
26 Compactification of string theory II.
Calabi–Yau compactifications

Up to now we have focused on rather simple models involving toroidal compactifications
and their orbifold generalizations. But, while by far the simplest, these turn out to be
only a tiny subset of the possible manifolds on which to compactify string theories. A
particularly interesting and rich set of geometries is provided by the Calabi–Yau manifolds.
These are manifolds which are Ricci flat, RMN = 0. Their interest arises in large part
because these compactifications can preserve some subset of the full ten-dimensional
supersymmetry. This is significant if one believes that low-energy supersymmetry has
something to do with nature. It is also important at a purely theoretical level since, as usual,
supersymmetry provides a great deal of control over any analysis; at the same time there is
less supersymmetry than in the toroidal case, so a richer set of phenomena is possible.

This chapter is intended to provide an introduction to this subject. In the first section we
will develop some mathematical preliminaries. Unlike the toroidal or orbifold compactifi-
cations it is not possible, in most instances, to provide explicit formulas for the underlying
metric on the manifold and other quantities of interest. The six-dimensional Calabi–Yau
spaces, for example, have no continuous isometries (symmetries), so at best one can
construct the metrics by numerical methods. But it turns out to be possible from topological
considerations to extract much important information without a detailed knowledge of
the metric. The machinery required to define these spaces and to extract at least some
of this information includes algebraic geometry and cohomology theory, subjects not part
of the training of most physicists. The following mathematical interlude provides a brief
introduction to the necessary mathematics. There is much more in the suggested reading.

26.1 Mathematical preliminaries

Two notions are very useful for understanding Calabi–Yau spaces: differential forms and
vector bundles. Differential forms have already appeared implicitly in our discussion of
IIA and IIB string theory. We start with an antisymmetric tensor field Ai1i2...in . Suppose
that there is a gauge invariance

Ai1...in → Ai1...in + 1
n
[
∂i1�i2...in − ∂i2�i1i3...in + · · · (−1)r∂ir�i1...ir−1ir+1...in

]
,

(26.1)
372

https://doi.org/10.1017/9781009290883.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.033


373 26.1 Mathematical preliminaries

where � is antisymmetric in all its indices. We can write a shorthand for this,

δA = d�, (26.2)

where d� is the “exterior derivative.” Acting on an antisymmetric tensor of rank p, the
exterior derivative produces a rank-(p + 1) antisymmetric tensor, dH:

dHi1...ip+1 = 1
p + 1

(
∂i1 Hi2...ip+1 − ∂i2 Hi1i3...ip+1 + · · · ) . (26.3)

We can think of this object more abstractly as follows. Antisymmetric tensors with
p indices are called p-forms. A “basis” for p-forms is provided by the antisymmetrized
products of differentials:

dx i1 ∧ dx i2 ∧ · · · ∧ dx ip . (26.4)

We can then write

H = 1
p!H i1...ip dx i1 ∧ · · · ∧ dx ip . (26.5)

The product of two forms A, B is known as the wedge product, A ∧ B. If A is an n-form and
B an m-form then

(A ∧ B)i1...in+m = n!m!
(n + m)!A i1...in B in+1...in+m + (−1)Ppermutations (26.6)

or, more compactly,

A ∧ B = 1
(n + m)!Ai1...in Bin+1...in+mdx1 ∧ · · · ∧ dxn+m. (26.7)

In this language the exterior derivative can be written as d ∧ H or simply dH, where d is
thought of as a one-form with components di = ∂i.

It is important to practise with this notation, and some exercises are provided at the end
of the chapter. One should check that

d2H = 0. (26.8)

It is instructive to write electrodynamics in the language of forms. One should verify
that the field strength tensor is a two-form, which can be written as

F = dA. (26.9)

The homogeneous Maxwell’s equations (the Bianchi identities for the field strength) follow
from d 2 = 0:

dF = 0. (26.10)

Apart from multiplication and differentiation, there is another important operation,
denoted by ∗ and called the Hodge star. In d dimensions, this takes a p-form to a (d − p)-
form:

(∗H )i1...id−p = 1
p!ε

id−p+1...id
i1...id−p

Hid−p+1...id
. (26.11)
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374 Compactification of string theory II

A particularly interesting object is ∗d. For example, ∗d∧d is a d-form. But the components
of a d-form are necessarily proportional to εi1...id . With a little work, one can show that

∗(∗d ∧ d ) = ∂2. (26.12)

Using the ∗ operation, we can write the action for a p-form field as

S = 1
2( p + 1)!

∫
∗ F ∧ F (26.13)

with F = dA. This is clearly gauge invariant. It is easy to check that this reproduces the
standard action for electrodynamics.

For physics, we are particularly interested in the zero modes of A, i.e. field configurations
that satisfy dA = 0 but which are not simply gauge transformations; they cannot every-
where be written as

A = d�. (26.14)

A simple example of what is at issue is provided by a gauge field on a circle, 0 ≤ y ≤ 2πR.
The one-form gauge field,

Ay = ∂y�, � = cy (26.15)

is not a sensible gauge transformation unless c = n/R, since a fermion of unit charge will
not transform into itself. In electrodynamics, for example, this corresponds to the fact that
the Wilson line,

U = exp

(
i
∫ 2πR

0
dy Ay

)
(26.16)

is gauge invariant and non-trivial, again, unless c = n/R.
This suggests that we want to consider closed p-forms α which satisfy

dα = 0, (26.17)

but that we are not interested in exact forms

α = dβ. (26.18)

More generally, we want to define an equivalence class known as the cohomology class of
α. We will view α and α′ as equivalent if

α′ = α + dβ, (26.19)

where β is well defined everywhere on the manifold.
In general, for field configurations on a manifold M the number of linearly independent

zero modes is known as the Betti number, bp. This number is related to the number of
(basis) p-dimensional submanifolds which are not boundaries of ( p + 1)-dimensional
surfaces. We will not prove this but will at least make it plausible. Consider the integration
of a p-form, α, over a p-dimensional submanifold �:∫

�

αi1...ip d�i1ip . (26.20)

https://doi.org/10.1017/9781009290883.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.033


375 26.1 Mathematical preliminaries

By Stokes’ theorem, the integral of the exterior derivative of a ( p − 1)-form β over � is
related to the integral of β over the boundary of �:∫

�

dβ =
∫
∂�

β. (26.21)

If � is compact, it has no boundary so the integral of dβ = 0.
Two p-forms are in the same cohomology class if∫

�

(α − α′) =
∫
�

dβ =
∫
∂�

β = 0. (26.22)

Note that, as before, it is important in this expression that β is defined throughout the
manifold.

If we consider the structure of a massless chiral multiplet, we note that there are two
scalars and a chiral fermion. In compactifications preserving N = 1 supersymmetry, modes
of antisymmetric tensor fields which are annihilated by d will correspond to massless
scalars; supersymmetry guarantees that the other elements of the multiplet are also present.
The suggested readings at the end of the chapter contain more detailed discussions of these
issues, but it is not too hard to understand how the various states arise in terms of the
forms annihilated by d. The other massless scalar arises because one can also choose
the form in such a way the Laplacian vanishes. The Dirac operator is closely related
to differential forms on manifolds. This can be shown using the creation–annihilation
operator construction of the Dirac matrices that we used in our discussion of orthogonal
groups. One can exhibit in this way the required pairing.

