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Closed-form expressions for aerodynamic force on an accelerating aerofoil were presented
in the 1930s, relating instantaneous force to geometric and kinematic parameters
under the following assumptions: a thin aerofoil, small-amplitude motions, planar wake
development, and a flow that is inviscid, incompressible and two-dimensional. The present
work is a step towards analogous closed-form expressions for large-amplitude motions of
thick foils when the flow remains attached and boundary-layer thickness approaches (but
does not equal) zero. A mathematical framework is derived from vortical flow theory to
highlight the finite degrees of freedom that must be solved or predicted in order to yield
a predictive aerodynamic model under the stated conditions. The special case of periodic
motion is further considered, and an equation is derived to calculate mean forces from
known or assumed time histories of circulation, vorticity-weighted mean wake convection
velocity and trailing-edge velocity.

Key words: Aerodynamics

1. Introduction
Unsteady aerodynamic theory is concerned with the fluid-dynamic forces imparted on sub-
merged, accelerating objects. Aerofoils and hydrofoils – or simply ‘foils’, to be general –
are of special interest for their ability to generate high lift-to-drag ratios when the
surrounding flow remains attached.

When considering oscillating foils in a steady free-stream flow of velocity U∞, the
default starting point remains the seminal work of Theodorsen (1935), which treated foils
embedded in an unbounded incompressible fluid domain undergoing harmonic oscillation
in pitch and heave, where ‘heave’ refers to motion perpendicular to the free-stream
direction.
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The enduring appeal of Theodorsen’s work is certainly the simplicity of the final
result, which relates the instantaneous lift to the foil geometry and foil motion through an
algebraic equation. In addition to the restriction to harmonic motions, Theodorsen invoked
the following assumptions to facilitate his complex potential analysis:

(i) the flow over the foil remains attached at all times;
(ii) the flow is inviscid outside of the boundary layers and wake, which are assumed to

be infinitely thin;
(iii) the foil is infinitely thin;
(iv) the wake remains planar, with all shed vorticity lying directly behind the foil;
(v) the wake convects downstream at a speed of U∞;

(vi) the flow leaves smoothly (i.e. tangentially) from the trailing edge.

Assumptions (iv) and (v) imply that the amplitudes of pitch and heave motions are small,
as large displacements of the trailing edge would generate a wide wake with significant
self-induced velocity.

The present work derives a mathematical expression for force that retains assumption
(i) but relaxes assumptions (ii)–(vi). Assumption (ii) is relaxed in that viscosity is assumed
to be small but non-zero, with boundary-layer thickness that approaches but does not equal
zero. Assumptions (iii)–(vi) are avoided entirely.

This will be achieved by starting from the equations of vortical flow theory, which
express force in terms of continuous vorticity and velocity fields without explicit
dependence on pressure (Noca 1997; Wu et al. 2015).

The primary result of this paper is a mathematical framework that highlights the finite
degrees of freedom that must be determined to arrive at a closed-form expression for force
– a recipe, if you will, that indicates the ingredients necessary to construct a fully predictive
model.

2. Background on classical unsteady aerofoil theory

2.1. The enduring legacy of Theodorsen (1935)
For a rigid thin foil, Theodorsen gives the lift (positive upwards) as

L = π

4
ρc2 (U∞α̇ − ḧ − x pα̈

)+ πρcU∞C(k)
(
U∞α − ḣ − (x p − c/4)α̇

)
, (2.1)

where ρ is fluid density, c is chord length, U∞ is the free-stream velocity, α is the pitch
angle (positive nose-up), x p is the pivot-point location relative to the midchord (aft-
positive), h is the vertical position of the pivot point (positive upwards), k = π f c/U∞
is the reduced frequency (where f is the frequency of oscillation in units of s−1), and
overdots represent time differentiation (e.g. α̇ and α̈ are the pitch rate and pitch acceler-
ation). This model is so ubiquitous that it is often referred to simply as ‘Theodorsen’ –
a habit I will continue herein.

