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Abstract

Our main aim is to investigate the properties of harmonic ν-Bloch mappings. Firstly, we establish
coefficient estimates and a Landau theorem for harmonic ν-Bloch mappings, which are generalizations of
the corresponding results in Bonk et al. [‘Distortion theorems for Bloch functions’, Pacific. J. Math. 179
(1997), 241–262] and Chen et al. [‘Bloch constants for planar harmonic mappings’, Proc. Amer. Math.
Soc. 128 (2000), 3231–3240]. Secondly, we obtain an improved Landau theorem for bounded harmonic
mappings. Finally, we obtain a Marden constant for harmonic mappings.
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1. Introduction

We consider complex-valued harmonic mappings f defined in a simply connected
domain �⊂ C. The mapping f has a canonical decomposition f = h + g, where
h and g are analytic in � (see [5] or [7]). It is well known that f is locally
univalent and sense-preserving in � if and only if |g′(z)|< |h′(z)| in �. For a ∈ C,
let D(a, r)= {z : |z − a|< r} and D= D(0, 1). Throughout this paper we consider
harmonic mappings in the open unit disk D. For harmonic mappings f in D, we use
the standard notation

3 f (z)= max
0≤θ≤2π

| fz(z)+ e−2iθ fz(z)| = | fz(z)| + | fz(z)|

and
λ f (z)= min

0≤θ≤2π
| fz(z)+ e−2iθ fz(z)| = || fz(z)| − | fz(z)||,
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20 Sh. Chen, S. Ponnusamy and X. Wang [2]

so that if f is sense-preserving, then the Jacobian J f is given by

J f = λ f3 f = | fz|
2
− | fz|

2
:= |h′|2 − |g′|2 > 0.

A harmonic mapping f is called a harmonic Bloch mapping if and only if

sup
z,w∈D,z 6=w

| f (z)− f (w)|

ρ(z, w)
<+∞,

where

ρ(z, w)=
1
2

log
(

1+
∣∣ z−w

1−zw

∣∣
1−

∣∣ z−w
1−zw

∣∣
)
= arctanh

∣∣∣∣ z − w

1− zw

∣∣∣∣
denotes the hyperbolic distance between z and w in D. In the following, we denote the
hyperbolic disk with center a and radius r > 0 by Dh(a, r)= {z : ρ(a, z) < r} and the
hyperbolic circle by Sh(a, r)= {z : ρ(a, z)= r}.

Obviously, for any a ∈ D, the following are equivalent:

(1) ρ(a, z)= r;

(2)

∣∣∣∣ z − a

1− az

∣∣∣∣= tanh(r);

(3)
|1− az|2

1− |z|2
=

1− |a|2

1− tanh2(r)
.

In [6] Colonna proved that

sup
z,w∈D,z 6=w

| f (z)− f (w)|

ρ(z, w)
= sup

z∈D
(1− |z|2)3 f (z). (1.1)

Moreover, the set of all harmonic Bloch mappings, denoted by the symbol H B1, forms
a complex Banach space with the norm ‖ · ‖ given by

‖ f ‖H B1 = | f (0)| + sup
z∈D
(1− |z|2)3 f (z).

For ν ∈ (0,∞), a harmonic mapping f is called a harmonic ν-Bloch mapping if
and only if ‖ f ‖H Bν <+∞, where

‖ f ‖H Bν = | f (0)| + sup
z∈D
(1− |z|2)ν3 f (z). (1.2)

Then the set of harmonic ν-Bloch mappings forms a ν-Banach space, denoted by H Bν ,
with the norm given by (1.2).

Let H0 denote the class of all harmonic mappings f in D with f (0)= 0 and
introduce the subclass

H B1
ν(α)= { f ∈H0 : fz(0)= α, fz(0)= 0 and ‖ f ‖H Bν ≤ 1},

where α ∈ (0, 1].

https://doi.org/10.1017/S0004972711002140 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711002140


[3] Harmonic ν-Bloch mappings 21

Let χ denote the chordal metric on the extended complex plane C∞. For geometric
purposes we view C∞ as the sphere in the three-dimensional space R3 with center at
(0, 0, 1/2) and radius 1/2, and have

χ(z, w)=


|z − w|

(1+ |z|2)1/2(1+ |w|2)1/2
if z, w ∈ C with z 6= w,

1

(1+ |z|2)1/2
if w =∞.