With this machinery we can define an important set of topological invariants of
manifolds: characteristic classes. Consider a gauge field F, where F = dA. Note that F
is closed: dF = 0. The gauge field F is said to be an element of H1(M, R), the second
cohomology group of the manifold M with real coefficients. The cohomology class of such
two-forms is known as the first Chern class.

When the manifold is topologically non-trivial, if we consider a gauge field then it may
not be possible to describe the field everywhere by a single non-singular potential. This
problem is familiar to us from the case of the Dirac monopole. Instead, in different regions
α and β we have to use different potentials, A(α), A(β). In regions where α and β overlap
(transition regions), A(α) and A(β) will be gauge transforms of one another:

A(α) = A(β) + φ(αβ). (26.23)

Another set of gauge fields is said to be in the same topological class if

Ã(α) = Ã(β) + φ(αβ) (26.24)

with the same transition function φ. Now, since the functions A and Ã are not uniquely
defined everywhere, on the one hand F = dA and F̃ = dÃ are not in the trivial cohomology
class in general. On the other hand, F − F̃ is in this class, since the difference A − Ã = B
is well defined. So F − F̃ = dB and F and F̃ are in the same cohomology class. Thus the
cohomology class of F, the first Chern class, is a topological invariant.

https://doi.org/10.1017/9781009290883.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.033


376 Compactification of string theory II

There is a theorem which states that if the first Chern class is non-zero then one can
always find a two-dimensional surface � with the property

I(�) = 1
2π

∫
�

F �= 0. (26.25)

Note that this is a kind of magnetic flux. By Dirac’s argument (see Chapter 7), I(�) is an
integer. The first Chern class plays an important role in the theory of Calabi–Yau spaces.

These ideas can be generalized to complex spaces. Here we define, as we did for the
orbifold, complex coordinates zi and z̄i. We then define a ( p, q)-formψ to be an object with
p zi-type indices and q z̄i-type indices. Note that ψ is totally antisymmetric in both types
of indices. We can define two types of exterior derivatives, ∂ and ∂̄ , in an obvious way:

∂ψa1...ap+1,ā1...āq = 1
p + 1

∂a1ψa2...ap+2ā1...āq + (−1)P permutations. (26.26)

Note that ∂2 = 0; ∂̄ is defined similarly. In terms of these definitions,

d = ∂ + ∂̄ . (26.27)

These are known as the Dolbeault operators. We can then consider differential forms
annihilated by these operators. The numbers of independent forms annihilated by the ∂
and ∂̄ operators are known as the Hodge numbers, hp,q. Then, for example, one has the
Hodge decomposition

bn =
∑

p+q=n
hp,q. (26.28)

Again, is is possible to choose these forms so that they are annihilated by the Laplacian.

26.2 Calabi–Yau spaces: constructions

We have already constructed a rather rich set of four-dimensional string theories. But they
are only a small subset of what appears to be a vast set of possibilities. We saw, for example,
that the orbifold compactifications give rise to moduli which describe states which are not
orbifolds. A rich set of compactifications of string theory, of which the orbifolds we studied
in the last chapter are special cases, are provided by the Calabi–Yau spaces. In this section,
we introduce these.

Our strategy to construct solutions is to look for solutions of the ten-dimensional
field equations. One can ask: why is this sensible? There are two answers. First, if
we consider spaces in which the massless ten-dimensional fields are slowly varying, it
should be appropriate to integrate out the massive string modes and study the low-energy
equations. A more serious question is: why is it that we can simply look at the low-order
equations? Even at the classical level, integrating out the massive states will lead to terms
with arbitrary numbers of derivatives. This question is far more serious. If we solve the
equations, say, involving two derivatives then we can try to find solutions of the terms
in up to four derivatives perturbatively. To do this we expand the fields in modes of the
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377 26.2 Calabi–Yau spaces: constructions

lowest-order theory (e.g. eigenfunctions of the Laplace operator on the complex space).
These are precisely the Kaluza–Klein modes. Calling these φn and substituting our lowest-
order solution into the next-order terms, we will obtain equations of the form(∇2 + m2

n
)
φn = α′

R2�n. (26.29)

For mn �= 0, i.e. for the massive Kaluza–Klein modes, we simply obtain a small shift.
But the massless modes are problematic. In the case of Calabi–Yau compactifications it is
supersymmetry which will come to our rescue. We will see that, for the massless modes,
the tadpoles (�ns) vanish.

We begin with the Type II theory. Rather than examine the equations of motion we look
at the supersymmetry variations. In flat-space four-dimensional theories, we are familiar
with the idea that we can find minima of the potential by setting the auxiliary fields to zero.
We can phrase this in a different, seemingly more obscure, way: we can find static solutions
of the classical equations by requiring that the supersymmetry variations of all the fields
vanish. That is, we require

δψ = εF = 0, δλ = εD = 0. (26.30)

We will try the same strategy. In Chapter 17 we introduced the essential elements required
to understand spinors in a gravitational background (the reader may want to reread Section
17.6). To make things simple, we will look for solutions where the antisymmetric tensor
vanishes and the dilaton is constant, so only the metric is spatially varying. Then the
condition that there should be a conserved supersymmetry becomes

δψM = DMη = 0. (26.31)

So η is covariantly constant. This means that, under parallel transport around any closed
curve, η returns to itself. As in gauge theories the effect of parallel transport can be
described in terms of Wilson lines, where now the Wilson line is written in terms of the
spin connection, ω:

U = P exp

(
i
∮
ω dx

)
. (26.32)

The fact that η is unchanged under any such transformation greatly restricts the form of
ω. To see how this works, consider that in the ten-dimensional Lorentz group, there is an
O(6) subgroup which acts on the compactified coordinates, as well as the four-dimensional
Lorentz group acting on the Minkowski coordinates. The 16-component spinor in ten
dimensions decomposes under these groups as

η = (4, 2)+ (4̄, 2∗). (26.33)

By local Lorentz transformations, we can take the (4, 2) representation to have the form
(suppressing the four-dimensional spinor index)

η =

⎛⎜⎜⎝
0
0
0
η0

⎞⎟⎟⎠ . (26.34)

https://doi.org/10.1017/9781009290883.033 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.033


378 Compactification of string theory II

In order that this be invariant, we require that the spin connection lie in an SU(3) subgroup
of O(6). The space is said to be a space of SU(3) holonomy.

