the "Riesz Decomposition Theorem" 
(see [9], Chapter 2) concerning the generation, by contour integration, of 
nontrivial idempotents whenever SPQ(A) is not connected. In the case that 
A and Q are bounded operators on a Hilbert space we may conclude 
that both A and Q have nontrivial invariant subspaces whenever spp(A) is 
not connected. In the last section we give an example of commuting 
operators A and g on a Hilbert space such that sp(^4) and sp(Q) are 
connected, but spp(A) is not connected. Therefore it might appear that 
these results could have applications to the problem of determining 
invariant subspaces of operators. 

This paper is somewhat analogous to an earlier paper of the authors [3] 
regarding a generalized notion of the spectrum in real Banach algebras. 
There an analogue of ordinary spectral theory was obtained for real 
Banach algebras without resorting to the usual procedure of "complexify
ing" the algebra. This is possible provided there is at least one element in 
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the algebra with empty real spectrum. A generalized functional calculus 
was also developed in that paper, without the assumption of complex 
elements in the algebra, and several of the techniques used there have been 
adapted in this paper for the complex algebra. 

Some of our techniques involving the functional calculus are adapta
tions of those of the first author in [4, 5]. In those papers a function theory 
is presented for first order elliptic systems of partial differential equations 
with constant coefficients, and this theory parallels to some extent the 
development in Sections 2 and 3. 

1. Definition and basic notions. S8 will denote a complex Banach algebra 
with identity element /. C denotes the complex plane, and T the unit circle 
in the complex plane. The letter z denotes a point in C, and z is the 
complex conjugate of z. 

Definition 1. Let A e S8 and Q e <%. The spectrum of A relative to Q, 
called the Q-spectrum of A, is the subset of C defined by 

spg(A) = {z G C: A — zl — z~Q is not invertible in SS). 

The Q-resolvent of A is defined as the complement in C of spg04), that 
is 

resQ(A) = {z e C: [A - zl - IQ]~X exists in ^ } . 

(We denote by sp A, res A, the ordinary spectrum and ordinary resolvent 
of A, respectively). 

We consider the question of when spg(A) is nonempty. Some 
restrictions on Q are necessary as the following examples show. 

Example 1. Let & be C x , the algebra of all 2 X 2 complex matrices. 
For 

' - [ - Î J ] - « - IS SI 
we have spg(A) = 0. For later reference we note that 

AQ ¥= QA and sp Q n T = 0. 

Example 2. 

»-<?". « - [ - ? J] and e-[J ?]• 
Then spç(A) = 0 and in this case AQ = QA and sp Q c T. 

THEOREM 1. Let A and Q be elements of $8. If AQ = QA and at least one 
point of sp Q lies off of the unit circle, then sp^(^4) T̂  0. 
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Proof. Let z e sp Q with z £ T. Let 38* be a maximal commutative 
subalgebra of 38 with ^ and Q in ^ * . Then the spectrum of each element 
of 38* is the same as in 38 [10]. By the Gelfand theory [10] there exists a 
nonzero homomorphism a on 38* into C such that o(Q) = z. 

Then we would like to find w e C such that 

o(A — wl — wQ) = o(A) — w — wz = 0, 

for this would mean A — wl — wQ was singular and therefore 
w G spg(A). Taking the complex conjugate of this equation and solving 
the two equations for w yields the solution 

o(A) - o(A)z 
w = = . 

l - kl2 

A few more examples clarify matters further concerning the bounded-
ness of sp^Ol). 

Example 3. 

= C 2X2 A = [o !] and Q = [o ol-
Then 

spQ(A) = {z G C: z = 1 = l or z = iy for y real}, 

and in this case 

AQ = QA and sp Q = {0, 1} 

Example 4. 

a = c2x2, A = .o - i l an 

Then 

spç(A) = {z G C: z = x + iy ^ 

and in this case 

Q = 
3 1 

•1 0 

AQ # g^4 and sp g '3 + V5 3 - V5 
}• 

Since we would like sp^(^4) to be compact, Example 3 leads us to 
investigate Q where sp g n T = 0. For such elements of Si the following 
machinery is useful. 

We set up a mapping between elements of C and certain elements in 38^ 
namely 

(1.1) <j>(z) = zl + zQ. 

https://doi.org/10.4153/CJM-1985-066-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-066-3


1214 G. N. HILE AND W. E. PFAFFENBERGER 

For fixed Q e 3 with sp Q n T = 0 it is easily seen that z ¥* 0 if 
and only if <j>(z) is invertible in ^ and we shall use this fact throughout this 
paper. 

We define the positive constants 

y, = sup | |«z) | | , y2 = supHI^z)]" 1 ! ! 
1-2-1 = i k l = i 

(1.2) 
Y3 = i n f | | «z ) | | , Y4 = i n f i l l ) ] l|| 

kl = i kl = i 

Here |z| is the usual absolute value in C and || || is the norm in 31. 
Then for any z e C, z ^ 0 we have 

U(z)\\ = \\zI + zQ\\ = \z\ L ( i - ) , 
M \ | Z | / M 

so we have the inequality 

(1.3) y3|z| g ||<Mz)|| â y , | z | . 

In a similar manner we obtain 

(1.4) 7 4 | zr ' ^\\[<Kz)r]\\^y2\z\-\ z # 0 . 