A meromorphically harmonic mapping f in D is called a normal harmonic mapping
if M( f ) <∞, where

M( f )= sup
z,w∈D,z 6=w

χ( f (z), f (w))

ρ(z, w)
.

By (1.1), we have

M( f )= sup
z∈D

{
(1− |z|2)3 f (z)

1+ | f (z)|2

}
.

Many authors have discussed the coefficient estimate, distortion theorem, and the
existence of Landau–Bloch and Marden constants for analytic Bloch functions (see [1–
3, 8–11]). But in the literature there are no analogous results for harmonic ν-Bloch
mappings. In Section 2, we fill this gap by proving Theorems 2.1, 2.3, and 2.4, where
Theorem 2.1 is an improvement of [2, Lemma 1] and Theorem 2.4 is a generalization
of [3, Theorem 2 and Corollary 3]. In [4], the authors obtained Landau’s theorem for
bounded harmonic mappings by using an integral estimate. In Section 3, we use the
variational method and subordination to get an improved version of Landau’s theorem
for harmonic mappings (see Theorem 3.1). Finally, we obtain a Marden constant for
harmonic functions (see Theorem 4.1) which generalizes [8, Theorem 5].

2. Landau’s theorem for harmonic Bloch mappings

Let η be an analytic function in D with η(z)=
∑
∞

n=0 cnzn . If |η(z)| ≤ 1, then for
each n ≥ 1,

|c0|
2
+ |cn| ≤ 1. (2.1)

We shall make use of this well-known estimate (see [12]).

THEOREM 2.1. Let f = h + g be a harmonic mapping, where g and h are analytic
in D with the expansions

h(z)=
∞∑

n=1

anzn and g(z)=
∞∑

n=1

bnzn. (2.2)

If λ f (0)= α for some α ∈ (0, 1] and ‖ f ‖H Bν ≤ M for M > 0, then

|an| + |bn| ≤ An(α, ν, M)= inf
0<r<1

µ(r) for n ≥ 2, (2.3)
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where

µ(r)=
M2
− α2(1− r2)2ν

nrn−1(1− r2)νM
.

In particular, if ν = M = α = 1, then

µ(r)=
2− r2

nrn−3(1− r2)

and
|an| + |bn| ≤ An, (2.4)

where

An = An(1, 1, 1)=



0 for n = 2,
1
3

for n = 3,

√
2

2

(
3+
√

17

(1+
√

17)(
√

5−
√

17)

)
≈ 1.049 889 for n = 4,

µ

(√
3n − 7−

√
n2 + 6n − 23

2(n − 3)

)
for n ≥ 5.

The estimate of (2.4) is sharp when n ∈ {1, 2, 3}. The extreme function is

f (z)=
3
√

3
4

[(
z + (
√

3/3)

1+ (
√

3/3)z

)2

−
1
3

]
(2.5)

or f (z).

PROOF. For a fixed r ∈ (0, 1), let F(ζ )= r−1 f (rζ ). Then F has the form

F(ζ )=
∞∑

n=1

rn−1anζ
n
+

∞∑
n=1

rn−1bnζ
n
, ζ ∈ D, (2.6)

and therefore

3F (ζ )=3 f (rζ )≤ m(r) :=
M

(1− r2)ν
. (2.7)

For θ ∈ [0, 2π) and ζ ∈ D, we set

T (ζ )=
Fζ (ζ )+ eiθ Fζ (ζ )

m(r)
.