In general ω is an O(6) matrix. Restriction to SU(3) is a strong constraint. Already U(3)
holonomy requires that the manifold be complex. We encountered this in the orbifold case,
where we introduced three complex coordinates and their conjugates. There is no unique
way to introduce the complex coordinates. The continuous set of choices will lead to a set
of moduli of our solutions, known as the complex structure moduli. In addition, a manifold
of U(3) holonomy is Kahler. This means that the metric can be derived from a function
K(xi, xī), the Kahler potential, through

gi j̄ = ∂i ∂j̄ K. (26.35)

While proving that a manifold of U(3) holonomy must be Kahler is challenging, it is not
hard to check that a Kahler manifold has U(3) holonomy. Some aspects of these manifolds
are discussed in the exercises.

The Christoffel symbols (affine connection) and curvature for a Kahler manifold can be
written in quite compact forms. (Verification of these formulas is left for the exercises.)
The components of the Christoffel symbols are given by

�a
bc = g ad̄∂bgcd̄, �ā

b̄c̄ = g ād∂b̄∂ b̄g c̄d. (26.36)

As a result, the non-zero components of the Riemann tensor are

R ā
b̄cd̄ = ∂c�

ā
b̄d̄ (26.37)

and the Ricci tensor is

Rb̄c = −∂c�
ā
b̄ā. (26.38)

Using

�ā
b̄ā = ∂b̄ ln det g, (26.39)

this can be further simplified:

Rb̄c = −∂b̄∂c ln det g. (26.40)

Note that our result, Eq. (24.19), for the curvature of a two-dimensional Riemann surface
is a special case of this.

The requirement that the metric have SU(3) holonomy has a dramatic consequence for
the curvature: the Ricci tensor vanishes. This follows from our discussion of the spin
connection as a gauge field for local Lorentz transformations. On a six(real)-dimensional
Kahler manifold we have seen that the spin connection is not an O(6) field but, rather, a
U(3) field (in four dimensions it is a U(2) field, etc.). The U(1) part of the Riemann tensor
is the trace over the Lorentz indices – the group indices, thinking of the Riemann tensor as a
non-Abelian field strength. But this object is the Ricci tensor, so SU(3) holonomy requires
that the Ricci tensor itself vanish everywhere on the manifold. For such a configuration
the lowest-order Einstein equation is automatically satisfied, Rij̄ = 0. The question which
we would like to address is: given a Kahler manifold, is it possible to deform the Kahler
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379 26.3 The spectrum of Calabi–Yau compactifications

potential in such a way that the Ricci tensor vanishes? Clearly a necessary condition for
this is that the integral

c1 = 1
2π

∫
Tr R (26.41)

vanish. This quantity is the first Chern class, the topological invariant which we discussed
earlier. It was Calabi who conjectured that the vanishing of the first Chern class for a
manifold was a necessary and sufficient condition that the manifold admit a unique metric
of SU(3) holonomy. Yau later proved this conjecture. The spaces constructed in this way
are the famous Calabi–Yau spaces. In general, while one can prove that such metrics exist,
actually constructing them is a difficult numerical problem. Fortunately, many properties
relevant to the low-energy behavior of string theory on these manifolds can be obtained
from more limited, topological, information.

It is worthwhile comparing this with our orbifold constructions. The orbifolds are
everywhere flat. But the existence of a deficit angle associated with the fixed points means
that there is actually a δ-function curvature; this gives precisely the holonomy of these
manifolds. If we decompose the spinors as before then, as we transport them about the
fixed points, the i-components pick up a phase, e

2π i
3 , while the 0-components are invariant.

Correspondingly, we find one unbroken supersymmetry.
When we discuss the heterotic theory on a Calabi–Yau space, we will have to choose

values for the gauge fields as well. It will not be possible to simply set the gauge fields
to zero. From the point of view of four dimensions, gauge fields with indices in the extra
dimensions are like scalars, so this will result in the breaking of some or all the gauge
symmetry. As we will see in Section 26.6.1, there are many possible choices for these fields,
with distinct consequences for the structure of the low-energy theory. In an interesting
subclass, some features of the heterotic theory are closely related to those of Type II on
Calabi–Yau spaces.

26.3 The spectrum of Calabi–Yau compactifications

In both the Type II and heterotic cases, many features of the low-energy spectrum follow
from general topological features of the manifold and do not depend on details of the
metric. In the heterotic case the number of generations (minus the number of antigener-
ations) is a topological invariant. Suppose that we have some number of generations for
some choice of metric. If we now make smooth, continuous, changes in the metric then
the massless spectrum can change, as generations and antigenerations pair to gain mass
or become massless. In other words, a mass term in an effective action can pass through
zero but the net number of generations cannot change. In some cases, other features of the
spectrum are similarly invariant. So, while it is difficult to write down explicit metrics for
manifolds having SU(3) holonomy, it is possible to determine many important features of
the low-energy theory from basic topological features of the manifold.
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380 Compactification of string theory II

In the Type II theory the numbers of hypermultiplets and vector multiplets are separately
topological. They do not pair up as one moves about on the moduli space; the N = 2
supersymmetry ensures that if a field is massless at one point in the moduli space then it is
massless at all points. Even more dramatic is that the massless states found in the lowest
order of the α′ expansion are in fact massless to all orders α′ and in string perturbation
theory. So it is enough to study the lowest-order supergravity equations of motion in order
to count the massless particles.

The important non-zero Hodge numbers are h2,1 and h1,1. In the IIA theory there are
h1,1 vector multiplets and h2,1 hypermultiplets. In the IIB theory this is reversed. In the
heterotic case, the (2, 1)-forms will correspond effectively to generations and the (1, 1)-
forms to antigenerations.

The counting of massless fields is not difficult to understand. Since we have taken the
antisymmetric tensor fields and fermions to vanish in the background, the equations for
these fields are particularly simple. Consider the antisymmetric tensor Bμν . On a complex
manifold, as we explained earlier, there are h1,1 (1, 1)-forms b(a)i, j̄ and h2,1 (2, 1)-forms
annihilated by the operators ∂ and ∂̄ . Since the corresponding three-index field strengths
H = dB vanish, there is no energy cost to giving a constant expectation value to the
associated four-dimensional fields; they correspond to massless scalars in four dimensions.
The fields connected to the (1, 1)-forms bi,ī, are easy to describe. In addition to the
antisymmetric tensor there is also a massless perturbation of the metric:

ig iī(x, y) = φ(x)bi,ī( y). (26.42)

Here x refers to the ordinary four-dimensional Minkowski coordinates and y refers to the
compactified coordinates. Similarly, in the IIA theory one can find a massless gauge field
rounding out the bosonic components of the vector multiplet. This comes from the three-
index Ramond field,

Cμi,ī(x, y) = Aμ(x)bi,ī( y). (26.43)

We will leave to the reader the problem of working out the structure of the hypermultiplets
in terms of the (2, 1)-forms and also of determining the pairings in the IIB case.

