A NOTE ON EMBEDDING

P.A. Pittas

Let $Q_t = [0,1]$ be equipped with the topology consisting of Q_t , the empty set and all subsets of Q_t of the form [0,x), $0 < x \leq 1$. R. Nielsen and C. Sloyer [1, p. 514] proved that every T_0 -space can be embedded in Q_t^F for a suitable F. The purpose of this note is to generalize this result.

THEOREM 1. Let X be any T_0 -space which is not a T_1 -space; let Y be any T_0 -space and let F be the family of all continuous functions f: Y \rightarrow X. Then the evaluation map e: Y \rightarrow X^F, where X^F is taken in the product topology defined by e(y)_f = f(y), is a homeomorphism of Y onto e[Y] \subset X^F.

Proof. Since X is not a T_1 -space, there is an x_1 in X such that $\{\overline{x_1}\} \neq \{x_1\}$; since X is a T_0 -space there is a neighborhood U of x_1 such that for x_2 in $\{\overline{x_1}\} \sim \{x_1\}, U \cap \{x_2\} = \phi$. Given y_1 and y_2 distinct elements of Y, and V a neighborhood of y_1 not containing y_2 , the function $f: Y \rightarrow X$, defined by $f(y) = x_1$ if y is in V and $f(y) = x_2$ if y is not in V, is an element of F, and $f(y_1) = x_1 \neq x_2 = f(y_2)$. Also, if C is a closed set in Y and y_0 is not in C, then $g: Y \rightarrow X$, defined by $g(y) = x_1$ if y is not in C and $g(y) = x_2$ if y is in C, is an element of F, and $g(y_1) = x_2$ if y is in C, is an element of F, and $g(y_1) = x_1$ is not in U. In other words F distinguishes points and also distinguishes points and closed sets; thus by the Embedding Lemma [2, p. 116], e is a homeomorphism of Y onto $e[Y] \subset X^F$.

 Q_t is a T_0 -space which is not a T_1 -space, so the main theorem in [1] is a particular case of the above theorem. A particularly simple space which may serve as the X of the above theorem is the space $\{a, b\}$ equipped with the topology consisting of $\{a, b\}$, ϕ , and $\{a\}$. (For an example showing that e is not onto X^F see [3].)

The following example shows that if we replace T_0 by T_1 and T_1 by T_2 in Theorem 1, then the theorem is false without additional conditions.

343

Let the set of natural numbers N be equipped with the finite complement topology (i.e. the topology whose closed sets are the whole space, the empty set and all finite sets). N is a T_1 -space which is not T_2 . Let A be an uncountable set equipped with the finite complement topology. Let F be the family of all continuous functions $f: A \rightarrow N$. Clearly f is in F if and only if f[A] is a singleton. Therefore F does not distinguish points and thus e is not a homeomorphism. However we can prove the following result.

PROPOSITION 1. Let X be an infinite set equipped with the finite complement topology, let Y be a T_1 -space and F be the family of all continuous functions $f: Y \rightarrow X$. Then a sufficient condition for Y to be homeomorphic to a subspace of X^F is that for each y in Y there exists an open neighborhood U_y of y with card $U_y \leq card X$.

<u>Proof.</u> F distinguishes points and closed sets, for if C is closed in Y and y_0 is not in C, then $N = U_{Y_0} \cap (Y \sim C)$ is an open neighborhood of y_0 with card $N \leq \text{card } X$. Thus $g: Y \rightarrow X$, defined by $g[Y \sim N] = x_1$ and the restriction of g to N is a one-to-one mapping into $X \sim \{x_1\}$, is an element of F and $g(y_0)$ is not in $\{x_1\} = \overline{g[C]}$. Since Y is a T_1 -space, F also distinguishes points. Thus by the Embedding Lemma [2, p. 116], e is a homeomorphism of Y onto $e[Y] \subset X^F$.

The following example shows that the condition of Proposition 1 is not necessary. Let X be the set of natural numbers equipped with the finite complement topology. X is a T_1 -space which is not T_2 . Let $Y = [0, \Omega]$ be the set of ordinal numbers which are less or equal to the first uncountable ordinal Ω . Let Y be equipped with the order topology i.e., the topology generated by all sets of the form $\{x : x < \alpha\}$ and $\{x : x > \beta\}$, where α and β are members of Y. Y is a T_1 -space and each neighborhood of Ω has cardinality greater than $\aleph_0 = \text{card } X$. Let F be the family of all continuous functions from Y to X. It is easy to show that the evaluation map is a homeomorphism of Y onto $e[Y] \subset X^F$.

<u>Remark</u>. If card $Y \leq card \ X$ then the space Y is the required neighborhood for each y in Y .

PROPOSITION 2. Let X, Y and F be as in Proposition 1 and card Y > card X. Then a necessary condition for Y to be homeomorphic to a subspace of X^F is that there be at least one proper closed subset C of Y with card C = card Y.

<u>Proof</u>. Suppose card C < card Y for each proper closed subset C of Y. Then clearly f is in F if and only if f[Y] is a singleton (because card X < card Y). Suppose for a contradiction that there is a

344

homeomorphism h of Y into X^F . If y_1 and y_2 are distinct elements of Y, then $h(y_1) \neq h(y_2)$ and, for some f in F, $h(y_1)_f \neq h(y_2)_f$ so that the composition $P_f \circ h: Y \rightarrow X$ of the projection P_f and h is a continuous mapping with $P_f \circ h[Y]$ not a singleton, which is a contradiction.

The following example shows that the condition of Proposition 2 is not a sufficient one. Let X be a countable set equipped with the finite complement topology and A any set such that card A > c, where c is the power of the continuum. Let $Y = \{A\} \cup A$ be equipped with the topology consisting of $\{A\}$ and all the sets in the finite complement topology on Y. Let F be the family of all continuous $f: Y \rightarrow X$. Since $f \in F$ if and only if f[A] is a singleton, we have card $F = \aleph_0$, so that card $X^F = \aleph_0^{\aleph_0} = c < card A$ and Y cannot be homeomorphic to any subspace of X^F .

This research was supported by NRC Grant No. A-3999. The author wishes to thank Professor M. Edelstein for his most helpful suggestions.

REFERENCES

- R. Nielsen and C. Sloyer, On embedding in quasi-cubes. Amer. Math. Monthly 75 (1968) 514-515.
- J.L. Kelley, General topology. (Van Nostrand, Princeton, N.J., 1955).
- 3. Problem No. 5566. Amer. Math. Monthly 75 (1968) 198.

Dalhousie University

345