THEOREM 2. Let A and Q be elements of 3 with sp Q n r = 0. 77iew 

|z| ^ y2\\A\\ for each z e sp^(^). 

Proof. Suppose z E C. If |z| > Y2II^4||, then [<j>(z) ] _ 1 exists in 3 and 

l l^^z)]- 1 ! ! ^ IMH || Wz)]-1!! < - Y 2 k r 1 = i 

(using (1.4)). 
Therefore yl[<j>(z)]~] — I is invertible in 3, which implies that 

(A[<j>(z)]-] - I)<j>(z) = A - 4>(z) 

is invertible in 3. Therefore z £ sp^(^4). The above implies that if 
z e s?Q{A\ then |z| ^ y2 |M|. 

Definition 2. For v4 and Q in 3 we define the Q-spectral radius of 
A, pQ(A) by 

pQ(A) = sup{ \z\\ z G sp ô (^) }. 

Under the hypothesis of Theorem 2 we have the inequality 

(1.5) pQ(A) ^ y2\\A\\. 

By analogy with the ordinary spectral radius, one might hope that we 
would have PQ{A) ^ ||y4||, but the following example shows that as a 
general upper bound for PQ(A) one cannot hope to do better than (1.5). 
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Example 5. Let 98 = C, Q = c for some real e, with 0 < e < 1. In this 
case we calculate that 

1 

If we then set A = i we get 

and 

PQ(A) = —— = y2IMII. 
* 1 — € 

THEOREM 3. If A and Q are elements of 98, then spp(A) is closed in C. 

Proof. We show that res^(^) is open in C. Let z0 e VQSQ(A), then 

A ~ <K*o) = A - ZQI - z0g 

is invertible. Since the set of invertible elements in 98 is open, if z is 
sufficiently close to z0 then A — <J>(z) is close enough to A — <j>(z0) so 
that A — <j)(z) is invertible. Hence z e res^(^4) and we have res Q(A) is 
open in C. 

COROLLARY 1. If A and Q are elements of 98 with sp Q n T = 0, then 
spp(A) is a compact subset of C. If moreover AQ = QA, then spg(A) is 
nonempty. 

THEOREM 4. Let A and Q be elements of 98 with 

AQ = QA and sp Q n T = 0. 

Then 
a) if sp 4̂ Am/ sp g <zre both finite, so is spg(A); 
b) if sp A and sp Q are both countable, so is spç{A). 

Proof. Let 98* be a maximal commutative subalgebra of 98 containing A 
and Q. If z G sp^(^4) then 

a(.4 - z/ - zg ) = o{A) - z - z~o(Q) = 0, 

for some homomorphism a of 98* onto C. As in the proof of Theorem 1, it 
follows that 

z _ o(A) -4Xjo(Q) 

l - | a ( Ô ) | 2 

This implies that if sp A and sp Q are both finite, so is spp(A) and also if 
sp A and sp Q are both countable, so must be spp(A). 
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Note that Theorem 4 shows that if A and Q are commutative n X n 
matrices and sp Q contains no numbers of magnitude 1, then spç(A) is a 
finite set in the plane. 

COROLLARY 2. Let A and Q be commutative bounded operators on a 
Banach space, such that A is compact and sp Q is finite with no numbers of 
magnitude 1. Then spg(A) is countable, with the origin being the only 
possible accumulation point. 

Proof Since A is compact, sp A is countable with the origin the only 
possible accumulation point [7]. By Theorem 4, spç(A) is countable and 
by the proof of Theorem 4 if z e spç(A) then there exists a e sp A and 
q G sp Q such that 

_ a-aq 
a = z + zq, z = ~. 

i - M2 

If z0 is an accumulation point of sp^A, then there exist sequences 

{zn} c spQA, [an] c sp A, {qn} c sp Q 

such that zn -> z0, with the z„'s being distinct, and 

an = 1n + Mn' 

Since sp Q is finite, by passing to a subsequence if necessary we may 
assume qn = q for all n, where q G sp Q. Hence 

an = Zn + M "* Z0 + % • 

We conclude z0 + z0g = 0, since \q\ ¥= 1 implies that the an's are also 
distinct, and 0 is the only accumulation point of sp A. Thus z0 = 0. 

2. Theory of g-analytic functions. In order to prove analogous results 
for the g-spectrum as for the usual spectrum we first develop a theory 
which in many ways parallels the theory for analytic functions in a Banach 
space. 

Throughout this section we assume that Q is an element in a complex 
Banach algebra £8 with no points of magnitude 1 in its usual spectrum and 
we adopt the notation of (1.1) for points in C. 

In the following, / will denote a function from a domain £2 in R2 = C 
into our Banach algebra Si. 

We will say t h a t / i s in C (Œ) if each of the strong limits 

r, v r fix + àx9y) -f(x,y) 
Jx(x>y)= km : 

and 

f, , r f(x,y + Ay) -f(x,y) 
Jy(x,y)= lim 

Av-K) ay 
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exist everywhere in £2 and the resulting functions fx and/v are continuous 
from £2 into S6. 

In this situation we define functions 

and 

r\ 1 

— f = fz = ~£fx - ify\ 

Also for z e C, z = x + iy we will use the common notation 

Az = AJC + /Ay 

and 

Az = Âz = AJC - iky 

when considering increments in C. 

Definition 3. fis Q-analytic in Œ iff e C](S2) and 

(2.1) / - = Qfz holds in 0. 