A (1, 1)-form which is always present is the Kahler form,

bK
i,ī = igi,ī, b ī,i = −igi,ī. (26.44)

This satisfies

∂bK = ∂̄bK = 0 (26.45)

because giī = ∂i∂ īK. The real scalar which sits in the multiplet with bK is just the metric
itself. The corresponding massless field is the radius of the compact space:

g i,ī(x
μ, zi) = R2(xμ)gi,ī(z), Bi,ī(x

μ, z i) = b(xμ)bi,ī (z). (26.46)

That the field is massless is no surprise; the condition Riī = 0 is not changed under an
overall rescaling of the metric, so the vev is undetermined.
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26.4 World-sheet description of Calabi–Yau compactification

Thus far we have described the compactification of string theory in terms of ten-
dimensional space–time. This analysis makes sense if the radius of the compactified space
is large compared with the string length, �s. We can also formulate these questions in
world-sheet terms. This provides a complementary way to understand many features of
the compactified theory and is useful for at least two reasons. First, it provides tools to
ask what happens when the compactification radius is of order the string scale or smaller.
Second, there are some features of the spectrum and interactions which are more readily
accessible in this framework.

In the Type II theory the non-linear sigma model which describes compactification
on a Calabi–Yau space has some striking features. First, in the absence of background
antisymmetric tensor fields it is left–right symmetric. Second, there are two left-moving
and two right-moving supersymmetries on the world sheet as opposed to the one left-
moving and one right-moving supersymmetry of a general configuration. This can be
usefully understood in a number of ways. In the light cone gauge, one can work with
the covariantly constant spinor η and its conjugate η̄ to construct two left-moving and two
right-moving supersymmetry generators, both in the sense of the world sheet and in space–
time. We have already seen this in the case of orbifold constructions. There, in the light
cone gauge, we have eight left-moving and eight right-moving supersymmetry generators,
before the orbifold projection. We can organize these in terms of their transformation
properties under the SU(3) × U(1) holonomy group. For both the left and right movers
there are triplets Qi, antitriplets Q̄ ī and singlets, Q0 and Q̄0. The triplets and antitriplets are
charged under the U(1) symmetry; the singlets are not. The orbifold projection eliminates
the triplets. The two singlets survive.

In a purely world-sheet description, non-linear sigma models described by a Kahler
metric automatically have two left-moving and two right-moving supersymmetries. To
describe these, we can introduce a superspace with four Grassmann coordinates, of which
two are left movers and two are right movers: θA+ and θA−. This superspace can be thought
of as the truncation of N = 1 supersymmetry in four dimensions. As in four dimensions
we can define, operators Dα and D̄α and left- and right-moving chiral fields annihilated by
the D̄s. Correspondingly, we can define chiral left- and right-moving fields

X i+(z, θ) = x i(z)+ θA+ψ i
A(z)+ auxiliary field (26.47)

and similarly for X i−. In terms of these fields we can write the action of the conformal field
theory as ∫

d 2σ

∫
d 2θ+d 2θ−K(X, X̄). (26.48)

Integrating over the θs, the bosonic terms are just
∫

d 2σgi,ī ∂αx i∂αx ī, with gi,ī the Kahler
metric.

The superconformal algebra, in these backgrounds, is enlarged to what is referred to as
the N = 2 superconformal algebra (one such algebra for the left movers, one for the right
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movers). In addition to the stress tensor and the two supercurrents, this algebra contains a
U(1) current. The supersymmetry generators can be constructed by the Noether procedure.
They can also be guessed by taking the generators in a flat background and making the
expressions covariant:

G+ = gi,īDX iψ ī, G− = gi,īDX īψ i. (26.49)

These have opposite charge under the U(1) current (an R current) constructed from the
fermions,

j(z) = ψ ī(z)ψ i(z), (26.50)

with a similar current for the left movers. The full algebra is

T(z)G±(0) ≈ 3
2z2 G±(0)+ 1

z
∂G±(0),

T(z)j(0) ≈ 1
z 2 j(0)+ 1

z
∂j(0),

j(z)G ±(0) ≈ ±1
z

G±(0). (26.51)

These equations say that G has dimension 3/2 while j has dimension one, and G± have
U(1) charges plus and minus one. The central charge appears in the relations

G+(z)G−(0) ≈ 2c
3z 3 + 2

z 2 j(0)+ 2
b

T(0)+ 1
z
∂j(0),

G+(z)G+(0) ≈ 0,

j(z)j(0) ≈ c
3z 2 . (26.52)

The non-linear sigma models appropriate to heterotic compactifications on Calabi–Yau
spaces have a number of interesting features. We will see that, for a particular choice
of gauge fields, the world-sheet theory which describes the heterotic compactification is
identical to that of the Type II theory. Thus again they have two left-moving and two right-
moving supersymmetries ((2, 2) supersymmetry). The fact that the world-sheet theories of
the two different string theories are the same allows us to argue, as we will below, that
Calabi–Yau spaces are solutions of the full, non-perturbative, string equations of motion.
But this observation also tells us about interesting features of the spectrum.

To understand the spectrum, it is helpful to ask, first, what is a vertex operator from the
perspective of the two-dimensional conformal field theory? The answer is that a vertex
operator is a marginal deformation of the theory, a perturbation of dimension 2 ((1, 1)
in terms of the left- and right-moving Virasoro algebras). The standard way to compute
the dimensions of operators is to treat them as perturbations and calculate, for example,
the beta function of the perturbation. For marginal operators the beta function vanishes to
first order. The moduli correspond to “exactly marginal deformations” of the theory. For
these the beta functions vanish to all orders in the perturbation (and non-perturbatively),
corresponding to the fact that the theory, even for a finite perturbation, is conformal.

The existence of moduli means that there is a multiparameter set of conformal field
theories. Varying the action with respect to the parameters yields operators which are
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exactly marginal. In this way, we have the two-dimensional version of the correspondence
between moduli and massless fields.

An example of a modulus is the radius of the complex space. The lowest-order equation
for the metric is invariant under an overall scaling of lengths. But this is not obviously
true of the higher-order corrections. For Type II theories the space–time supersymmetry
guarantees that there is no potential for the moduli, so the sigma model is a good conformal
field theory, suitable for heterotic string compactification. On the heterotic side we can also
give a more direct world-sheet argument. Here R−2 is the coupling constant of the sigma
model. In other words, writing the metric as R2 times a reference metric of order the string
scale, R2 appears in front of the Lagrangian. We know that the lowest-order beta function
equation is the same as the field theory equation. It is trivially independent of R2, since it is
a one-loop effect. For higher orders there is a non-renormalization theorem. This follows
from a combined world-sheet and space–time argument. The superpartner of fluctuations
in the radius is the fluctuation of the antisymmetric tensor field, bi,ī = igi,ī. The associated
vertex operator term in the action is a total derivative on the world sheet at zero momentum.
It is perhaps easiest to see this by writing the vertex operator at zero momentum in the form

Vb = bMNε
αβ ∂αX M∂βX N

= ∂M∂NK εαβ ∂αX M∂βX N

= ∂α(ε
αβ ∂βX M∂MK ). (26.53)

So b decouples at zero momentum. Because b is in a supermultiplet with R2 this means
that the superpotential, which is a holomorphic function of the superfields, is independent
of R2.