Then, by (2.6), we see that

T (ζ )=
1

m(r)

∞∑
n=1

n(an + eiθbn)r
n−1ζ n−1
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which is analytic in D and, by (2.7), |T (ζ )| ≤ 1 in D. Now, applying (2.1) to T
gives

nrn−1
|an + eiθbn|

m(r)
≤ 1−

λ2
f (0)

m2(r)
= 1−

α2

m2(r)
for n ≥ 2

and the arbitrariness of θ in [0, 2π) implies that

|an| + |bn| ≤
m2(r)− α2

nrn−1m(r)
= µ(r) for n ≥ 2, (2.8)

where

µ(r)=
M2
− α2(1− r2)2ν

nrn−1(1− r2)νM
.

Thus, inequality (2.3) follows from (2.8).
In particular, for ν = M = α = 1, one has

µ(r)=
2− r2

nrn−3(1− r2)

which for n = 2 gives that inf0<r<1 µ(r)= 0.
Without loss of generality, for n = 3 and θ ∈ [0, 2π), let

fθ (z)= h(z)+ eiθg(z)= z +
∞∑

n=2

(an + eiθbn)z
n.

Then we obtain that | f ′θ (z)|(1− |z|
2)≤ 1 and therefore

| f ′θ (z)| = |1+ 3(a3 + eiθb3)z
2
+ · · · | ≤

1

1− |z|2
= 1+ |z|2 + · · · .

In particular, this inequality gives that |a3 + eiθb3| ≤ 1/3. Again, the arbitrariness of
θ in [0, 2π) implies the estimate

|a3| + |b3| ≤ 1/3.

For 1≤ n ≤ 3, the extreme function is given by (2.5).
On the other hand, for n ≥ 4, one sees that

lim
r→0+

µ(r)= lim
r→1−

µ(r)=+∞.

This observation implies that the infimum of µ(r) must exist on (0, 1). Next, we
compute that

µ′(r)=−
[(n − 3)r4

− (3n − 7)r2
+ 2(n − 3)]

rn−2(1− r2)2
=−

(n − 3)(r2
− r2

0 )(r
2
− s2

0)

rn−2(1− r2)2
,
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where

r0 =

√
3n − 7−

√
n2 + 6n − 23

2(n − 3)
< 1 and s0 =

√
3n − 7+

√
n2 + 6n − 23

2(n − 3)
> 1,

and therefore we obtain that

inf
0<r<1

µ(r)= µ(r0).

For n ≥ 4, if we choose r =
√
(n − 3)/(n − 1), then we deduce that

µ

(√
n − 3
n − 1

)
=

n + 1
2n

(
1+

2
n − 3

)(n−3)/2

<
(n + 1)e

2n

as (1+ 1/x)x in (0,∞) is monotonically increasing and tends to e as x→+∞. This
observation gives that, for n ≥ 5,

µ(r0)= µ

(√
3n − 7−

√
n2 + 6n − 23

2(n − 3)

)
<
(n + 1)e

2n
.

In particular, if n = 4, then we can easily compute that

µ(r0)=
2− r2

0

4r0(1− r2
0 )

∣∣∣∣
n=4
=

√
2

2

(
3+
√

17

(1+
√

17)(
√

5−
√

17)

)
≈ 1.049 889.

We observe that (5/8)e, the upper bound for µ(r0), is approximately 1.698 926. The
proof of this theorem is complete. 2

REMARK 2.2. Theorem 2.1 is an improvement of [2, Lemma 1].

THEOREM 2.3. Let f be a harmonic mapping with f (0)= λ f (0)− α = 0 and
‖ f ‖H Bν ≤ M, where M and α ∈ (0, 1] are constants. Then f is univalent in Dρ0 ,
where

ρ0 = ϕ(r0)= max
0<r<1

ϕ(r), ϕ(r)=
αr(1− r2)νM

αM(1− r2)ν − α2(1− r2)2ν + M2 .

Moreover, f (Dρ0) contains a univalent disk DR0 with

R0 = r0

[
α +

M2
− α2(1− r2

0 )
2ν

M(1− r2
0 )
ν

log
M2
− α2(1− r2

0 )
2ν

αM(1− r2
0 )
ν − α2(1− r2

0 )
2ν + M2

]
.

