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ABSTRACT. Control methods are recommended as an efficient means to 
estimate undetermined physical parameters and boundary conditions and, in so 
doing, to improve the fidelity of a given ice-sheet flow model to specific ice-sheet 
velocity observations. To accomplish this task, the underlying dynamics of the model 
are inverted. This permits model-tuning adjustments to be represented explicitly in 
terms of model/observation misfit. Advantages of the control method over trial-and
error techniques in common use are: ( I ) it is readily automated with little additional 
programming effort, (2) the tuning parameters and boundary conditions it achieves 
are assured to give the best possible fit between model and observation, and (3) it 
quantifies the uncertainty of tuning parameters and boundary conditions in 
situations where they are not uniquely determined. 

INTRODUCTION 

Over the last decade, ice-sheet model development has 
focused primarily on the improvement of model physics 
and computational efficiency. This focus is responsible for 
the substantial increase in the variety of glaciological 
problems now addressed with models. In contrast, little 
attention has been paid to improving the techniques for 
fitting model output to observations; in other words, to 
model-parameter tuning. This emphasis has been justified 
up to now by the fact that simplifications and 
inaccuracies in model physics usually mean that model 
parameters bear little resemblance to physical counter
parts. In the future, however, when model physics is 
improved to the point where agreement between model 
and observation is not simply accidental, one must pay 
close attention to the way in which model-input variables 
are chosen. In so doing, one can evaluate the degree to 
which model tuning gives insight into the physical system 
being modeled. 

Here, I present a method for ice-sheet model tuning 
which is based on control theory. (See Wunsch (1988) 
and Bryson and Ho (1975), for a general introduction to 
control theory. ) I use a simple, idealized model-tuning 
problem as a vehicle for demonstrating this method. The 
problem consists of estimating a basal-friction parameter 
which, when applied in a model that predicts the velocity 
of an idealized ice stream, yields the best agreement 
between the model and an arbitrary velocity field which 
plays the role of observations. The so-called observed 
velocity field is generated from the model using a known 
value of the basal-friction parameter. Thus, the perfor
mance of the control method is evaluated by comparing 
the known parameter value with that determined by 
model tuning. 
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Sub-set of fR2 where grad (J') = 0 

Series-expansion coefficient (Pa s m- I)! 

Basal-friction parameter (Pa s m- I)! 

Flow-law parameter (1.8 x 108 Pas)-! 

Series-expansion function (non-dimensional) 

Function space containing {3(x, y) 

Gravitational acceleration (9.81 m S-2) 

Hessian matrix (m2 s- 2) 

Observed ice thickness (m) 

Performance index (m 4 s - 2) 

L I · I' (P 2 - 2) - 1 agrange-mu tIP ler vector a s m 

Lagrange-multiplier component (Pa s2 m -2r 1 

Lagrange-multiplier component (Pa s2 m-2r 1 

Effective viscosity (Pas) 

Flow-law parameter (Equation (3)) 

Two-dimensional vector space containing 

(aI, (2) 

Ice density (917 kg m- 3
) 

Model velocity (m S- I) 

Observed velocity (m S- I) 

Horizontal velocity component (m s- i ) 

Horizontai veiocity component (m S- I) 

Horizontal coordinate (m) 

Horizontal coordinate (m) 

Observed surface elevation (m) 
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THE PROBLEM 

Consider an imaginary, rectangular ice stream which 
rests on a subglacial bed characterized by a spatially 
variable basal-friction parameter, (3(x, y). The object of 
the problem posed here, is to estimate {3(x, y) from an 
arbitrary ice-stream surface velocity, Vd, which serves the 
role of observations. (Here and henceforth, variables with 
subscript d play the role of observations in the following 
demonstration. ) Let the function (3(x, y) be expanded in 
terms of basis functions, Fi(x, y), which are assumed to 
span the function space, CP, in which (3(x, y) is found: 

00 

(3(x, y) = L QiFi(X, y). (1) 
n=1 

The expansion coefficients, Qi, i = 1, ... , 00, are deter
mined from the inner product associated with CP, which is 
assumed to be 

Qi=~iJl{3(x,Y)Fi(x,Y)dXdY for i=l, ... ,oo 

(2) 

where 

and where O;j is 0 if i =I- j, and I if i = j, Ni is a 
normalization constant, and r is the areal domain of the 
ice stream. 
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Fig. 1. Subglacial-friction parameter, {32, surface 
elevation, zed, and ice thickness, Hd , for the imaginary 
rectangular ice stream. The x-coordinate runs parallel to 
the long dimension of the ice stream, and is positive down. 
The y-coordinate runs transverse to the long dimension, and 
is positive right. Hori~ontal velociry observations were 
generated using the {32 field shown here. The goal of the 
control method is to recover this {32 field from knowledge of 
the velociry field alone. 