Actually, this statement is not precisely correct because K is not single-valued. In
perturbation theory it is true since one is not sensitive to the global structure of the
manifold (in perturbation theory, all fluctuations are small). Non-perturbatively, one can
encounter instantons in the world-sheet theory. A more detailed analysis is required to
determine whether there are corrections to the superpotential. In left–right symmetric
compactifications of the heterotic string, i.e. those with two left-moving and two right-
moving supersymmetries ((2, 2) models), a study of fermion zero modes in the presence
of the instanton shows that no superpotential for the moduli is generated; this is consistent
with one’s expectations from the Type II theory. For compactifications with two right-
moving but no left-moving supersymmetries ((2, 0) models), corrections can be generated
though in some cases intricate cancelations still prevent the appearance of a potential for
the moduli. These two classes of models are phenomenologically quite distinct, as we will
see shortly.

26.5 An example: the quintic in CP4

It is helpful to have a concrete example of a Kahler manifold with c1 = 0, on which we
know that one can construct a metric of SU(3) holonomy. We have previously encountered
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the complex projective spaces in N dimensions, CPN. These are defined as spaces with
N + 1 complex coordinates Za and with the identification Za → λZa for any complex
number λ. We have written down a Kahler potential on this space:

K = ln

(
1 +

N∑
a=1

ZaZ̄a

)
. (26.54)

Any complex submanifold of a Kahler manifold is also a Kahler manifold; one can simply
take the Kahler potential to be the Kahler potential of the full manifold, evaluated on the
submanifold. To obtain a manifold with three complex dimensions we can start with CP4

and write down an equation for the vanishing of a polynomial P(Z). The polynomial should
be homogeneous in order that it has a sensible action in CPN. It turns out that it should also
satisfy other conditions. Its gradient should at most vanish, at the origin (which is not a
point in CPN). In order that the first Chern class should vanish, it should be quintic. We
will give an argument for this shortly.

The simplest (most symmetric) possibility is

P = Z 5
1 + Z 5

2 + Z 5
3 + Z 5

4 + Z 5
5 = 0, (26.55)

but there are obviously many more. We can deform this polynomial by adding other quintic
polynomials. These correspond to varying the complex structure. Since each deformation
produces another solution of the string equations, each deformation corresponds to a
modulus, one of the complex structure moduli. Associated with each deformation is a form
of type (2, 1), which we will not attempt to construct here.

Before listing the deformations, we note that not every deformation corresponds to a
change in the physical situation – and thus to a massless particle. Holomorphic changes of
the coordinates which are non-singular and invertible do not change the complex structure.
The transformation

Zi → Zi + εijZj (26.56)

is well defined in CP 4. As a consequence, deformations such as Z 4
1 Z2 are not physical. So

we can list the possible deformations:

Z3
1Z 2

2 . . . , Z 3
1 Z 2Z 3 . . . , Z 2

1Z 2
2Z 3, . . . , Z 2

1Z 2Z 3Z 4, . . . , Z 1Z 2Z 3Z 4Z 5. (26.57)

All together there are 101 possible deformations of the polynomial, corresponding to h2,1 =
101. In this example, there is only one Kahler modulus, the overall radius of the compact
space.

We can understand heuristically why the first Chern class vanishes, in a way which
will help us to understand other features of these manifolds. A characteristic feature of the
Calabi–Yau spaces is the existence of a covariantly constant three-form, ωijk. The existence
of this form follows from the existence of a covariantly constant spinor η:

ωijk = η̄�[ijk]η. (26.58)

Working in terms of the creation–annihilation operator basis for the �s, one sees that ω is
holomorphic. The �is can be defined in such a way that the �ī matrices annihilate η. Then,
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because of the complete antisymmetrization, only components of ω with indices 1, 2, 3 are
non-vanishing. In the space defined by the vanishing of a quintic polynomial in CP4, we
can show that there exists a holomorphic three-form which is everywhere non-vanishing.
Setting xi = Zi/Z5, i = 1, . . . , 4,

ω = dx1 ∧ dx2 ∧ dx3
(
∂P
∂x 4

)−1
. (26.59)

One can show that this expression does not depend on singling out a particular coordinate
and that it is not singular at the points where the derivative vanishes provided that the
polynomial P is quintic and that the gradient of P vanishes only at the origin. The existence
of such a form can be shown to be equivalent to the vanishing of the first Chern class.

26.6 Calabi–Yau compactification of the heterotic string at weak
coupling

Much effort has been devoted to the study of compactifications of the weakly coupled
heterotic string on Calabi–Yau spaces. These theories have many features of the Standard
Model. They also allow one to consider many questions of Beyond the Standard Model
physics. Before beginning an analysis of these models it is worth listing some points that
we can address in this framework.

1. Low-energy supersymmetry Solutions of the classical equations of the heterotic string
theory on Calabi–Yau spaces exist. They have N = 1 supersymmetry. Supersymmetry,
as in field theory, is unbroken to all orders of perturbation theory but may be broken
non-perturbatively.

2. Low-energy gauge groups The simplest constructions have gauge group E8 × E6,
broken perhaps by Wilson lines, which preserve the rank of the gauge group. But many
models have a moduli space in which the gauge group is broken to precisely that of the
Standard Model.

3. Generations The number of generations is typically determined in terms of topologi-
cal features of the underlying manifold.

4. Massless particles, not protected by symmetries Various massless states arise which
are not protected by chiral symmetries. This is precisely what we want in order to
understand the presence of light Higgs fields in supersymmetric theories. We know
that if such fields are present in the low-energy field theory, they are protected from
gaining large masses by non-renormalization theorems. In field theory the vanishing of
such mass terms appears mysterious; in these string constructions, it is automatic. Such
states could play the role of Higgs fields in supersymmetric models. In other words, the
Huggs five-turning problem of ordinary supersymmetric field theories is readily solved
in this framework.

5. Unification of couplings The string theories that we are studying are not grand
unified theories in the conventional sense. There is no energy scale at which these
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compactifications appear as four-dimensional theories with a single unbroken gauge
group. Yet, generically, the couplings are unified. These two features, which we will see
are easy to understand in terms of the microscopic structure of string theory, are quite
surprising from a low-energy point of view. They have sometimes been referred to as
“string miracles”.

6. Continuous and discrete symmetries It is easy to prove that for these compactifications
(and for weak-coupling heterotic models in general) there are no continuous global
symmetries; all continuous symmetries must be gauge symmetries. Discrete symme-
tries, however, hand, proliferate and might play the role of R-parity or lead to other
interesting phenomena. These discrete symmetries are typically gauge symmetries, in
the sense that they are residual symmetries left over after the breaking of continuous
gauge symmetries.

We will also see that there are a number of problems with these models, which illustrate
some of the basic difficulties in developing a string phenomenology, as follows.

1. There are too many models While there are many with three generations, there are
also some with hundreds of generations, with non-standard gauge groups and the like.