Definition 4. / i s Q-differentiable at a point z E Cif the limit 

(2.2) ^ = / ' ( z ) s lim[(Az)/ + ( A z ) ^ ] - 1 ^ + Az) - / ( z ) ] 
tf<J> Az-^0 

exists in â8. 

THEOREM 5. Let f be in C\Q). Then fis Q-differentiable at a point z0 in £2 
/ / and only if 

fj = Qfz is satisfied at z0. 

Furthermore f'(z0) = fz(z0) in this case. 

Proof Suppose / ' (%) exists. Letting Az = Ax and z0 = x0 + (y0, we 
have 

(2.3) f'(z0) = \im[kxl + kxQ]-][f(x0 + /±x,y0) - f(x0,y0)] 
Ax-H) 

= [ /+ fi]~'/,(*<>)• 
Letting Az = /Ay, we obtain 

(2.4) /'(z0) = l i m [ % / - %£]"'[/(*<> Jo + Ay) -f(x0,y0)] 
A>>->0 

= [U ~ iQY%(z0) = [I - Qr\-ify(z0)). 
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Equating (2.3) and (2.4) we have 

(2.5) [/ + QYxfx(zQ) = [I - Q]-\ify(z0)). 

Simplifying (2.5) we obtain 

fj = Qfz at z0. 

Conversely, suppose 

fj = Qfz at z0. 

We first state that 

[f(zQ + Az) - f(zQ) ] - Axfx(z0) - Ayfy(z0) 

= o( |Az| ) as |Az| -» 0, 

that is, 

(2.6) [ M + A z ) - / ( z 0 ) ] - A ^ ( z 0 ) - A ^ ( z 0 ) ^ 0 ^ 

|Az| 

Since every complex Banach algebra is a real Banach algebra, (2.6) was 
shown in Theorem 5 of [3], so we will not repeat the arguments here. 

Using (2.6) we have 

[(Az)/ + (Az)Q]-l[f(z0 + Az) -f(z0] 

= [ (Az)/ + (Az)Q]-\Axfx(z0) + Ayfy(z0) + o( |Az| ) ] 

= [(Az)/ + (Az)Ô]-'[Az/;(z0) + Az/F(z0) + 0|Az| ] 

= [(Az)/ + ( A z ) ô r ' [ ( ( A z ) / + (Az)Q)fz(z0) + o|Az| ] 

= [(Az)/ + ( A z ) ô r ' [ ( A z ) / + (Az)ô] 

X [fz(z0) + [(Az)/ + (Az)Q]-]o( \Az\ )] 

= /z(z0) + ( / + ^-Q) \Az)-'o( \AZ\ ) ->/ z(z0) 

as |Az| —* 0, since 

|Az 

Az 
= 1 

and sp(Q) is closed with no elements of magnitude 1 implies 

\\( Az \ - ' | | 
I / H Q\ is bounded. 

I IV Az * / II 

Note that the function 

/(*) = to) 
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is ^-analytic on C 

and 

4>'(z) = I for all z e C. 

If we have two functions/and g in C](&) from £2 into 38 and/satisfies the 
commuting property 

(2.7) f(z)Q = Qf(z) for each z e fi, 

then 

f(/*) = f*+/?=/,*+/& and 
dz dz dz 

(2.8) 
—(fg) = TZg + / — = fjg + /gp 
dz dz dz 

Thus under these conditions the product fg is ()-analytic provided b o t h / 
and g are ^-analytic. 

Differentiation of (2.7) yields 

AG = <2£, fyQ = Qfr fzQ = g£ and /F0 = ô/7-

Moreover if / i s invertible t h e n / - also commutes with g. And since 

f~\x0,y)-f-\x,y) 
x0 — x 

= ~f (x0,y) / (x,y) 
x0 x 

and 

/ " W o ) -f~\x,y) 

yo - y 

f-\( J(x9y0) ~ f(x,y) x = -f (x,y0) J (x,y) 
yo - y 

we see that i f / i s in CX(Q)9 t h e n / - 1 is in c\Q) and 

3 . . - K , - \ , f - \ 

and 

-(/"') = -rvj 
dz 

f (/-) = -r%rx 

dz 
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hold. Hence if / is Q-analytic and / commutes with <2, then / ~ is 
^-analytic wherever it exists. 

By the above and an easy induction argument we have that, except at 
z = 0 when n is negative, the function [<|>(z) f is g-analytic for any integer 
n. Moreover 

-f[<Kz)]n = «[*(z ) ] " - ' . 
d(j) 

Also all polynomials in 4>(z) are (2-analytic. 

3. Cauchy's formula and series expansions. A domain fi in C will be 
called regular if it is bounded and its boundary T consists of a finite 
number of simple closed curves with piecewise continuous tangent. We 
employ the notation 

d<f> = \dz + Qdl. 

If g:fi —> 36 is in C\iï) with fi regular, we define 

JT g(z)d<f>(z) = jTg(z)dz + g(z)Qdz, 

JT d<t>(z)g(z) = JT g(z)dz + Qg(z)dz. 

Since our elements are in 36 and don't necessarily commute, the order of 
multiplication must be observed. 

This integral exists by simple continuity considerations and the 
extension of the definition of line integrals to functions with values 
in 36 [8]. 