The function space cP and the inner product expressed 
by Equation (2) are normally defined by the physical 
constraints satisfied by allowable (3(x, y). If, for example, 
(3(x, y) were to satisfy a particular partial differential 
equation and boundary conditions associated with 
subglacial hydrology, the functions Fi(x, y) would be 
the eigenfunctions of the differential equation. In the 
present circumstance, I require only that (3(x, y) and its 
derivatives be continuous within the domain r which, as 
shown in Figure I, is rectangular in geometry. In this 
circumstance, the Fi(x, y) can be taken to be sinusoidal 
functions with x and y wavelengths that are divisible into 
the horizontal dimensions of the ice stream. In other 
words, Equation (I) expresses (3(x, y) in terms of a two
dimensional Fourier series. 

In practical circumstances, the infinite series in 
Equation (I) should be truncated to reflect the fact that 
surface-velocity data may not allow (3(x, y) to be 
determined to an arbitrarily fine spatial resolution. 
Balise and Raymond (1985) argued, for example, that 
variations in basal-sliding velocity over scales less than the 
thickness of the ice stream are unlikely to have an 
appreciable effect on the surface velocity. It may thus be 
wise to truncate the series in Equation (I) in such a way 
as to exclude basis functions Fi(x, y) which have 
horizontal wavelengths less than the ice thickness. 
Truncation in this manner will limit the accuracy with 
which (3(x, y) can be determined. This limitation is 
acceptable, however, because other sources of inaccuracy, 
such as the ill-conditioning of arithmetic operations 
necessary to evaluate the fine-scale detail of {3(x, y), can 
then be avoided. 

Here, I truncate the infinite series of Equation (I) 
after two terms. All coefficients Qi are zero except two: Q1 

and Q2. In practical applications, this truncation would 
be too severe. Doing so in the present demonstration, 
however, allows the steps which determine 0!1 and Q2 to 
be visualized in terms of two-dimensional graphs and 
contour maps. The functions, F1(x , y) and F2(X,y) are 
chosen arbitrarily (and do not reflect the lowest 
horizontal wave numbers which, in other applications, 
might be associated with the indices i = 1,2). This 
arbitrary choice gives a {3(x, y) which represents a field 
of sticky spots: 

. ( 37rx ) . ( 7ry ) 
Fl = Sin Lx Sin Ly (4) 

and 

. (7rx) (47rY) F2 = Sin -- cos -
2Lx Ly 

(5) 

where Lx and Ly are the longitudinal and transverse 
dimensions of the ice stream, 200 km and 50 km, 
respectively. The term sticky spot has been used by 
Kamb (1991) to describe scattered regions of strong 
resistance to basal sliding which might occur if bedrock 
protruded through a subglacial layer of deformable 
sediment. 

The ice-stream velocity, U = (u, v), that is produced 
by a numerical model of the ice stream is assumed to be 
independent of the vertical coordinate, z, and to be 
related to {3 by the following equations which govern the 
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ice-stream's stress balance. (The validity of these 
equations is taken for granted in this exercise; for a 
discussion of their applicability to realistic ice streams, see 
MacAyeal (1989).) 

- 2vH 2-+- +- vH -+-fJ ( (au fJV) ) a ( (fJU av) ) 
fJx ox fJy ay ay ox 

2 oz. 
- {3 U - pgH- = 0 fJx 

- 2vH 2-+- +- vH -+-fJ ( (av fJU) ) a ( (fJU av) ) 
fJy ay fJx ox fJy ox 

2 oz. 
- {3 v - pgH ay = o. 

(6) 

(7) 

The viscosity, v, is strain-rate dependent, and accounts 
for steady-state power-law creep 

B 
v=-----------------~~~ 

2 ((au) 2 + (av) 2 + ~ (au + fJV) 2 + au av) (n-l)/2n 

ox ay 4 ay ox ox ay 
(8) 

The square of {3 is used in the basal-friction terms of the 
above equations to enforce the constraint that basal 
friction be positive. 