2. The problem of moduli Non-perturbatively, moduli can acquire potentials but they
typically vanish in various asymptotic regimes. Simple general arguments indicate
that stable supersymmetry-breaking minima, if they exist, must be in regions which
are inherently strongly coupled in the sense that no weak coupling approximation is
available.

3. The problem of the cosmological constant This is closely related to the previous one.
In many instances moduli potentials can be calculated. For any given value of the
moduli the size of these potentials is scaled, as one would expect, by the scale of
supersymmetry breaking. As a result, even if strongly coupled stable minima exist it
is not clear why the cosmological constant should be small at these points.

We will not offer a solution to these problems in this chapter but will explore at least one
proposed answer, known as the “landscape,” in Chapter 30.

26.6.1 Features of Calabi–Yau compactifications of the heterotic string

In the previous section we asserted that, in suitable backgrounds, the world-sheet confor-
mal field theory which describes the heterotic string is the same as that which describes the
Type II theory. Here, we describe compactifications of the heterotic string theory in more
detail.

To construct solutions, we still look for these which preserve a space–time supersym-
metry. Again we require the supersymmetry variation of the gravitino to vanish, giving
Dμη = 0, so once more we need a covariantly constant spinor. There is now an equation
for the variation of the ten-dimensional gaugino, as well:

δλ ∝ �ijFijη. (26.60)
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One strategy, then, to find solutions which preserve N = 1 supersymmetry is to require that
Fij�

ij is an SU(3) matrix. There is a simple ansatz which achieves this. Both E8 and O(32)
have SU(3) subgroups:

SU(3)× E6 × E8 ⊂ E8 × E8, SU(3)× O(26) ⊂ O(32). (26.61)

On the Calabi–Yau space the spin connection is an SU(3)-valued field, so we take the
gauge field to be a field in one of these SU(3) subgroups. Then, for gauge generators not
in SU(3), expression (26.60) is automatically satisfied. For those in SU(3) the condition is
mathematically identical to that for the gravitinos and is again satisfied.

This ansatz satisfies another condition. We have set the antisymmetric tensor field B to
zero but, because of the Chern–Simons terms, this does not by itself guarantee that the field
strength H is zero. With this ansatz, however, the Chern–Simons terms for the gauge and
gravitational fields are identical. As a quick check, note that

dH = Tr (R ∧ R)− Tr (F ∧ F), (26.62)

and the two terms in this expression clearly cancel. This establishes that here we have a
solution of the equations of motion to lowest order in the α′ expansion. But there is another
way to see this, which will allow us to establish, as we did for the Type II theory, that this
is an exact solution, perturbatively and non-perturbatively. If we write down the non-linear
sigma model which describes the heterotic string in this background, it is identical to that
for the Type II theory. To see this, as in the orbifold case, we divide the left-moving gauge
fermions into three sets. First, there are the fermions λA, A = 1, . . . , 16, in the second E8
group, which are not affected by the background gauge field and remain free.. In the first
E8, ten fermions, λa, a = 1, . . . , 10 (transforming as a vector in the O(10) subgroup of E6),
are also free. The remaining six interacting fermions can be grouped, like the left-moving
coordinates, into three complex fermions, λi and λī. These fermions interact in precisely
the same way as the left-moving fermions in the Type II theory. This can be seen by writing
the action of the Type II fermions in terms of the vierbein and spin structure rather than the
metric and the Christoffel connection.

We see from this that the moduli of the Type II theory are also moduli of the heterotic
theory. Actually, we knew this had to be so since we know that each of these conformal
field theories, on the Type II side, is a good conformal field theory for the heterotic theory.
But we can also see this pairing more directly in the language of vertex operators. Here it is
somewhat more convenient to work in the RNS picture. The vertex operators correspond
to small deformations of the background in the directions of the moduli. In the Type II
theory they are built from right-moving fields, ∂Xi and ψ i, and left-moving fields, ∂̄Xi and
ψ̃ i. In the heterotic case we can trade ψ̃ i with λi. Since the action for the λis is the same
as that for the ψ̃ is, the dimensions of the vertex operators are exactly the same. This does
not preclude the existence of additional moduli on the heterotic side, and we will see that
typically there are additional moduli in these compactifications.

While all moduli of the Type II theory are moduli of the heterotic theory, not all heterotic
moduli correspond to states of the Type II theory. Vertex operators for moduli which
preserve only two right-moving supersymmetries ((2, 0)) are not suitable vertex operators
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for the Type II theory. The moduli we are considering here are distinguished because they
preserve the two left-moving world-sheet supersymmetries, and we will refer to these as
Type II moduli. Perhaps more interesting, though, than the pairing of moduli is a pairing of
the Type II moduli with matter fields. The moduli associated with (2, 1)-forms are paired
with 27s of E6 and (1, 1) moduli with 27s. This is most readily seen in the language of
vertex operators, using the world-sheet superconformal symmetry. The vertex operators
for the Type II theory are the highest components of the corresponding superconformal
multiplets with respect to both left- and right-moving supersymmetries. In superspace they
are the θ2+θ2− components of operators of the form

f(X i, X̄ i). (26.63)

The θ+θ2− component has dimension (1/2, 1). We can form an operator of dimension (1, 1)
by multiplying by λa, one of the free fermions. This operator does not have the highest
weight with respect to the left-moving N = 2 algebra, but this is not a problem; this
symmetry is not a gauge symmetry on the world sheet but simply an accident of our choice
of background field. It is highest-weight with respect to the left-moving Virasoro algebra,
which is all that matters.

We have already observed this pairing in the Z3 orbifold model, which is a special case
of the Calabi–Yau construction. In the untwisted sector the vertex operators for the moduli
took the form, for the left-movers,

∂̄X i, (26.64)

while for the 27s they took the form

λaλi. (26.65)

The supersymmetry transformation of the latter operator changes λi to ∂̄X i.
The distinction between 27s and 27s is readily understood. In the Type II case we can

distinguish two types of moduli, depending on their charges under the U(1) symmetry
within the left-moving N = 2 algebra. In the orbifold context some vertex operators involve
∂̄Xi and some ∂̄Xī. In the heterotic case, the world-sheet U(1) symmetry corresponds to
the U(1) subgroup of E6 in the decomposition O(10) × U(1) ⊂ E6. This U(1) charge is
precisely what distinguishes the 10s, for example, in the 27 and 27. In the Type II case this
distinction corresponds to the distinction between (2, 1) and (1, 1) moduli, so we obtain
precisely the pairing we described above (note that what one calls a 27 and a 27 is a matter
of convention; if one adopts an opposite convention, the identification is reversed).