The two groupings of terms in (2.1) are those due to the irrotational and rotational
components of the flow field, respectively. The irrotational grouping depends only on
geometric and kinematic parameters. Under the special case of linear acceleration, these
terms yield a force proportional to instantaneous acceleration, analogous to an inertial
force; for this reason, the irrotational component of force is often called the ‘added-mass
force’.

The second grouping of terms is related to wake evolution. The wake induces a time-
varying velocity on the foil such that the history of motion must also be accounted for;
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by assuming continuous harmonic motion, this effect is captured by the so-called
Theodorsen function, C(k). This function takes on complex values, allowing prediction of
a phase lag between peak pitch angle and peak lift and a changing lift amplitude (relative
to the quasi-static case) with changing frequency.

Despite almost 90 years having passed since Theodorsen’s publication, Cordes et al.
(2017) note that empirical validation of his model is scant in the literature. They cite
Silverstein & Joyner (1939); Reid & Vincenti (1940); Halfman (1952); and Rainey (1957),
reporting poor agreement between theory and experiment in those works. Cordes et al.
(2017) conducted their own experiments on a pitching (but not heaving) foil using
improved modern measurement equipment, and affirmed that Theodorsen appears to be
a good approximation at low pitch amplitudes (below 8◦ in their case), but with phase lag
errors at approximately 10 % at moderate reduced frequency (k = 0.3).

Mackowski & Williamson (2015) performed a similar experimental investigation for
pitching foils and compared mean thrust, oscillating thrust amplitude and thrust phase
(relative to the pitch angle) to the theory of Garrick (1936), which relies on Theodorsen’s
derivation. Mean thrust was overpredicted and thrust phase lag was underpredicted by
Garrick (1936), but oscillating thrust amplitude was reasonably well predicted.

Ōtomo et al. (2021) sought to diagnose conditions which cause Theodorsen to err,
finding major errors when the convection speed of the wake differs significantly from the
free-stream value (see assumption (v)); this was shown by demonstrating better agreement
between prediction and experiment when a correction was added to Theodorsen to account
for the growth and convection of the leading-/trailing-edge vortex pair (as observed using
particle-image velocimetry).

It has also been known since Theodorsen’s time that the Kutta condition (assumption
(vi)) is too restrictive for unsteady cases, as the flow may be expected to momentarily
‘round the corner’ at the trailing edge under acceleration (Reid & Vincenti 1940). Taha &
Rezaei (2019) were able to relax this condition by considering finite viscosity, thereby
improving upon Theodorsen’s predictions of phase lag for small-amplitude motions of
high frequency. The framework to be derived herein will not assume the Kutta condition,
and so may be used in conjunction with newly proposed models to supplant it.

Another recent work attempted to apply Theodorsen even when its inherent assumptions
were clearly violated. In absence of a better alternative, Baik et al. (2012) applied
Theodorsen to pitching and plunging flat plates at large pitch angles with clear leading-
edge separation. Large instantaneous errors were an unsurprising result, and the authors
had mixed success in obtaining improved predictions using ad hoc modifications to (2.1).

In summary, modern experimental methods can offer more thorough validation of
aerodynamic models than were available in the time of Theodorsen, and more recent
efforts have aimed to quantify, diagnose and correct errors in Theodorsen’s predictions.
However, no updated analytical (or semi-analytical) model has attained consensus in the
community as the new default starting point in modelling accelerating foils.

2.2. Lift expression of von Kármán & Sears (1938)
The work of von Kármán & Sears (1938) must now be introduced as a precursor to the
more general mathematical framework that serves as the basis of the present work.

A few years after Theodorsen’s publication, von Kármán & Sears (1938) expressed a
need to derive the main results of unsteady aerofoil theory in a manner that was simpler
and more physically interpretable, with an explicitly stated sympathy for engineers.
They invoke the ‘vortex-momentum’ concept without citation (suggesting widespread
familiarity at the time), whereby the growing spatial separation between a pair of vortices
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(of equal and opposite circulation) gives rise to a changing momentum and an associated
force on the object effecting this separation.