As stated above, the problem to be solved here is to 
determine al and a2 from an observed or prescribed 
velocity field , Vd = (Ud' Vd), which in this exercise is 
generated from Equations (6)- (8) by imposing a known 
al = af and a2 = at. The performance of the control 
method is then evaluated by comparing af and at with 
the al and a2 obtained by the control method. Before 
describing the control method, I first present the details 
used to create Vd. 

IDEAL OBSERVATIONS 

The imaginary ice stream flows down a 50 km by 200 km 
rectangular channel (Fig. I) where ice thickness and 
surface elevation are given by 

(9) 

and 

z:(x,y) = 500 -1O-3x + 20 (Sin (3;:) sin (2;:)) 
(10) 

where Hd, zBd, x and y are expressed in units of meters. 
Kinematic boundary conditions are applied at all 

boundaries as follows 

Vd = 0 on x = 0, Lx 

Ud = 0 on y = 0, Ly 
and y = 0, Ly (11) 

(12) 

Ud = 4.753 x 1O-6 { SinC7r(L{y- y)) 

+ 2.5 sin (7r(L~: y)) } 
on x =0 (13) 
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and 

Ud = 1.584 X 10-5 { sinC7r(L~y- y)) 

+ 2.5Sin(7r(L~: y)) 

+ 0.5sin C7r(L{y- y)) } 
on x = Lx (14) 

where the unit for constants appearing as the first terms 
on the righthand sides of Equations (13) and (14) is ms-i. 
As with the choice of Fl (x, y) and F2(x, y), the variations 
of zsd, Hd and the kinematic boundary conditions are 
chosen arbitrarily: they simply serve to generate the 
observations Vd . 

To this end, Equations (6)-(8), subject to Equations 
( 9 ) - ( I 4 ), we res 0 I v e d by u sin g af = at = 

I 

5 x 104(Pasm-l)2. As shown in Figure I, this evaluation 
represents a field of sticky spots distributed across the ice
stream channel. The solution of the forward problem with 
the above input, Vd, is shown in Figure 2. This solution 
will serve as the (imaginary) surface-velocity observations 
to be used by the control method to obtain (3(x, y). To 
achieve this solution, I discretized the ice-stream domain 
on a 65 x 65 finite-difference grid and used a software 

600 

Ud (m/a) 

Fig. 2. The velocity field, Vd (ma- i), which serves the 
role of observations in this study. 
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package MUDPACK (MUD2SA, described by Adams 
(1989)) to solve Equations (6) and (7). Non-linearity 
represented by the flow law expressed in Equation (8) was 
treated using the method of successive approximations 
(e .g. MacAyeal, 1989) . MUDPACK is an elliptic partial
differential-equation solver developed by the National 
Center for Atmospheric Research of the U.S.A., and is 
based on the multi-grid relaxation method. 

In practice, velocity observations are subject to 
measurement uncertainty and to spatial-sampling limit
ations. Here Vd is error-free because it is generated by a 
model. Approaches to dealing with measurement un
certainty will not be outlined here, but have been 
summarized by Thacker (1988). As I shall soon 
demonstrate, however, uncertainty will arise anyway 
because of resolution limitations associated with the 
assumed ice dynamics, and because of inaccuracy in the 
computations. 

A DffiECT APPROACH 

A simple and direct solution to the problem of estimating 
(3(x, y) (or, equivalently, (}:1 and (}:2 ) from Vd is 
presented first as an example of an inappropriate 
method. The difficulties associated with this inappropri
ate method will be used to motivate the control method 
discussed below. A direct solution to the problem is 
derived by rewriting Equations (6) and (7) in a manner 
that will isolate (3: 

(15) 

or 

(16) 

Assuming (3 can be determined uniquely by these 
equations, (}:1 and (}:2 are then found by evaluating the 
inner products expressed in Equation (2). 

The determination of (}:1 and Q2 by the above means 
may not be possible in practice for the following reasons. 
First, errors in the velocity observations may produce 
unnatural small-scale structure in the velocity derivatives, 
which in turn can affect the computation of (3. Secondly, 
the velocity magnitude may approach zero in some 
regions, and this will introduce zeros in the denominators 
of the righthand sides of Equations (15) and (16). 
Thirdly, the velocity errors may make the square roots 
expressed in Equations (15) and (16) complex valued. 
Fourthly, the governing equations (Equations (6) and 
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(7)) describe only large-scale aspects of the ice-stream 
flow. Thus, small-scale structure in Ud is incompatible 
with the assumptions used to derive Equations (15) and 
(16). 