We define the constant P G 36 by 

p = jlzl=] [<s>(z)rld<s>(z). 
In the ordinary theory of analytic functions of a complex variable we 

have P = liri. In our Banach algebra setting for (9-analytic functions 
we have an analogous result concerning the spectrum of P: 

LEMMA 1. For given Q in 36 with no elements ofsp(Q) of magnitude 1 the 
associated element P is invertible. In particular, 

sp(P) c {2iri, -liri) 

and if sp(Q) lies entirely inside T then sp(P) = {277/}, and if sp(Q) lies 
entirely outside T, then sp(P) = { — liri}. 

Proof. Let ^ * be a maximal commutative subalgebra of 36 which 
contains Q. Let a be a nonzero homomorphism from 36* onto C. It is 
sufficient to show a(P) = zhliri. Since o is linear and multiplicative, and 
o(I) = 1, we have 
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a(P) = Xi -. a i ( z / + zQy](Uz + Qdi^ l\z\ = I 

1 
z l = l z + za(QY (31) = X-- , - <~\dz + a(^)^] 

- X -(dz + Xrfz), 
W = 1 z + Xz 

where a(g) = A. We know |X| ^ 1. 
First assume |X| < 1. Then the expression z + Xz never vanishes on 

\z\ = 1 , and as z traces a path around the unit circle in the positive 
direction the change in the argument of z + Xz is the same as the change 
in the argument of z, namely lit. Thus, for an appropriate branch of the 
complex logarithm function we have 

<P) = / z | = l^tlog(z + AI)] = 2m. 

On the other hand, if |X| > 1, we make the change of variable w = z in 
(3.1) to obtain 

°{P) - " I - Ï F T A ^ * + Xdw] 

= -1-. ;̂ W* + x',d!5) = "2OT' 
since |X_1 | < 1. 

COROLLARY 3. Under the hypotheses of Lemma 1, //sp(<2) c int T then 
P = liril + N where N is a quasinilpotent element of 3d. 

Proof. If a is a homomorphism from ^ * into C, then 

o(P - 27n7) = a(P) - liri = 0 

implies sp(P — liril) = {0} and P — liril = N is quasinilpotent [10]. 

THEOREM 6 (Cauchy Theorem). Let f be Q-analytic in £2, and let Y be the 
boundary of a regular subdomain whose closure is contained in fi. Then 

(3.2) j v d<Kz)f(z) = 0. 

Proof 

(3.3) j T (bKz)f(z) = jTf(z)dz + j T Qf(z)dz 

= jrfdx + / frfdy +jTQfdx-i fr Qfdy. 
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If co is any continuous linear functional on 38, then by Green's theorem 
for scalar functions 

w ( / r ^ ) = b ̂ )dx = ~fb (w of)ydxdy 

= S b ^fy)dxdy 

and similarly 

^{bfdy) = fb^^y-
Therefore (3.3) gives 

(3.4) w(/r^(z)/(z)) = -fjQ u(fy)dxdy + i J Jn "(fx)dxdy 

~)L ^Qfy)dxdy - l J h <Qfx)dxdy 

= fL <*<£ + «P - w* " ify^dxdy 
= 2i fjQ W(/F - e / , ¥ ^ = o 

since / - - g £ . 

Since (3.4) holds for all co, Equation (3.2) is valid. 

THEOREM 7 (Cauchy Integral Formula). Let f be Q-analytic in £2 and in 
C (£2) with £2 regular. Let T = boundary of 12. Then for z in 12 

(3.5) f(z) = P~] JT[<Kw) ~ <t>(z)]-]d<f>(w)f(w). 

Note. All expressions involving <j> commute in 38. 

Proof. Because of continuity considerations it is sufficient to assume/is 
^-analytic in a neighborhood of £2. Fix z in il and let £2e be the domain £2 
with a small disk of radius e about z deleted. Apply (3.2) with z replaced 
by w to the domain £2C and with/replaced by [<j>(w) — <J>(z) ] - 1 / (w) . One 
obtains 

(3.6) j f [<Hw) - <j>(z) r]d<t>(w)f(w) = Jr d<t>(wU(w) - <j>(z) rxf(w) 

= L-Z\=ed<t>(w)[<t>(w) ~ ^ r V X w ) . 
Since 

/ „__ . , . , <**z fH«) -Hi)) ' - / „ _ . , . , I « » ] - +<z)] '<Wz) 

y|w —z|=€ 
[<Kw) ] 'rftfw) = P 
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we have 

Il f _ II 
11 j M ; _ z | _ € dttwMw) - m ] '/(w) - p/(z) 11 

^ X - . I ^ I I W ^ ) - 4<z)rl\\\\d4<w)\\\\f(»>) -f(z)\\ 

^ Y2Y1 X_2|=( k - * n W i n/(w) - / u ) i i 

ây 2 7 l (2 î r ) sup | | /(w) - / ( z ) ||. 
|w -z |= f 

Since/is C (Œ) this last estimate approaches zero as c approaches zero and 
(3.5) follows from (3.6). 

Remarks, (i) It follows in the standard way from the Cauchy Integral 
Formula that Q-analytic functions are of class C°°. 

(ii) From the Cauchy Integral Formula we also obtain Liouville's 
Theorem in the standard way. Morera's Theorem can also be proved. 