PROOF. As in Theorem 2.1, let f = h + g, where g and h are analytic in D and have
the form (2.2). Next, we fix r ∈ (0, 1) and consider F(ζ )= r−1 f (rζ ) for ζ ∈ D so
that

F(ζ )=
∞∑

n=1

Anζ
n
+

∞∑
n=1

Bnζ
n
,
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where An = anrn−1 and Bn = bnrn−1. From the proof of Theorem 2.1, we obtain that

|An| + |Bn| ≤ rn−1µ(r)=
m2(r)− α2

nm(r)
, (2.9)

where m(r) is given by (2.7).
To prove the univalence of F , we choose two distinct points ζ1, ζ2 ∈ Dρ1(r) and let

ζ1 − ζ2 = |ζ1 − ζ2|eiθ , where

ρ1(r)=
α

α + m(r)− α2

m(r)

.

Then (2.9) yields that

|F(ζ2)− F(ζ1)| =

∣∣∣∣∫
[ζ1,ζ2]

Fζ (ζ ) dζ + Fζ (ζ ) dζ

∣∣∣∣
≥

∣∣∣∣∫
[ζ1,ζ2]

Fζ (0) dζ + Fζ (0) dζ

∣∣∣∣
−

∣∣∣∣∫
[ζ1,ζ2]

(Fζ (ζ )− Fζ (0)) dζ + (Fζ (ζ )− Fζ (0)) dζ

∣∣∣∣
> |ζ1 − ζ2|

[
λF (0)−

∞∑
n=2

(|An| + |Bn|)nρ
n−1
1 (r)

]
≥ |ζ1 − ζ2|

[
α −

m2(r)− α2

m(r)
·

ρ1(r)

1− ρ1(r)

]
≥ 0.

Here in the last step we use the fact that

α −
m2(r)− α2

m(r)
·

ρ1(r)

1− ρ1(r)
= 0,

that is,

ρ1(r)=
ϕ(r)

r
.

Thus, F(ζ2) 6= F(ζ1). The univalence of F follows from the arbitrariness of ζ1 and ζ2.
This implies that f is univalent in Drρ1(r).

Now, for any ζ ′ = ρ1(r)eiθ
∈ ∂Dρ1(r), we easily obtain that

|F(ζ ′)| ≥ αρ1(r)−
∞∑

n=2

(|An| + |Bn|)ρ
n
1 (r)

≥ αρ1(r)−
∞∑

n=2

m2(r)− α2

nm(r)
ρn

1 (r)

= α +

(
m(r)−

α2

m(r)

)
log

m(r)− α2

m(r)

α + m(r)− α2

m(r)

=
R0

r
,
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where the last step is a consequence of the expression for ρ1 given by ρ1(r)= r−1ϕ(r)
and the power series expansion of −log(1− x). Therefore, f (Drρ1(r)) contains a
univalent disk of radius R0. The proof of the theorem is complete. 2

Next we consider a special case of Theorem 2.3 and obtain the following sharp
estimate which is indeed a harmonic analog of [3, Theorem 2 and Corollary 3].

THEOREM 2.4. Let f ∈H Bν(α). Then for z with |z|< (a0 + m0(α))/(1+ a0m0(α))

and a0 = 1/
√

1+ 2ν, we have

3 f (z)≥ Re( fz(z)+ fz(z))≥
α(m0(α)− |z|)

m0(α)(1− m0(α)|z|)2ν+1 . (2.10)

The equalities occur if and only if f (z)= eiϑ Fα(e−iϑ z) for some ϑ ∈ [0, 2π), where

Fα(z)=
α

m0(α)

∫ z

0

m0(α)− ζ

(1− m0(α)ζ )2ν+1 dζ

and m0(α) satisfies

√
1+ 2ν

(
2ν + 1

2ν

)ν
m0(α)(1− m2

0(α))
ν
= α.