THE CONTROL METHOD 

To avoid the above difficulties, one can use control 
methods to estimate (3 (or, equivalently, (}:1 and (}:2). In 
this case, the method does not require that Vd be an exact 
solution of Equations (6)-(8). Instead, (}:1 and (}:2 are 
estimated on the basis that, when substituted into 
Equations (6)-(8), they give the solution V which is as 
close as possible to Vd. This solution, V, may differ from 
Vd even when the closest possible fit is achieved because, 
as mentioned previously, Vd may be incompatible with 
solutions of Equations (6)-(8). In some circumstances, an 
inequality of this nature may suggest that Equations (6)
(8) may not adequately describe the dynamics of the ice 
stream. In other circumstances, an inequality merely 
reflects the inherent noise in the observed velocity. 

Here, I use a least-squares measure, J, to gauge the 
misfit between V and Vd: 

J= J lH(U-Ud)2+(V-Vd )2}dXdY. (17) 

The implicit relationship between V and ((}:1, (}:2) given 
by Equations (6) and (7) can be satisfied as a constraint 
on the minimization of J' by using a Lagrange-multiplier 
vector A = (>",/-l) (Bryson and Ho, 1975): 

J' = J l ~ {(u - ud+(v - Vd)2} dxdy 

o ( (au av) ) +- IIHd -+-ox ay ox 

(18) 

Conditions for the minimization of J' are generated by 
requiring that the variation of J' with respect to the 
variations of V(x,y), Q1, (}:2 and A(x,y) be zero. This 
variation is not difficult to generate provided the 
variation of the viscosity, 11, associated with the variation 
in U(x, y) is disregarded. (The alternative leads to a very 
tedious expression for the variation of J' with respect to 
V. ) I make this simplification here because the error it 
introduces in the expression for the gradient of J' with 
respect to (}:1 and Q2 is small. (An alternative approach 
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would be to attach the flow law given by Equation (8) as 
a constraint to the definition of the performance index 
using a third Lagrange multiplier; and then to treat the 
variation of v independently. ) The variation of J' so 
determined is written : 

OJ' = J £ { (u - ud)8u + (v - Vd)8V} dxdy 

+- VHd -+-a ( (au av) ) ox ay ox 

+- VHd -+-a ( (a).. a/-L)) ay ay ox 

+- VHd -+-a ( (a).. a/-L)) ox ay ox 

-2 J £8a1(alFf+a2F1F2)(A.U)dXdY 

- 2 J £ 8a2 (a2Fi + a 1F1F2) (A . U) dx dy. 

(19) 

In deriving the expression for 8J' shown above, the 
kinematic boundary conditions, which require 
8u = 8v = 0 on boundaries, are used to eliminate 
boundary integrals arising from integration by parts. 
Had dynamic, instead of kinematic, boundary conditions 
been defined at some of the boundaries, the comparable 
expression for 8J' would have included boundary 
integrals. 

The variation of J' with respect to arbitrary variations 
in ).. and J.L is zero when Equations (6) and (7 ) are 
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satisfied. This is the main rationale for introducing).. and 
J.L as variables: they enforce satisfaction of the model 
equations. The variation of J' with respect to arbitrary 
variations in u and v is zero when the following equations 
are satisfied: 

~ (2VH(2a).. + OJ.L)) +~ (VH(a).. + a/-L)) ox ox oy ay ay ox 
- (a1Fl + a2F2)2).. = (Ud - u) 

~ (2VH(2a/-L + 0)..)) +~ (VH(a).. + a/-L)) ay ay ox ox ay ox 
- (a1F1 + a2 F2)2 J.L = (Vd - v) 

).. = J.L = 0 on the boundary of r. 

(20) 

(21) 

(22) 

These equations generate the spatial distributions of ).. 
and J.L. They are motivated by the mathematics of 
minimization, not by the physics of ice flow. I will 
interpret these equations in detail after first justifying 
interest in ).. and J.L. 

The benefit to be obtained from A comes from the fact 
that the gradient of J' with respect to a1 and a2, denoted 
by grad (J' ), is expressed as a vector having two 
components that are written in terms of A = ().., J.L) and 
other variables of the system: 

[

-2 J Jr (a1F12 + a2 F1F2) (A· U) dx dyj 
grad(J') = . 