The following results on series expansions follow from Cauchy's 
Integral Formula in the standard way, by using the following expansions 
of the kernel, 

n 

Mw) - #*)]-' = 2 [^)]"*"'Wz)f 

+ WHO - #2)rW)r , ,- |fo(2)] , ,+l 

and 

- 1 

Mw) - «Kz)]-1 = - 2 fe(w)r*"W)]* 
k = -n 

These theorems are proved in detail in [1] for the special case of matrix 
algebras, but those proofs carry over to the more general case with almost 
no change. For proofs therefore we refer the interested reader to that 
paper. 

THEOREM 8 (Taylor Series). Let f be Q-analytic in the disk described by 
\z — z0\ < p0. Then the series 

«=o n\ 
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converges tof(z) uniformly on compact subsets contained in 

\z ~ z0\ < -SL 
Ï1Ï2 

THEOREM 9 (Laurent Series). Let f be Q-analytic in the region 
0 < \z — z0\ < p0. Then the series 

oo 

2 [<Kz) - <t>(z0)]"An 
n = — oo 

converges tof(z) uniformly on compact subsets of 

0 < \z - z 0 | < -52-, 
Y1Y2 

tvAez-e ,4n is given for 0 < p, < p0 by 

K = P~] X_Zo|=Pl M») ~ <Kzo)]~n~ld<Kw)fM-

4. The ^-resolvent equation and the generation of idempotents. We 
would like to extend the ideas of the resolvent equation and the generation 
of idempotents in & to our g-resolvent. Throughout this section we 
assume that ^ i s a complex Banach algebra with identity /, that A, Q e <% 
with AQ = QA, and that (sp Q) n T = 0. For z £ resQ(A) we define 

R(z) = [A- <j>(z)]~] =[A - zl - IQ]-\ 

We observe that for the case Q = 0 this definition of R(z) reduces to the 
ordinary definition. 

THEOREM 10. For each z and w in res^(^4) we have the Q-resolvent 
equation 

(4.1) R(z) - R(w) = [<j>(z) - <j>(w)]R(z)R(w). 

Proof Since A and Q commute it follows that <£(z), <j>(w), A — <t>(z), 
A — <j>(w), [A - <j>(z)]~l and [A - <j>(w)]~l all commute in âg. If we 
multiply both sides of (4.1) by 

[A - <j>(z)][A ~ <Kw)] 

we see that (4.1) is equivalent to 

[A - # w ) ] - [A - <t>(z)] = <j>(z) - #w) , 

which is clear. 

THEOREM 11. Let C0 be a simple closed rectifiable curve lying in TQSQ(A ) 
and let C] be a simple closed rectifiable curve in TQSQ(A) which is obtained 
from C0 by an allowable deformation (i.e., one which remains within 
rese(i4)). 

https://doi.org/10.4153/CJM-1985-066-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-066-3


COMPLEX BANACH ALGEBRAS 1225 

Then 

Jc R(z)d<Kz) = j c R{z)d$(z). 

Proof. Since R(z) is Q-analytic on and inside T = Q U ( — Cx\ the 
result follows from Cauchy's theorem. 

Recall that P is defined in Section 3 as the element 

J\z\ = 1 <j>(z) ld<p(z). 

LEMMA 2. Let C be any simple closed rectifiable curve such that C and its 
exterior lie in res^(^4). Then 

L 

P + 

)cR(z)d&z) = -P. 

Proof. We may deform C into a circle about the origin of very large 
radius r because of Theorem 11. Then 

fc R(z)d<t>(z) = fc{[<t>(z)rl + [A - *(z)]-]}d<t>(z) 

= A fc[<Kz)]~x[A - <t>(z)]-ld<t>(z). 

But if z = r cos 0 + ir sin 0, then by (1.2), 

|| [<j>(z)]-][A - <t>(z)]~ld<t>(z)\\ ^ y2\zrl\\[A - <Hz)rl\\y\\dz\ 

= Y1Y2IIM - <j>(z)]-l\\d0. 

Since || [A — <£(z) ] _ l | | —> 0 uniformly as r —> 00, the last integral above 
can be made arbitrarily small by making C large, and the theorem 
follows. 

THEOREM 12. Let C be a simple closed rectifiable curve which lies in 
TQSQ(A). Let 

J = -P~] jcR(z)d<$>{z). 

Then J is an idempotent which commutes with A and Q and 

(4.3) [A - <Kz) ]P~ljcR(w)[<Kw) ~ &) r]<*Kw) 

-{ 
I-Jifz<E int C 

-J if z e ext C. 

Moreover, J = 0 if and only if the interior of C belongs to the Q-resolvent set 
of A, and J = I if and only if spp(A) lies entirely interior to C. 
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Proof. Construct a simple closed rectifiable curve C] which lies entirely 
inside C and which is obtained from C by a slight allowable (within 
res^(^) ) deformation. 

By Cauchy's theorem, 

jcR(z)d<t>(z) =jc R(w)d<j>(w). 

Thus we have 

P2J2 = Jc R(z)d<f>(z) jf. R(W)d<HW) 

= Je Jc Rb)R(r)d&y»)d4(z) 

-LL 
= JcR{z) Jc Wz) ~ <Kw)]~]d<Kw)d<t>(z) 

[R(z) - R(w)Mz) - <t,(w)]-]d<K^)d<i>(z) 
<~ 1 

by (4.1) 

fo(z) - <Kw)]~]d<Kw)d<f>(z) 

- X, R^ Jc [<f>(z) " &y»)VXd&z)d&y») 

= 0 - jf, tf(vv)^ [<Hz) - tfw)]"^*^*) 

(since / c [<j>(z) ~ «Kw) ] ^ ( w ) = 0 for each z e C because 
[4>(z) — <Kw) ] _ 1 is (2-analytic inside and on Cx) 

= - Jc R(w)Pd<i>(w) = -PJC R(w)d4>(w) 

= -P(-PJ) = P2J. 