Moreover, f (Dm0(α)) contains a univalent disk of radius R0, where

R0 ≥
α

m0(α)

∫ m0(α)

0

(m0(α)− t)

(1− m0(α)t)2ν+1 dt. (2.11)

The equality occurs if and only if f (z)= eiϑ Fα(e−iϑ z) for some ϑ ∈ [0, 2π).

PROOF. For θ ∈ [0, 2π), let

fθ (z)=
∫ z

0
fζ (ζ ) dζ + eiθ

∫ z

0
fζ (ζ ) dζ and ψθ (z)= (1− m0(α)z)

2 f ′θ (z).

Define

Gα(z)=
α

m0(α)
·

m0(α)− z

1− m0(α)z
,

where m0(α) satisfies

√
1+ 2ν

(
2ν + 1

2ν

)ν
m0(α)(1− m2

0(α))
ν
= α.

Fix x ∈ (0, (a0 + m0(α))/(1+ a0m0(α))], and let

δx = {z : ρ(0, z)= ρ(0, x)} ⊂ Dh(m0(α), arctanh a0)

be the hyperbolic circle. Since ψθ (z)≺ Gα on Dh(m0(α), arctanh a0), ψθ maps the
circle into the closed disk bounded by the circle Gα(δx ). We see that Gα(δx ) is a
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hyperbolic circle on Dt with center Gα(0)= α, where t = αa0/m0(α). Also it is
symmetric about the real axis R. It is easy to see that Gα is decreasing on the interval

Dh(m0(α), arctanh a0) ∩ R.

Hence Gα(x) has the property

Gα(x)= Re Gα(x)=min{Re[Gα(z)] : z ∈ δ(x)}

which yields that

3 f (z)≥ Re[ f ′θ (z)] = Re( fz(z)+ eiθ fz(z))≥
α

m0(α)
·

(m0(α)− |z|)

(1− m0(α)|z|)2ν+1

for z with |z| ≤ (1+ m0(α)
√

1+ 2ν)/(
√

1+ 2ν + m0(α)). Finally, (2.10) is an
immediate consequence of the arbitrariness of θ .

On the other hand, for any θ ∈ [0, 2π), we have

| fθ (m0(α)e
iθ )| =

∣∣∣∣∫ m0(α)eiθ

0
f ′θ (z) dz

∣∣∣∣
≥

α

m0(α)

∫ m0(α)

0

(m0(α)− t)

(1− m0(α)t)2ν+1 dt.

Therefore,

min{| fθ (z)| : |z| = m0(α)} ≥
α

m0(α)

∫ m0(α)

0

(m0(α)− t)

(1− m0(α)t)2ν+1 dt.

Again, the arbitrariness of θ implies that f is univalent on the disk Dr0 with r0 = m0(α)

and f (Dr0) contains a univalent disk of radius at least R0, where R0 is given by (2.11).
The proof of the theorem is complete. 2

REMARK 2.5. If ν = 1 and fz ≡ 0, then Theorem 2.4 coincides with [3, Theorem 2
and Corollary 3].

3. Landau’s theorem for harmonic mappings

For the proof of Theorem 3.1, we need the following result due to Colonna [6].
However, we present here a simple proof as it uses only the subordination.

THEOREM A [6, Theorem 3]. Assume that f = h + g is a harmonic mapping in D
satisfying f (D)⊂ D, where g and h are analytic in D. Then for any z ∈ D,

‖ f ‖H B1 ≤
4
π
+ | f (0)|.

PROOF. For θ ∈ [0, 2π), let vθ (z)= Im(eiθ f (z)). Then

vθ (z)= Im
(
eiθh(z)+ e−iθg(z)

)
= Im

(
eiθh(z)− e−iθg(z)

)
.
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Because |vθ (z)|< 1, it follows that

eiθh(z)− e−iθg(z)≺ K (z)= λ+
2
π

log
(

1+ zξ

1− z

)
, (3.1)

where ξ = e−iπIm(λ), λ= eiθh(0)− e−iθg(0) and ≺ denotes the subordination [7,
p. 27].