-2 J Jr(a2Fl + a 1F1F2) (A· U) dx dy 

(23) 

This gradient can be visualized in the present example by 
plotting the contours of J' on a map of R2, the vector 
space spanned by all (a1, a2) . The grad ( J' ) is a vector 
which points towards increasing J', and which is 
everywhere orthogonal to the contours (except at 
extremal points where grad (J' ) vanishes). 

The ability to express grad (J' ) in terms of an analytic 
expression (Equation (23)) provides three important 
work-saving benefits . First, the effort to minimize J' is 
reduced because the direction of its gradient in R2 is now 
defined. Secondly, the extrema of J' are defined when the 
expression given in Equation (23) is zero. This provides a 
convenient identification for the point(s) at which J' is 
minimized. Thirdly, and most important, the effort to 
compute the grad (J' ) is substantially reduced. Without 
Equation (23 ), a finite-difference evaluation of grad(J') 
would require 2N solutions of the forward problem 
(defined as Equations (6)-(8) with a specific evaluation of 
ai, i = 1, ... ,N), where N is the number of unknown D:i S 

(two in this problem). With Equation (23 ), a single 
solution of the forward problem and a single solution of 
the equations which determine A (Equations (20)-(22)) 
give the same result. If there were large numbers of 
unknown ais, such as would be the case for realistic ice
stream modeling problems, evaluation of grad(J') by 
Equation (23) can provide a substantial saving in effort . 
(Effort is also minimized by the fact that the equations to 
be solved for the Lagrange-multiplier vector components 
are sufficiently similar to the equations of the forward 
problem that little additional programming is required to 
solve them. ) 
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THE ADJOINT PROBLEM 

Having defined the Lagrange-multiplier vector 
A = (>",J.L), and motivated interest in its evaluation, I 
now return to the subject of Equations (20)-(22) which 
determine>.. and J.L from U and Ud. These equations are 
called the adjoint equations because they are mathemat
ically adjoint to the linear forms of Equations (6) and (7). 

The adjoint equations have several distinctive 
features. They satisfy homogeneous boundary condit
ions, the surface-slope forcing term is absent and they are 
forced by model/observation mismatch (the difference 
between U and Ud). These distinctive features suggest 
that the Lagrange-multiplier vector A(x, y) can be 
regarded as a sensitivity function which determines the 
effect of model/observation mismatch on grad(J'). As was 
shown above, A not only provides for the explicit 
evaluation of grad (J' ), it defines the spatial region over 
which a given velocity observation will constrain the 
value of 0'1 and 0'2 . In this way, A can provide useful 
insight into the resolving power of the observations. 

CONDITIONS DEFINING THE MINIMUM OF J' 

A solution of the inverse problem is found when the 
variation of J' with respect to arbitrary variations in 0'1 

and 0'2 is zero. According to the definition of {jJ' derived 
above, this condition is met when 

grad( J') = O. (24) 

Anyone of five possible situations can achieve this 
condition. First, 0'1 and 0'2 could be zero. This situation 
would apply when further improvements in the fit 
between model and observation would require a basal 
stress that pushed the ice stream forward rather than 
resisted its flow. Secondly, u and v could be zero. This 
possibility must be mentioned because, where the flow is 
zero, the basal-friction coefficient has no relevance to the 
fit between model and observations. Thirdly, >.. and J.L 
could be zero. As seen from the forcing terms of Equations 
(20) and (21 ), this circumstance would occur when the 
misfit between model and observation is zero everywhere 
(the minimum value of J' in this circumstance is zero). 
Fourthly, the vectors U and A could be everywhere 
orthogonal. In this case, the vector dot-products in the 
integrands of Equation (23) are zero. Fifthly and last, the 
scalar function A . U can be orthogonal to the functions 
(a1F12 + a2F1F2) and (a2Fl + a1F1F2). In this case, the 
integrals of Equation (23) define the inner product 
because (a1F12 + a2F1F2) and (a2F22 + a1F1F2) may not 
be members of <.I>. As will be described below, the last two 
circumstances occur when the fit between model and 
observations is not perfect, yet cannot be improved by 
additional tuning of 0'1 and 0'2. The inability to improve 
further model tuning may reflect errors in the obser
vations which are incompatible with model physics; or, 
alternatively, incorrect or over-simplified model physics. 