Therefore J = J . The fact that J commutes with A and Q follows from 
the formulation. 

Now if z ÇÈ C, w G C, then 

M - <Hz)]tf(w)[<KuO - # z ) ] ] = [<Kw) - <J>(z)] ] + R(w) 

and 

(4.4) (^ - 4>(z)) jcR(w)[4>(w) - <j>(z)] ld<j>(w) 

= Jc[<!>(w) ~ <S>(z)r]d4>(w) - PJ. 

If z e ext C, the right side of (4.4) becomes 0 — PJ = — XP, and if 
z G int C, it becomes P - PJ = P(I - J). Thus (4.3) follows. 

Suppose J = 0. If z e int C, then (4.3) shows yl — <J>(z) is invertible, 
and hence z G res^(v4). Conversely, if the interior of C belongs to 

https://doi.org/10.4153/CJM-1985-066-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-066-3


COMPLEX BANACH ALGEBRAS 1227 

res^(^), then R(z) is (^-analytic inside and on C, so / = 0 by Cauchy's 
theorem. 

Now suppose J = I. li z Œ ext C, then (4.3) shows A — <J>(z) is 
invertible, z G VQSQ(A ). Thus sp^(^ ) c int C. Conversely, if spg(A ) lies in 
int C, then by Lemma 2, J = -P~\-P) = I. 

We discuss briefly the implications of Theorem 12 for the case that 96 is 
a commutative Banach algebra. Since J is idempotent, we have the 
decomposition 

96 = 96x® 962 

where 

96x = J96, 962 = (I - J)96. 

The identity elements on 96 x and 962 are J and (/ — / ) , respectively. Thus 
formula (4.3) shows that the projection of A — <J>(z) onto 96x is invertible if 
z G ext C, and if z G int C the projection of A — <j>(z) onto 962 is 
invertible. Moreover, (4.3) gives explicit integral formulas for the inverses 
of these projections in the algebras 96x and 962. 

THEOREM 13. Let A G 96(X), a bounded linear transformation on a 
Banach space X. Let Q G 96(X), sp Q n T = 0 <?« J 4̂ and Q commute. Let 
C be a simple closed rectifiable curve lying in TQSQ(A). Let J be the 
projection 

J = - / > " ' ) c R(z)d<Kz). 

Let {M, N} be the pair of linear manifolds associated with J. (That is 
M = J(X) and N = (I - J)(X), so X = M 0 N.) Let A' and A" represent 
the restrictions of A to M and N respectively. Then sp^(^4r) is precisely 
that subset of spg(A) which lies in the interior of C. Also, sp^(^r ') is 
precisely the subset of spp(A) which lies exterior of C. 

Proof The cases 7 = 0 and J = / are covered by Theorem 12. 
We assume J ¥= 0 and J ¥= I. Since J A = A J we have A(M) c M and 
A(N) c N. Likewise, Q(M) c M and Q(N) c N. Let J' and / " 
denote the restrictions of J to M and N respectively. Note that J' = T 
and J" = 0" where F and 0" are the identity and zero transformations on 
M and N respectively. 

Since R(z)J = JR(z) for each z G TQSQ(A) we may introduce the 
transformations R'(z) and R"(z), the restriction of R(z) to M and N 
respectively. 

It is easy to verify that if z G TQSQ(A), then z G resc(A') and 
z G TesQ(A"). 

We consider the converse situation. Let z G res^yT) and z G res^(^ / r). 
Let Bf and B" be the transformations which satisfy 
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B\A> - <j>(z)) = (A' ~ <j>(z))B' =J 

and 

B'\A" - <#)(z)) = {A" - <t>(z))B" = I - J. 

(Note also since Q commutes with J we have 

(A - <t>(z) )M c M and (A - <p(z) )N c N9 

so the above restrictions make sense as operations on M and N 
respectively.) 

Now define B G âS(X) by 

B(x) = B'J(x) + B"(I - J)(x) 

and we have 

B(A - <j>(z)) = I = (A - <Hz))B, 

so z G TQSQ(A) and by the uniqueness of B, B = R(z). This shows that 
B' = R\z) and B" = R"(z). 

The above conclusions imply that z G spQ(A) if and only if z G spç(A') 
or z G spgC4"). 

Now if z lies exterior of C, (4.3) shows that A' — <j>(z) has an inverse on 
M, and if z lies interior of C, it shows that ^4" — <£(z) has an inverse 
on N. Therefore sp^(^4r) is precisely that subset of spç(A) which lies in
terior of C, and spç(A") is precisely that subset of spç(A) which lies 
exterior of C. 

5. Expansions of Q-resolvent around an isolated singularity. The 
following development follows that in [6] for the usual resolvent. Recall: 

R(z) = [A - zl - IQ]~l = [A - <j>(z)]-]. 