By the definition of the subordination, (3.1) implies that

eiθh(z)− e−iθg(z)= K (ωθ (z)),

where ωθ (z) is an analytic function in D with |ωθ (z)|< 1 for z ∈ D. Thus, by the
Schwarz–Pick lemma, we obtain that

(1− |z|2)|eiθh′(z)− e−iθg′(z)| = (1− |z|2)|ω′θ (z)||K
′(ωθ (z))|

≤ (1− |ωθ (z)|2)|K ′(ωθ (z))|

≤ sup
ω∈D

(1− |ω|2)|K ′(ω)| =
4
π

and therefore

‖ f ‖H B1 − | f (0)| = max
0≤θ<2π

(1− |z|2)|h′(z)− e−2iθg′(z)| ≤
4
π
,

where the last inequality is a consequence of the arbitrariness of θ in [0, 2π). 2

We now recall a result due to Hengartner and Gauthier [4].

THEOREM B [4, Theorem 3]. Let f be a harmonic mapping of D such that f (0)=
fz(0)= fz(0)− 1= 0 and | f (z)|< M for z ∈ D. Then f is univalent on a disk Dρ0

with

ρ0 =
π2

16mM
,

and f (Dρ0) contains a univalent disk DR0 with

R0 =
π2

32mM
,

where m = infr∈(0,1)((3− r2)/r(1− r2))≈ 6.850 99.

Our next result improves Theorem A in the following form.

THEOREM 3.1. Let f be a harmonic mapping of D such that f (0)= fz(0)= fz(0)−
1= 0 and | f (z)|< M in D for some M > 1. Then f is univalent on a disk Dρ
and f (Dρ) contains a univalent disk of radius at least R = (3

√
3M/π)ρ2, where ρ

satisfies
6
√

3M

π
ρ(1− ρ2)= 1.
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PROOF. For z ∈ D, let F(z)=−(3
√

3M/π)z2. Then (1− |z|2)|F ′(z)| ≤ 4M/π .
Consider

G(z)= F ◦ φρ(z)− F ◦ φρ(0),

where φρ(z)= (z − ρ)/(1− ρz) and the constant ρ ∈ (0,
√

3/3) satisfies the equation

6
√

3M

π
ρ(1− ρ2)= 1.

Further, we let

P(z)= (1− ρz)2G ′(z)=−
6
√

3M(1− ρ2)

π
φρ(z).

Then the function P is a Möbius transformation and, for any z ∈ Sh(ρ, r),

|P(z)| =
6
√

3M

π
(1− ρ2) tanh(r).

Set T (z)= (1− ρz)2 f ′θ (z), where

fθ (z)=
∫ z

0
fζ (ζ ) dζ + eiθ

∫ z

0
fζ (ζ ) dζ

for θ ∈ [0, 2π). Then, for any z ∈ Sh(ρ, r), by Theorem A we have

|T (z)| ≤
4M

π

|1− ρz|2

1− |z|2
=

4M

π

(
1− ρ2

1− tanh2(r)

)
.

Fix x ∈ (0, (1+
√

3ρ)/(
√

3+ ρ)] and let

δx = {z : ρ(0, z)= ρ(0, x)} ⊂ Dh

(
ρ, arctanh

√
3

3

)
.

Since T ≺ P on Dh(ρ, arctanh
√

3/3), T maps the circle into the closed disk bounded
by the circle P(δx ). We see that P(δx ) is a hyperbolic circle on Dt with center
P(0)= 1, where t = (6M/π)(1− ρ2). Also it is symmetric about the real axis R.
It is easy to see that P is decreasing on the interval Dh(ρ, arctanh

√
3/3) ∩ R. Hence

P(x) satisfies the property that

Re[P(x)] =min{Re[P(z)] : z ∈ δx },

which yields Re[T (x)] ≥min{|P(z)| : z ∈ δx } = P(x), whence

Re[ f ′θ (z)] ≥
6
√

3M

π
·
(1− ρ2)(ρ − |z|)

(1− ρ|z|)3

for z with |z| ≤ (1+
√

3ρ)/(
√

3+ ρ). Hence

min{| fθ (z)| : |z| = ρ}>
3
√

3M

π
ρ2.