MINIMIZATION ALGORITHM 

To satisfy Equation (24) and find the values of 0'1 and 0'2 
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which minimize J', I recommend a simple down-gradient 
search algorithm. With an initial guess of 0'1 and 0'2, I 
solve the forward problem expressed by Equations (6)
(8) to determine an associated velocity field U. 

The velocity field, U, and effective viscosity, v(x, y), 
resulting from the initial guess are then used to evaluate 
the forcing term and effective viscosity in the adjoint 
equations (Equations (20)- (22)) , which are then solved 
for the Lagrange-multiplier vector A . With both U and A 
determined, grad (J' ) is evaluated using Equation (23) . 

If the value of grad (J' ) is not zero (which is usually 
the case), the original estimate of 0'1 and 0'2 is improved 
by searching down the gradient of J'. This search will 
usually involve evaluating J' (by solving the forward 
problem) several more times to determine how far down 
the gradient 0'1 and 0'2 should be changed. In this 
exercise, I employed a univariate minimization routine 
from IMSL called UVMIF to perform this search. (I 
added a constant times grad (J' ) to the original (0'1,0'2); 
and then minimized J' with respect to this new constant.) 
Once an improved estimate is achieved, the process 
described above is repeated until grad (J' ) is zero or, more 
realistically , until its size is so small that further 
reductions in the magnitude of J' are not warranted by 
the accuracy of the observations. The solution so obtained 
is designated (a~, an. (Here, the superscript· signifies 
that a~ and 0'2 are derived by the control method, and 
will normally be different from at and a~ used to 
generate the data. ) 

THE HESSIAN MATRIX 

A danger in the above algorithm is that (a!, 0'2) might lie 
on a saddle point where J' is minimized in some search 
directions, but maximized in others. To check for this, the 
Eigenvalues of the Hessian matrix, H, must be evaluated. 
This matrix is defined as the second derivative of the 
performance index with respect to the unknowns: 

H= [ ~~ fJ2J' 
00'200'1 

00'100'2 
02J' 

oa? 0'1 = a~, 0'2 = a;. 

(25) 

When all the Eigenvalues are positive definite, a local 
minimum of J' is assured. 

To perform this test, it is necessary to compute H. 
This computation can involve as much computation as 
the search for the minimum of J' . Thacker (1989) 
recommended a number of methods for evaluating H. 
A particularly efficient method involves using the adjoint 
equations to evaluate grad (J' ) for points neighboring the 
solution (a~, an. Evaluation of grad( J' ) at the neighbor
ing point (a~ + L\a1, an generates the first column ofH, 
and evaluation of grad (J' ) at the neighboring point 
(a~, 0'2 + .10'2) generates the second column of H . 

UNCERTAINTY 

The uncertainty of (a~, an is determined by a number of 
factors. First, J' may possess multiple minima. In this 
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circumstance, (ai, an is determined by where the initial 
guess lies with respect to the attractor sets of the minima. 
Such attractor sets will be sub-sets of ~2 , and can have 
very complex geometry. Insight and experimentation 
with different initial guesses are necessary to assess the 
uncertainty associated with multiple minima. 

A second factor which determines uncertainty in 
(ai, (2) is the possibility that (ai, an might lie in a sub
set of~2 within which J' is constant. I shall label this sub
set l't In this circumstance, it is not possible to identify a 
unique answer to the problem. Some additional con
straint must be proposed to select the solution. One such 
constraint might be that the solution have minimum 
norm in ~2; in other words, that it minimize (al , an . 
More likely, one would select the solution on the basis of 
additional physics, direct observations of the bed or 
subjective prejudice (e.g. that the resulting (3(x, y) be as 
smooth as possible). 

The description of a non-empty l{ can be found by 
examining the Eigenvalues and Eigenvectors of the 
Hessian matrix (Thacker, 1989). If H is singular, or if 
some of its Eigenvalues are close to zero (as determined by 
some criterion related to the observational error or to the 
accuracy of calculations) , then the geometry of l{ in the 
neighborhood of(a1', (2) is indicated by the Eigenvectors 
of H associated with the zero or small Eigenvalues. The 
sub-set l{ will extend in the direction of these Eigenvec
tors. In the present exercise, H has only two Eigenvalues; 
thus the local geometry of l{ will be a line extending in the 
direction of the Eigenvector associated with the zero or 
small Eigenvalue. 