Von Kármán & Sears (1938) applied the vortex-momentum concept to unsteady motions
during which a foil generates a trailing vortex sheet, where each infinitesimal element
in that vortex sheet induces a distribution of vorticity on the foil as the wake convects
downstream. Invoking assumptions (i)–(iv) in the list presented in § 1, their general lift
equation (in modified notation) is

L(t) = −ρ
d
dt

(∫ c/2

−c/2
xγ (x, t) dx +

∫ ∞

c/2
xγ (x, t) dx

)
, (2.2)

where the positive x-direction is aligned with the free-stream flow in the downstream
direction, x = 0 at the midchord, and γ (x, t) is the vortex sheet strength over the foil and
in the wake.

Von Kármán & Sears (1938) proceed to express the distribution of vorticity on the foil
as two components: one produced, ‘according to thin aerofoil theory, by the motion of the
aerofoil . . . if the wake had no effect’, denoted as γ0(x, t); and the other produced by the
velocity induced by the vorticity in the wake. Equation (2.2) then becomes

L(t) = −ρ
d
dt

(∫ c/2

−c/2
xγ0(x, t)dx +

∫ ∞

c/2
γ (x, t)

(√
x2 − (c/2)2 − x

)
dx

+
∫ ∞

c/2
xγ (x, t) dx

)
, (2.3)

where the second integral represents the effect of the induced velocity of the wake. This
expression is derived by mapping the fluid domain around the thin foil to that around a
disk, and then placing vortices within the circle to maintain the impermeable boundary
condition.

The last two integrals in (2.3) can be combined to yield

L(t) = −ρ
d
dt

(∫ c/2

−c/2
xγ0(x, t) dx +

∫ ∞

c/2
γ (x, t)

√
x2 − (c/2)2dx

)
, (2.4)

where the last term now jointly accounts for the effect of the convecting wake and its
image-vorticity distribution. The integrals in the preceding three equations can be found in
equations (12)–(14) of von Kármán & Sears (1938), differing in notation by the substitution
of c/2 = 1.

From this foundation, von Kármán & Sears (1938) go on to derive closed-form
expressions for foil force under translatory and rotational foil oscillations; for these tasks,
they invoke assumptions (v) and (vi) to allow calculation of γ (x, t) at all times, thereby
yielding models that have the same limitations as Theodorsen. They also derive equations
for foil force in the presence of a vertical gust.

3. Derivation
Let us proceed to derive a more general version of (2.3). The goal is to arrive at an equation
relating force on a foil to a finite number of free parameters – prominent among them,
motion parameters and circulation – from which the classical results can be seen as special
cases, but from which we can also propose new relations that more faithfully capture the
flow physics under high acceleration and large displacements.
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V = V1 + V2

n12

n

Sb

S∞

S12

Vortical wake

Vb

V2V1

x c

xte

Figure 1. Schematic showing the two-dimensional control volumes (V, V1, V2), the bounding contours
(Sb, S12, S∞), the normal vectors (n, n12), and the position vectors (xc, xte) used in the present derivation.
The cartoon vortices indicate that the wake is contained in V2, although no specific wake structure is assumed
in the derivation.

For the present analysis, the two-dimensional control volumes shown in figure 1 will
be used. Here, V is the fluid domain, externally bounded by a static contour S∞, far
from the body, and internally bounded by the solid body surface, Sb. It will be assumed
that the onset of fluid motion was a finite time ago, such that no vorticity will have yet
approached nor crossed S∞, such that the total circulation around S∞ is zero at all times.
The undisturbed free-stream flow far from the body is U∞.

To relate the force on the foil, F, to the incompressible flow field in V under these
conditions (and the additional condition that non-conservative body forces are absent),
one could apply conservation of momentum in a conventional manner to obtain

F
ρ

= − d
dt

∫
V

udV −
∮

S∞

(
n · uu + n

p

ρ

)
dS, (3.1)

where n is the outward facing normal vector on S∞, u = u(x, t) represents the velocity
field, and p = p(x, t) the static pressure field, where x is the vector position in the
chosen coordinate system. In (3.1) and elsewhere, the arguments of the field parameters
are omitted to allow compact expressions. No viscous-stress term appears in (3.1) due to
the absence of vorticity (or vorticity gradients) on S∞.