Assume that z = z0 is an isolated singularity of R(z). Recall that R(z) is 
g-analytic wherever it exists. For simplicity we take z0 = 0. According to 
Theorem 9, R(z) has a Laurent expansion about z = 0, namely 

CO 

(5.i) R(z) = 2 B„[mr, 
n= - c o 

where 

(5.2) B„ = />- ' ll=pj [<Kz)]-"~id<Kz)R(z) 

= P " 1 j [ | = p i [A - ^z)\-\<Hz)}-n-'d<Kz) 

since all the elements involved in this integral commute. 
We assume [A — <j>(z) ]~ ' exists in 0 < \z\ < p0 and that 0 < p, < p0. 
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Thus (5.1) converges uniformly in compact subsets of 

0 < |Z| < -*L . 
Y1Y2 

Now consider the product BmBn: 

BmB„ = P~2fui=pj [A - « : ) ] " 1 [ * ) r M " ' # ) 

X ( [A - ^ ) ] - 1 [ ^ ) ] - " - ' j ^ ) 
•'1*1— Pi 

(here 0 < px < p2 < p0) 

p~2 L« L»RVRM«Z»' 
m-\ 

x Ms)] " {d<Ks)d<Kz) 

p~2 L-Pl L»[«z) - w ^ w - *<s)] 

X [<Xz)]~m~][<Xs)] "~ld<Ks)d^(z) 

[ [*(z)-«(5)]"W)] m 'd<l>(s)d<Kz) X 
-Pi 

y 
a 

x /,_ [^)-*(*)] W)] m ld<Kj)d<Ks)-

Now, to compute a and /J, 

OO 

k 

00 

provided that 

iMz^r'ii < 1. 
We choose p, and p2 so that 
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Pi < • 
Y1Y2 

Then 

= YlY2PH02~1 < 1-

Therefore, 

00 /• 

a = - 2 <Kz)k L_0 Hs)~n~k~2d<j>(s) 

and 

00 /• 

>8 = - 2 ^ ) - * _ 1 / . o *(z)-*-"'-,^z). 
£=0 •'M-Pi 

Recall: 

I,-j**> r*<*)-ft : * - 1 
= - 1 . 

Thus, 

f ' 
-4tz)~"~]P,n ^ - 1 

0 , n â 0, 

_ . 0 ,/w S - 1 
P ' —^s)~m~xP,m â 0. 

We have 4 cases: 

(1) w, n â 0 

« , = ^"' X=P2 «(^)[^)]-m-""2^(5) = B„ + B+1, 
(2) m, n < 0 

S„A = - P " 1 j [ | = p i /?(z)[<Xz)]-m-"-2^(z) = -Bm + n+l, 

( 3 ) m < 0 , « i 0 

« , = 0, 

(4) m ^ 0, n < 0 

il-P. R( BmBn = - i» ' lM_ R{zmz)Vm~n~1d4iz) 

+ P~'il=P2R(sMs)]-m-n-2d<Ks) 
= ~Bm + n+\ + ^m + w+1 = 0. 
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In conclusion, 

BmBn = 

0 if m < 0, n g 0 

Bm + n + \ i f m'n = ° 

- ^ + « + i if w, « < 0. 

Let Br, = 5. Then 3o 

#! = Z?0#0 = £ 

B2 = B0B} = B 

B^ = BQB2 = B 

Bn = BnJr\n ^ 0. 

Let -B_ E. Then 

Zs = B_\B_\ = —B—\ = E 

and E is idempotent. (Note: We already know this since 

E = - B . = -P - l 
J\z\=P\ 

(z)d<t>(z).) 

Let Z) = -B_2. Then 

£7) - B__XB_2 = -B_2 = Z). 

Also 

£_ £_9£ 2 ^ - 2 Z)2 

£ _ 4 = ~B_2B_3 = Z)(- /)2) 

£_ B_2B_4 = Z)(-I>3) 

Z)J 

Z)4 

Thus 

£_„ = -iy~\n S 2. 

# _ , = -E = -ED 

B_n = -EDn~\n â 1. 

Now (5.1) becomes 

*(*) = 2 5 _ H W z ) ] - w 4- 2 5„fo(z)r 
w = ± i «=o 

= - £ 2 /)"-'[<Kz)]-" + 2 fi"+1[^)f, 
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where 

EB = 0 

ED = D 

E2 = E. 

We would like to show D is quasinilpotent. We have 

D = -B_2 = -P~] ( [A - <t>(z)rl<t>(z)d<t>(z). 
J\z\ —Pi 

Let a be a homomorphism of ^ * onto C, where as usual ^ * is a maximal 
commutative subalgebra of 3& containing A and Q. Then 

- 1 f o[é(z)] 
a(D) = /, , ^ ^ (dz + o(Q)dz). 

o(P) JM=Pi o(A) - o[4>(z)] 
We need to show o(D) = 0. 

Let a(Q) = A, o(A) = a. Then 

f z + z~o(Q) 
(5.3) -a(D)o(P) = ] — ^TTzridz + o(Q)dz-) 

J\z\ 
z + IX 

(dz + \dz). = p\ a — z — ~z\ 

Now assume |X| < 1 and let w = z + IX to get 

f w 
(5.4) = / dw 

where C turns out to be an ellipse with positive orientation about the 
origin. 

Now since A — <t>(z) was invertible for all 0 < \z\ ^ px it is true that 
a = 0 or a is outside C. 

Case 1. If a = 0 then (5.4) becomes 

-o(D)o(P) = - Jc dw = 0. 