The third factor which determines the uncertainty in 
(ai , (2) is the observational error (and the spatial 
coherence of this error if the velocity field is measured 
at sparsely distributed points). Thacker (1988, 1989) 
discussed how this uncertainty can be computed using the 
Eigenvalues and Eigenvectors of H . 

SOLUTION OF THE PROBLEM 

To evaluate the performance of the control method 
described above, I determined (ai , a2) from the 
imaginary observations, Vd, generated from the known 
(af, at)· An initial guess of (a1,a2) = (O.4,O.4)x 
104 (Pa s m-I)! was used to start the minimization al
gorithm. (Recall that at = a~ = 0.5 x 104 (Pasm-1)!. ) 
Convergence of the minimization algorithm was achieved 
after approximately 20 iterations. 

The progress of the minimization algorithm is 
examined in Figures 3 and 4. Figure 3 displays the 
monotonic decrease of J' with each cycle through the 
minimization algorithm. Figure 4 presents a contour map 
of J' on ~2, and shows where the initial guess and 
subsequent determinations of (a!, (2) lie. (This map was 
created by solving the forward problem and calculating 
J' for 400 points surrounding the known solution. ) 

Mismatch between V and Ud converges to zero with 
each iteration of the minimization algorithm as shown in 
Figure 5. Lagrange-multiplier vector fields calculated at 
various steps through the minimization algorithm are 
displayed in Figure 6. These vector fields are generated by 
errors in fitting the model to imaginary observations, and 
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are used to calculate the gradient of J'. As the iteration 
procedure converges, A tends everywhere toward zero 
magnitude as expected. 

The Hessian, H , evaluated at (al' , an was found to 
have two positive Eigenvalues, but one was only 12% of 
the other. That they are both positive confirms the fact 
that the solution lies at a local minimum of J' . The large 

....., 
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~--
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0 10 
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Fig. 3. The performance index J' (m4 8-2) as a function 
of the iteration count of the minimization algorithm. 

O.SE+4 

1 
Cl O.5E+4 

2 

20 

OAE+4 

OAE+4 O.5E+4 

a
l 

O.SE+4 

- - ---1_ 

Fig. 4. The part of'iR2 ill the vicinity of the known solution 
(af , at)· The contoL !S of J' (m4 8-2) show a minimum 
at (af, at) = (5.0,5.0) (103 Pasm- I)! which lies in a 
valley that extends in the (-aI, a2) direction. The initial 
guess is represented by the asterisk in the lower leflhand 
corner, and the solution (ai, (2) is represented by the 
asterisk in the center. All intermediate values of (aI, (2) 
generated during the minimization procedure are too close to 
the center of the diagram to be differentiatedfrom the center 
asterisk. 
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Fig. 5. Mismatch between model and observations, 
IV - Vd I (m a-I), at the initial and final values of 
(al, (2). 
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Fig. 6. The Lagrange-multiplier vector-field components 
shown at the initial andfinal values of(al, (2) associated 
with the minimization of J'. 

difference between the Eigenvalues reflects the fact that 
the contours of J' describe a steep gradient in the (aI, (2) 
direction and a gentle gradient in the (-al, (2) direction 
(Fig. 4) . Although not shown in Figure 4, J' was found to 
have three additional minima. One is located at 
(-af,-a~). The other two were located at approx
imately (-af, a~) and (af, -a~). 

CONCLUSION 

The above exercise demonstrates the way in which 
control methods can be used objectively to tune 
unconstrained parameters used in ice-sheet models. 
Although the circumstances of this exercise have been 
deliberately simplified, the exercise suggests that control 
methods can be useful in the design of mode ling 
experiments which address real glaciol~gical obser-

vations. The advantages of control methods over ad hoc 
trial-and-error techniques are numerous. Control meth
ods are more efficient and objective. They reduce the 
computational work load necessary to evaluate the 
gradient of model-output variables with respect to 
unknown model-input variables. They define the region 
over which a given model-input parameter can influence 
the match between an observation and a model counter
part . They allow efficient assessment of uncertainty. 
Finally, control methods provide a formal means to 
accomplish one of the aims of ice-sheet modeling research: 
the inversion of ice-dynamics equations to allow unobser
vable parameters to be evaluated from disparate 
observations and field data. 
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