Rather than express force in terms of velocity and pressure, it will be more fruitful to
express it in terms of velocity and vorticity. Noca (1997) and Wu et al. (2015) show how
(3.1) can be manipulated to yield

F
ρ

= − d
dt

∫
V

x × ω dV − d
dt

∮
Sb

x × (n × u) dS, (3.2)

where ω = ω(x, t) is the vorticity vector (normal to the plane of the page), the unit normal
n is oriented into the fluid on Sb, and the choice of origin for x has no effect on force due to
the zero circulation around S∞. Equation (3.2) is an exact alternative expression of linear
momentum conservation, placing no further restrictions than those inherent to (3.1). The
first integral on the right-hand side of (3.2) is commonly referred to as vortical impulse,
or simply impulse, and the body of work based on this and related equations is sometimes
referred to as vortical impulse theory. I prefer the more general term ‘vortical flow theory’
to capture cases in which this equation is manipulated to remove the explicit appearance
of vortical impulse (as will be done herein), but in which the primitive variables remain
velocity and vorticity.
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Note how (3.2) is a generalisation of (2.2). If the body is of zero volume and the no-slip
condition is applied on Sb, then the integral over Sb can be shown to vanish (Wu 1981;
Limacher et al. 2018); if one then further assumes the pitch angle to be approximately zero
and the wake to be aligned with the free-stream direction, (2.2) is recovered.

We now divide the control volume, V , into two: one encompassing the foil, V1, with a
downstream surface just behind the trailing edge and moving with it; and V2 encompassing
the wake. Now, rather than explicitly imposing the no-slip condition as just described,
Limacher et al. (2018) manipulated the body-surface integral in (3.2) by applying a
Helmholtz decomposition to the velocity field, yielding a force expression which is valid
for rigid two-dimensional bodies, with no further restriction on motion:

F
ρ

= − d
dt

[∫
V

x × ω dV +
∫

Vb

x × ω dV −
∮

Sb

nφ′dS − ucvb

]
, (3.3)

where Vb is the region occupied by the solid body, vb is the volume of that space (zero
for a thin foil), and uc is the velocity of the body centroid. Here, φ′ is the acyclic (i.e.
circulation-free) scalar potential associated with the irrotational component of the velocity
field, defined such that ∇φ′ gives a velocity in the body-fixed frame of reference. That
is, φ′ is the solution to the Laplace equation on V , subject to the boundary conditions
n · ∇φ′ = 0 on Sb and ∇φ′ = U∞ − uc on S∞. When the sum of these last two terms is
differentiated with respect to time, it gives rise to the classical added-mass force, Fam
(Limacher et al. 2018; Limacher 2021):

Fam = −ρ
d

dt

(∮
Sb

−nφ′ dS − vbuc

)
. (3.4)

The added-mass force, thusly defined, is calculable directly from the instantaneous
motion and geometry of the body, with no dependence on the transient vorticity field.
Unfortunately, the term ‘added-mass’ is defined in multiple ways in the literature, and
confusion arises due to equivocation on its definition. The present definition is the same
as that used by Sedov (1965); Brennen (1982), Floryan et al. (2017), Limacher et al.
(2018) and Limacher (2021), but different from empirical definitions of added mass
(e.g. Williamson & Govardhan 2004).

The integral in (3.3) over Vb is referred to as the image-vorticity impulse. This is a
familiar concept from potential-flow modelling, but it is valid for continuous distributions
of vorticity as well (Saffman 1992). The effect of the solid body on the surrounding fluid
is captured by treating the body as if occupied by fluid with a special vorticity distribution
within it; to be valid, this vorticity distribution must exactly cancel any velocity induced
by the wake that would violate the impermeable boundary condition. In general, there are
infinitely many such candidate distributions, but we are assured by Saffman (1992) that
each of these has the same impulse, and therefore the same effect on force. The image-
vorticity distribution may even be confined to lie on the body surface as a vortex sheet,
degenerating to a single line of vorticity in the case of a thin uncambered foil.