Case 2. If a is outside of C then (5.4) becomes 

-o(D)o(P) = I —0!—dw = 0 
*/c a — w 

since is analytic in and on C. 
a — w 

So if |X| < 1, then o(D) = 0. |X| = 1 is impossible since 

sp(Q) n T = 0. 
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Now if |X| > 1 we use the substitution w = z in (5.3) to obtain 

f w -f w 
o(D)o(P) = I , (dw + Xdw) 

1_ 
w + -w 

= X I , (dw + X W ) 
J\w\ = P\ a 

— w — X w 

< 1, and which by the argument previously given equals 0 since 

either 

a = 0 or a — Xw — w =£ 0 for |w| = p,. 

By the above o(D) = 0, so D is quasinilpotent in &. 
We have proved the following: 

THEOREM 14. Let z = 0 be an isolated singularity ofR(z). Then R(z) has 
the expansion 

oo oo 

R(z) = -E 2 z)""1^)]"" + 2 fi"+,[^)r 

w/z r̂̂  Z> is quasinilpotent, and 

E2 -= E 

EB = 0 

ED = D. 

The first series converges uniformly on compact subsets of z ¥= 0 and the 
second series converges uniformly on compact subsets of 

k l < - * -

where p0 is the distance to the nearest singularity. {The statements on 
convergence follow from Theorems 8 and 9.) Explicitly, B, E and D are given 
by 

B = p'] ll=P]R(z)[<Kz)r]d<Kz), 

D = - />- ' / R{z)<Kz)dm, 
J\Z\ —Pj 
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E = - F " » ^ _ p ( *(z)*<*), 

vv/zere 0 < pj < p0. 

6. An example of a disconnected g-spectrum. By Theorem 13 if A and Q 
are commuting bounded operators on a Banach space and sp Q n T = 0, 
then if sp£,(/ï ) is disconnected we can integrate on a simple closed curve C 
about one of the components of spp(A ) to produce a nontrivial projection 
J where J commutes with both A and Q. This observation gives the 
following results: 

THEOREM 15. Let A and Q be bounded linear transformations on a Banach 
space X. If AQ = QA and sp Q Pi T = 0 vv/Y/i sp^(yl) disconnected, then 
there exists a nontrivial projection J on X which commutes with both A 
and Q. 

COROLLARY 4. With the hypothesis of Theorem 15 and with $PQ(A) 

disconnected, A and Q have a nontrivial separating invariant subspace. 

Proof The projection J of Theorem 15 is such that J(X) and (7 — J)(X) 
are each nontrivial invariant subspaces of A and Q. This follows since J 
commutes with both A and Q. 

The above results raise the question as to whether or when the 
<2-spectrum is disconnected. And since the usual theory of the spectrum 
does not give rise to nontrivial invariant subspaces of A or Q if they have 
connected usual spectra, we have the interesting question as to whether 
the g-spectrum of A is ever disconnected when both A and Q have 
connected usual spectra. 

The following example demonstrates that the spectra of A and Q can be 
connected, yet SPQ(A) is disconnected. 

Note. Since in Example 6 both A and Q are normal operators, by other 
methods [9], we already know that each has a common nontrivial invariant 
subspace. 

Example 6. Let T be the unit circle in the complex plane and let H be 
the Hilbert space H = L (T), with ordinary arc length measure on T. We 
consider the Banach algebra B = &(H), the collection of bounded linear 
operators on H. 

Let </> be the function defined on T by 

argz2 

<Kz) = —— 
477 

where we take the branch of arg such that 

0 ^ arg z < 2TT, VZ ^ 0. 
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Then <j> e L°°(T). Hence the multiplication operator M^ defined by 

V = < £ v/GL2(r), 
is a bounded linear operator on L2(T), i.e., M^ G B = SS{H). (See [2], 
problems 49-52, for relevant information on multipliers.) Also, we know 
that 

spectrum M0 = ess range <j> = 0, - . 

Hence the ordinary spectrum of M^ is connected, and lies inside the unit 
disk. 

We also consider the multiplier Mz (multiplication by z). Then 

(Mzf)(z) = zf{z\ Vf^H,z^T 

and 

spectrum Mz = {z:\z\ = 1} = T. 

Hence the ordinary spectrum of Mz also is connected. 
Now consider the relative spectrum of Mz with respect to M^, i.e., 

spM (Mz). We will show that this spectrum is disconnected. We want to 
fincf all complex X such that the operator 

Mz - XI - XM^ 

is not invertible in &{H). But we have 

Mz - XI - XM+ = Mz_x_x<j>. 

Thus we want to find all X such that 

0 G ess range(z — X — X<f>). 

We need to solve the equation 

z - X - M(z) = 0. 

Taking the complex conjugate of this equation and solving for z, we get 

_ arg z2 

_ z — z 
z - z<j>(z) 4?7 

A = ^ = =—• = A(z). 
1 -\4>(z)\2

 1 _ / a r g z 2 y 

V 4TT / 
As z ranges around T, counterclockwise beginning at z = 1, we see that 
X = X(z) traces a curve something like the one below: 
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• 

^ Z = l 

i ^ v 

- 1 ^ z = - 1 + 2/3 \z = 1 

- 2 - l \ Ai,-
^ - z = - i 

(The discontinuities occur at z = ±1.) 
Thus the relative spectrum of Mz with respect to M^ is disconnected. 
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