It follows that f is univalent on the disk Dρ and f (Dρ) contains a univalent disk of
radius at least R = (3

√
3M/π)ρ2. The proof of the theorem is complete. 2
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TABLE 1. Bloch-Landau constants for various M . The left-hand columns refer to Theorem B and the
right-hand columns refer to Theorem 3.1.

M ρ0 R0 M ρ R

1.1 0.0818528 0.0409264 1.1 0.302498 0.166483
1.3 0.0692601 0.03463 1.3 0.247744 0.131972
1.5 0.0600254 0.0300127 1.5 0.210916 0.110368
1.7 0.0529636 0.0264818 1.7 0.184059 0.0952566
1.9 0.0473885 0.0236942 1.9 0.163474 0.0839814
2 0.0450191 0.0225095 2 0.154864 0.0793347
2.5 0.0360152 0.0180076 2.5 0.12277 0.0623242
3 0.0300127 0.0150064 3 0.101822 0.0514442
3.5 0.0257252 0.0128626 3.5 0.0870306 0.0438474
4 0.0225095 0.0112548 4 0.0760142 0.038228
4.5 0.0200085 0.0100042 4.5 0.0674851 0.0338969
5 0.0180076 0.00900381 5 0.0606834 0.0304538

REMARK 3.2. We note that in the case of M = 1 in Theorem 3.1, we actually have
f (z)= z and ρ = R = 1. Now, if we set

H(x)=
6
√

3M

π
x(1− x2)

then, by a simple calculation, we deduce that H(π2/16mM) < 1, where m is defined
as in Theorem B. This implies that ρ0 = π

2/16mM < ρ. Thus, Theorem 3.1 improves
Theorem B. In Table 1, we have listed the improved values of the Bloch-Landau
constants for various choices of M .

4. Marden constant

If f is a normal harmonic mapping and a ∈ D, then set

s(a, f )= sup{r : f is univalent in the hyperbolic disk Dh(a, r)}

and s( f )= sup{s(a, f ) : a ∈ D}. The Marden constant for normal harmonic mappings
f with M( f )= m > 0 is given by

M(m)= inf{s( f ) : f is a normal harmonic function with M( f )= m},

where M( f ) is defined in the Introduction.

THEOREM 4.1. Suppose that f is a normal harmonic mapping such that f (0)=
fz(0)= fz(0)− m = 0. Then

M(m)≥ 2 arctanh
(

1√
3(1+ m2)

)
.
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PROOF. By simple calculations,

[arctan(| f (z)|)]z =
f (z) fz(z)+ fz(z) f (z)

2(1+ | f 2(z)|)| f (z)|

and

[arctan(| f (z)|)]z =
f (z) fz(z)+ fz(z) f (z)

2(1+ | f 2(z)|)| f (z)|
.

These equalities give

arctan(| f (z)|) ≤
∫
[0,z]

3 f (ζ )

1+ | f (ζ )|2
|dζ |

≤ m
∫
[0,z]

|dζ |

1− |ζ |2

= m arctanh(|z|).

This implies that f is harmonic in DR with R = tanh(π/2m). Set r = 1/
√

1+ m2.
Then r < R and F(z)= f (r z)/rm is harmonic in D. Clearly, F(0)= Fz(0)=
Fz(0)− 1= 0. Also, we find that

(1− |z|2)3F (z) =
(1− |z|2)3 f (r z)

m

≤
1− |z|2

1− |r z|2
[1+ tan2(m arctanh(|r z|))]

≤ 1.

By Theorem 2.4, we obtain that F is schlicht in Dr0 with r0 = 1/
√

3. Therefore,

M(m)≥ 2 arctanh
(

1√
3(1+ m2)

)
.

This concludes the proof. 2

REMARK 4.2. If fz ≡ 0, then Theorem 4.1 coincides with [8, Theorem 5].
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