This result holds everywhere in the moduli space; since the number of moduli of each
type does not change as one moves in the moduli space, the number of 27s and 27s does
not change. This is a surprising result. One might have thought that, in a complicated
construction such as this, 27s and 27s would, whenever possible, pair to gain mass. But
this is not the case. This is precisely the sort of phenomena one needs to understand light
Higgs particles in supersymmetric theories. We will see shortly how this works in a more
detailed model.
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26.6.2 Gauge groups: symmetry breaking

The heterotic models we have been considering have group E8 × E6. If we are to describe
the Standard Model we need to be able to break this symmetry. We have seen in the case of
toroidal compactifications that gauge symmetries can be broken by the expectation values
of gauge fields with indices in compactified dimensions. Stated in a more gauge-invariant
fashion, these are non-trivial expectation values for Wilson lines. In the Calabi–Yau case
the same is possible.

We will consider a specific example: the quintic in CP4, with the vanishing of the
polynomial:

Z 5
1 + Z 5

2 + Z 5
3 + Z 5

4 + Z5
5 = 0. (26.66)

The corresponding Calabi–Yau manifold, as we saw, has 101 27s and one 27. This
polynomial has a variety of symmetries. As in the case of the torus, we can use these
to project out states and simplify the spectrum. Consider, for example, the symmetry

Zi → α iZi, α = e2π i/5. (26.67)

This is a symmetry of the polynomial. It is somewhat different from the orbifold
symmetries we have discussed since, as the reader can check, it acts without fixed points.
Mathematicians refer to such a symmetry as “freely acting”. For the physics it means that
if we mod out the Calabi–Yau by this symmetry then, while it is still necessary to include
twisted sectors, the twisted strings have mass of order R, the Calabi–Yau radius, and there
are no light states in these sectors if R is large.

We can readily classify the states that are invariant under this symmetry. Among
the moduli, there are 21 h2,1 fields, associated with polynomials such as Z 3

1Z3Z4 and
Z 1Z 2Z 3Z 4Z 5. The Kahler modulus (i.e. the overall radius) is also invariant under this
transformation, and so survives the projection. The corresponding Euler number is 40,
one fifth of the Euler number of the covering space. There are also 21 27s of E6 and
one 27. Further symmetries can be used to reduce the number of generations to as few as
four.

But what interests us here is obtaining smaller gauge groups. We can define the Z5 group
to include a transformation in E6. This is equivalent to the presence of a Wilson line on the
manifold. An interesting way to do this is to consider a somewhat different decomposition
of E6 from what we have considered up to now:

SU(3)× SU(3)× SU(3) ⊂ E6. (26.68)

An example of a Wilson line in this product of SU (3)s is

U =
⎛⎝ 1 0 0

0 1 0
0 0 1

⎞⎠⎛⎝ α 0 0
0 α 0
0 0 α3

⎞⎠⎛⎝ α 0 0
0 α 0
0 0 α3

⎞⎠. (26.69)

This breaks E6 to SU (3)× SU (2)× SU (2)× U (1)2.
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26.6.3 Massless Higgs fields, or theμ problem

When we mod out in such a way as to reduce the gauge symmetry, we also alter the
spectrum. We have seen that this greatly reduces the number of moduli and the number
of generations. The presence of the Wilson lines also disrupts the left–right symmetry of
the model. As a result, the pairing of moduli and matter fields is no longer quite so simple.

In the presence of the Wilson line one still obtains 20 complete E6 generations. If
one thinks, loosely, of some of the massless fields “gaining” mass then elements of the
27 and 27s must pair up to gain mass. More precisely, in this modding out procedure
states disappear, but they must disappear in pairs. But one also obtains some incomplete
multiplets, where paired states do not disappear. Consider the 27. This is invariant under
the original Z5s, so any state which survives must be invariant under the Wilson line. Using
the decomposition of the 27 under SU(3)3, we obtain

27 = (3, 1, 3̄)+ (3̄, 3, 1)+ (1, 3̄, 3). (26.70)

So we obtain Z5 singlets from only the third multiplet. These form a (1, 2, 2) under SU(3)×
SU(2) × SU(2), as well as a singlet. There is a corresponding pair of states from the 27s.
This is the sort of multiplet we need to help understand the presence of light Higgs particles
in supersymmetric models: massless states at tree level which arise, from a low-energy
point of view, more or less by accident.

26.6.4 Continuous global symmetries

In the heterotic string theory, there are no continuous global symmetries. We will not give
a formal proof here but the basic argument is not hard to understand. If there is a global
symmetry, it should be a symmetry of the world-sheet theory. In this way we are guaranteed
that vertex operators can be chosen to have well-defined transformation properties and that
the S-matrix will transform properly. The global symmetry will be associated with a world-
sheet current. This current can be decomposed into left- and right-moving pieces. But, from
any left-moving current we can build a gauge boson vertex operator, so the symmetry is
necessarily a gauge symmetry. Right-moving currents will not commute with the world
sheet supersymmetry generators and will not have a well-defined action on states (in BRST
language they do not commute with the BRST operator). So they are not symmetries in
space–time.

There are subtleties needed to complete the proof. First, as we have already seen, string
theories typically possess, in perturbation theory, symmetries under which a scalar field
undergoes a constant shift. These symmetries, as we will discuss further, are only broken
non-perturbatively. The space–time version of such symmetries is not a conventional
selection rule but rather a statement that scattering amplitudes vanish in the limit that
the momenta of certain particles tend to zero. Second are the selection rules associated
with the Poincare group. These clearly have a different status. On the one hand, in some
sense, these symmetries are connected to the gauge symmetries of general relativity. On
the other hand, their world-sheet implementation is different. For example, translations
would appear to be non-linearly realized symmetries from a world-sheet point of view, but
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momentum is still conserved as a consequence of the Mermin–Wagner–Coleman theorem.
In any case, these subtleties are readily isolated and resolved.

This argument also indicates that there are no global symmetries in the Type II theories.
This is in accord with our expectation that global symmetries are unlikely to arise in a
theory of quantum gravity.

26.6.5 Discrete symmetries

When we studied orbifold models, we found that discrete symmetries existed in a subset
of vacua on the full moduli space. This is also the case for the Calabi–Yau manifold
constructed from the vanishing of a quintic polynomial in CP4. Such symmetries turn out
to be quite common.

The quintic polynomial P = ∑
Z5

i exhibits a set of Z5 symmetries:

Zi → αkiZi, α = e2π i/5. (26.71)

An overall phase rotation of all the Zis has no effect in CP 4, so the symmetry here is Z 4
5.

There is also a permutation symmetry, S5. This symmetry group is a subgroup of the O(6)
symmetry which would act on six non-compact flat dimensions. We can thus think of these
symmetries as discrete gauge transformations. So their existence in a theory of gravity is
not surprising.

We would like to know whether these symmetries are R symmetries. We can address this
by considering their effect on the covariantly constant spinor η. This is more challenging
to do than in the orbifold context, since we do not have quite such explicit expressions.
It is simplest to look at the covariantly constant three-form. We have already given a
construction,

ω = dx 1 ∧ dx 2 ∧ dx 3
(
∂P
∂x 4

)−1
, (26.72)

with xi = Zi/Z5. This construction treats the coordinates asymmetrically but, as we
explained, ω is symmetric among the coordinates. Note that ω transforms essentially like
η2, i.e. like θ2. So symmetries under which ω transforms non-trivially are R symmetries,
and W transforms like ω.