Let us now split the contributions of the impulse and image-vorticity impulse into those
arising from vorticity in the mutually exclusive subdomains V1 ⊂ V and V2 ⊂ V , where
V = V1 ∪ V2. The domain V1 deforms such that the boundary S12 separating V1 and V2
always lies directly behind the trailing edge. This definition neatly divides the vorticity
field into that which exists in attached boundary layers on the body (in V1) and that which
lies in the wake (V2). Under the assumption that the attached boundary-layer thickness, δ,
tends to zero, we note that
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lim
δ→0

[∫
V1

x × ω dV +
∫

Vb

x × ω1 dV

]
= 0, (3.5)

where ω1 is the image vorticity associated with the physical vorticity in V1. For those
familiar with the image-vortex concept for the potential flow around a circle, recall that as
a point vortex approaches the boundary of the circle, its image approaches the same point
from inside the circle (e.g. Milne-Thomson 1960), such that their associated impulses tend
to cancel. Equation (3.5) is a generalisation of this idea to two-dimensional shapes of
arbitrary geometry (see § 7.1 of Limacher (2019)).

As a result of the cancellation in (3.5), the force can be expressed as

F
ρ

= − d
dt

[∫
V2

x × ω dV +
∫

Vb

x × ω2 dV + P irr

]
, (3.6)

where ω2 is the image vorticity associated with the physical vorticity in V2, and P irr is
the sum of the terms in brackets in (3.4). The V2 integral can be manipulated through the
Reynolds transport theorem:

d
dt

∫
V2

x × ωdV = d
dt

∫
Vm

x × ω dV +
∮

S12

n · (u − us)(x × ω) dS, (3.7)

where n is the unit normal on S12, pointing into V2; us is the local velocity of the deforming
contour S12; and Vm = Vm(t) is a material volume coincident with V2 = V2(t) at a given
moment, t . Under this condition, we may treat the position variable x as a Lagrangian
position variable, such that u = dx/dt , and we can move the time-derivative operator
inside the integral to yield the following expression, found also in the appendix of Kang
et al. (2017):
d
dt

∫
Vm

x × ωdV =
∫

Vm

u × ω dV +
∫

Vm

x × Dω

Dt
dV =

∫
V2

u × ω dV +
∫

V2

x × Dω

Dt
dV .

(3.8)

where D/Dt denotes a material-derivative. In the limit of small viscosity, we can neglect
this last term that denotes the effect of viscous diffusion in the wake.

The impulse-flux term – i.e. the last term in (3.7) – can be written as∮
S12

n · (u − us)(x × ω) dS ≈ xte ×
∮

S12

n · (u − us)ω dS = xte × dΓ 2

dt
, (3.9)

where Γ 2 is the total vector circulation of the wake in V2, pointing out of the page when
the circulation is anticlockwise, and xte is the location of the trailing edge. The first and
second expressions in (3.9) are approximately equated because, under the attached-flow
and thin-boundary-layer assumptions, xte is the only location at which vorticity crosses
S12 (or to be precise, the boundary layers leaving the trailing edge are spread over a thin
region around xte). Furthermore, with no solid body present in V2 and with diffusive flux
assumed negligible on S12, the vorticity deposited into the wake by the trailing edge is
the only means by which Γ 2 varies, such that the vorticity-flux integral in the second
expression is equal to dΓ 2/dt in the third expression.

Substituting (3.7)–(3.9) into (3.6), we obtain

F
ρ

= −
∫

V2

u × ω dV − d
dt

∫
Vb

x × ω2 dV − xte × dΓ 2

dt
− dP irr

dt
. (3.10)

It may still appear that we need complete knowledge of the transient vortical wake to
calculate force, but, in fact, we need only know certain wake-averaged quantities. Let us
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define the vorticity-weighted wake convection velocity, uw, as

uw := 1
Γ2

∫
V2

uω dV, (3.11)

where Γ2 and ω are the circulation and vorticity magnitudes (positive anticlockwise),
respectively, such that

uw × Γ 2 =
∫

V2

u × ω dV . (3.12)

Of course, (3.11) is not defined at moments when Γ2 = 0, but this is not expected to impede
attempts at modelling, because uw is expected to remain bounded and well-behaved in the
sense that

lim
t→t−0

uw = lim
t→t+0

uw, (3.13)

where t0 is the moment at which the circulation is zero, and t → t−0 and t → 0+ indicate
time approaching t0 from the left and right, respectively. This must be true because, for a
realistic flow with non-zero viscosity, we expect velocity and vorticity everywhere in V2
to be continuous in both space and time; although the boundary layers have been assumed
thin, they are not defined as singular vortex sheets. Accordingly, gradients of velocity or
vorticity may be arbitrarily large in V but still finite, and if the foil motion is smooth in
time, the resulting flow field should be likewise smooth. The integral on the right-hand
side of (3.12) will thus be a continuous function of time, as will Γ 2 on the left-hand side;
from these assertions it follows that uw cannot be discontinuous at any moment in time,
regardless of the instantaneous value of Γ2.

We may now similarly define the centroid of the image-vorticity distribution, relative to
the body centroid (xc), as

x′
i := − 1

Γ2

∫
Vb

xω2 dV − xc, (3.14)

such that

(xc + x′
i ) × Γ 2 = −

∫
Vb

x × ω2 dV, (3.15)

where the negative sign on the right-hand side is necessary because the image-vorticity
distribution is of opposite sign to the physical vorticity distribution in V2. The same caveats
apply when Γ2 = 0 as were just noted for the definition of uw.

One last relation is required: the total vorticity theorem of Wu (1981) is expressed as

Γ + Γ 2 = 0, (3.16)

where Γ is the circulation around S12. In the case of a foil of finite volume, this must
include not only the circulation associated with vorticity in the boundary layers, but also
the circulation associated with the rotation of the foil itself. That is, for a rigid foil,

Γ =
∫

V1

ωdV + 2Ωvb, (3.17)

where Ω is the rotation rate of the rigid body.
Substituting (3.4), (3.12), (3.15) and (3.16) into (3.10) and rearranging, we obtain the

primary result of this paper:
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F
ρ

= (uw − uc) × Γ + (xte − xc) × dΓ

dt
− d

dt

(
x′

i × Γ ) + Fam

ρ
. (3.18)

When constructing a predictive model from (3.18), the image-vorticity term is likely the
least intuitive because it is not an observable quantity; it is, however, directly calculable
from the observable vorticity distribution in the wake. The reader is referred to section IV
of Limacher et al. (2018) for a generalisable approach to doing so.

An important ‘sanity check’ is to observe that (3.18) recovers the Kutta–Joukowsky lift
theorem under the condition of steady motion. When circulation has reached steady state
and the starting vortex system is convecting at a velocity of U∞ far from the body, only
the first term remains to yield F = ρU × Γ , where U := U∞ − uc.

4. Mean forces on an oscillating foil
To consider the generation of mean forces on continuously oscillating foils, let us adopt
the following notation to denote cycle-averaged parameters:

〈·〉 := 1
T

∫ t+T

t
· dt, (4.1)

where T is the period (in units of time) and the · can be replaced by any parameter of
interest. Here, T may be set equal to the period of foil oscillation, or if needed, it may be
set equal to a multi-cycle period to capture the effect of cycle-to-cycle variations in the
flow.

Many of the force components in (3.18) will not contribute to cycle-averaged forces
because they are expressible as derivatives of periodic quantities. Noting that

uc × Γ + xc × dΓ

dt
= d

dt
(xc × Γ ), (4.2)

we can rearrange (3.18) and group all these derivative terms together:

F
ρ

= uw × Γ + xte × dΓ

dt
− d

dt

(
xc × Γ + x′

i × Γ + P irr
)
. (4.3)

The parameter xc is periodic by the definition of oscillatory motion, and Γ is expected to
become periodic once the wake is well established; P irr is also periodic, as it depends only
on instantaneous motion and geometry. Only x′

i requires further thought to be recognised
as periodic.

Imagine a continuously developing wake that convects away from the foil, growing in
downstream extent with every cycle. After one more cycle, the wake appears to be the
same wake plus an additional vorticity distribution aggregated to the end of the wake. If
the wake is sufficiently long, the velocity induced at the foil by this newly added wake
section is negligible, and thus it cannot significantly affect the image-vorticity distribution
nor the total bound circulation. Thus, after the wake is sufficiently long (but not infinitely
long to ensure no vorticity reaches S∞), the parameter x′

i is negligibly affected by the
continued extension of the far wake from cycle to cycle, and thus it becomes periodic.

When (4.3) is cycle-averaged, the far-right grouping of terms vanishes, and we are left
with

〈F〉
ρ

= 〈uw × Γ 〉 +
〈
xte × dΓ

dt

〉
. (4.4)
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Consider the case where the wake convects parallel to the free-stream direction and the
trailing edge oscillates only in the transverse direction; the two terms on the right-hand
side of (4.4) are then pure lift and drag (or thrust), respectively. If we add the further
condition that uw = Uw, where Uw is constant, we obtain

〈F〉
ρ

= Uw × 〈Γ 〉 +
〈
xte × dΓ

dt

〉
, (4.5)

and we see that the lift is given by a Kutta–Joukowsky-like term, dependent on the mean
circulation.

As for the streamwise force, the importance of the trailing-edge position becomes
clear; all else being equal, an increase in the amplitude of a transverse trailing-edge
oscillation will increase the mean streamwise force generated. This is in agreement with
the theoretical treatment of Chopra (1976), who derived a positive correlation between
trailing-edge amplitude and mean thrust coefficient.

Equation (4.5) also elicits speculative hypotheses for flexible-foil propulsors. Consider
a foil driven transversely to the free stream from some mounting point ahead of the trailing
edge; increasing flexibility can amplify the motion of the trailing edge relative to the
driving amplitude, potentially allowing for greater thrust generation for a given driving
motion. One might speculate that this allows flexible foils to achieve greater propulsive
efficiency than rigid ones, as has been observed (e.g. Dewey et al. 2013). The actual
change in mean forces, and associated power input, depends on how the circulation history
is affected by flexibility (i.e. how its phase relative to the trailing-edge motion is altered).
Further investigation along these lines will require a rederivation of (3.3) and (3.18) that is
valid for flexible foils.

Equation (4.4) can be written even more compactly as

〈F〉
ρ

= 〈(uw − ute) × Γ 〉, (4.6)

which is achieved by integration by parts, with ute denoting the trailing-edge velocity.
Inspection of this equation highlights the trailing-edge velocity as the velocity scale
that governs thrust production on transversely oscillating propulsors, in agreement with
empirical observations (Smits 2019).

5. Conclusion
A new mathematical framework has been derived from vortical flow theory to serve as
a basis to derive closed-form expressions for fluid-dynamic force on thick, rigid foils
undergoing any type of motion in an incompressible fluid; the restriction of small-
amplitude motion from classical unsteady aerofoil theory has been removed, but the
limitation to attached flow has been retained. Viscosity is assumed to approach but not
equal zero; likewise, boundary-layer thickness approaches but does not equal zero.

Starting from the derived ‘recipe’ in (3.18), one can concoct a closed-form aerodynamic
model based on predictions for the following time-varying integral parameters: vorticity-
weighted mean convection speed of the wake, uw; the bound circulation of the foil
(including circulation associated with rotation of thick foils), Γ ; and the centroid location
of the wake’s image-vorticity distribution, x′

i . The geometry and motion of the foil must
also be known. The circulation is left as a free parameter to be determined by any model
one may choose, allowing one (in principle) to supersede the known limitations of the
Kutta condition used to predict a unique circulation in potential-flow models.
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An expression for the mean forces on oscillating foils was also derived (4.6), and it
was shown that mean forces depend closely on trailing-edge velocities, in agreement with
previous experimental observations. An alternative form of the same – equation (4.4) –
highlights the importance of achieving large transverse trailing-edge displacements to
generate large mean streamwise forces. The importance of the trailing edge in the derived
equations is due to it being the only location from which vorticity is deposited into the
wake, under the assumption of attached flow and thin boundary layers.
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