Consider first the Z5 transformations of the separate Zis. We can read off immediately
how ω transforms under transformations of the first three; the other two follow by
symmetry. So, we have

ω → α
∑

ki . (26.73)

Similarly, under those S5 transformations which permute Z1, Z2, Z3 we can see how
ω transforms. If the permutation is odd, ω changes sign. So again the general S5
transformation is an R symmetry.

Turning on the various complex structure moduli typically breaks some of or all this
symmetry. For example, if we turn on the modulus associated with the polynomial

z1z2z3z4z5 (26.74)
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then we break the Z4
5 symmetry down to a subgroup satisfying

∑
ki = 0 mod 5. This group

is Z3
5 but it is a non-R-symmetry, in light of the transformation law of ω. An expectation

value for this field clearly preserves the permutation symmetry.
Similarly, turning on say aZ3

1Z2 + bZ2
1Z3

2 breaks the symmetries acting on Z1 and Z2
as well as some of the permutation symmetry. Turning on enough fields breaks all the
symmetry.

One might ask why one should be interested in points or surfaces in the moduli space
which preserve a discrete symmetry, when in the bulk of the space there is no symmetry.
This question is closely related to the question: what sorts of dynamics might determine
the values of the moduli? This is a subject with which we will deal extensively later
but for which we can provide no definitive resolution. But, even without understanding
this dynamics, there is a simple reason to suspect that points in the moduli space with
symmetries might be singled out by the dynamics. Imagine that we somehow manage
to compute an effective potential for the moduli, arising, perhaps, due to some non-
perturbative string effects. Symmetry points are necessarily stationary points of this
effective potential. There is, of course, no guarantee that they are minima of the potential
but they are certainly of interest as candidates for string ground states.

There are, as we have seen, certain facts of nature which suggest that discrete symmetries
might play some role in extensions of the Standard Model, including proton decay and dark
matter.

26.6.6 Further symmetry breaking: the Standard Model gauge group

The Wilson line mechanism, as we have described it, provides a path to reduce the
gauge symmetry from E6 × E8 but leaves the rank untouched.1 We can hope to reduce
the gauge symmetry further by giving expectation values to some matter fields. Ideally,
these expectation values would be large. The presence of other gauge groups (as well as
unwanted matter multiplets) can spoil the prediction of coupling unification and can lead
to severe difficulties with proton decay and other rare processes. We are led, then, to ask
whether we can consider more general states, in which the spin connection is not equal to
the gauge connection and the rank is reduced.

This is a complex subject, which has been only partially explored. At lowest order in
the α′ expansion there are such flat directions. They are not left–right symmetric and,
while in order that they exhibit space–time supersymmetry they have two right-moving
supersymmetries, they have no left-moving supersymmetry. So they are not suitable
backgrounds for Type II theories and one cannot argue as easily as for the standard
embedding that these (0, 2) configurations are solutions of exact classical string equations.
They are still subject to perturbative non-renormalization theorems in α′. But a detailed
study of instanton amplitudes is required to determine whether these flat directions are
lifted non-perturbatively, i.e. by corrections of the form e−R2α′.

1 Non-Abelian discrete symmetries offer possibilities for reducing the rank but we will not explore these here.
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There is, however, a class of vacua with the Standard Model gauge group which can
be found by symmetry arguments, much as we found additional flat directions in the Z3
orbifold model. Consider, again, the quintic in CP5, with the symmetric polynomial. We
can find flat directions of the D terms by taking 27 = 27. More precisely, starting with the
E6 decomposition into O(10) representations,

27 = 101 + 1−2 + 16−1/2, (26.75)

we can give expectation values to the singlets in the 27 and one of the 27s. These are also
flat directions of the F terms. For example, consider the 27 corresponding to the polynomial
Z1Z2Z3Z4Z5. The product 27 27 is invariant under all the discrete R-symmetries; no terms
of the form (27 27)n can appear in the superpotential. So this direction is exactly flat (terms
of the form 273, 273 cannot lift these directions either). In combination with Wilson lines
these flat directions readily break to the SU (3) × SU (2) × U (1) group of the Standard
Model.

26.6.7 Gauge coupling unification

One of the striking successes of low-energy supersymmetry is its prediction of unification.
Within the context of grand unification – where the gauge group of the Standard Model
is unified in a simple group at a scale MGUT – the fact that the couplings unify is readily
understood. In the context of the compactifications considered here it is not immediately
obvious why this should be the case. In the case of symmetry breaking by Wilson lines,
for example, the compactification scale and the scale of the symmetry breaking are of the
same order. So there is no energy scale where one has a unified, four-dimensional effective
theory.

In the weakly coupled heterotic string, however, the couplings do unify under rather
broad conditions. In the case of Wilson line breaking this can be understood immediately in
field-theoretic terms. The effect of the Wilson line is to eliminate states from the E6 unified
theory, but at tree level no couplings are altered. So the couplings of all groups emerging
from E6 are the same. Perhaps more surprising is the fact that the E6 and E8 couplings are
the same. This can be seen by considering the vertex operators for the gauge bosons in each
group. In both cases the vertex operators are constructed in terms of free two-dimensional
fields, which obey the same algebra (in the unbroken subgroup) as in the flat-space theory.
So, for example, the operator product expansions of these gauge boson vertex operators
are unaltered. There are constructions where unification does not hold. They involve
replacing the two-dimensional fermions with a current algebra having a different central
extension.

In the (2, 1) flat directions considered above we can give an argument, based on the
low-energy field theory, that the couplings remain unified as one moves out along the flat
direction. A change in the coupling requires that there be a coupling of this modulus to the
gauge fields. But, at the classical level, we know that there are no such couplings because
any such coupling would violate the axion shift symmetry. This symmetry is unaffected by
the expectation value of these moduli.
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When we come to consider strongly coupled strings, the problem of coupling unification
will be more complicated. It will be less clear in what sense unification is generic. Whether
this is a problem for the theory, or a clue to a way forward, is a question for the student to
ponder.

26.6.8 Calculating the parameters of the low-energy Lagrangian

As we have explained, on the one hand string theory is a theory without fundamental
dimensionless parameters. On the other hand, the structure of the low-energy theory, as
we now see, depends on discrete choices: which Calabi–Yau, orbifold etc.?; in how many
dimensions?; with how much supersymmetry?; with which Wilson lines and continuous
dynamical quantities, the moduli? For any given choice, at least classically it should be a
straightforward problem to calculate the parameters of the low-energy theory.

It is easy to calculate the four-dimensional gauge couplings in terms of the ten-
dimensional dilaton and the radius. We have already seen how this works for simple
compactifications, and this carries over directly to the Calabi–Yau case since the vertex
operators for the gauge fields are constructed in terms of two-dimensional fields, as in the
orbifold or toroidal case.

The cosmological constant is another interesting quantity in the low-energy theory. At
the classical level in the Calabi–Yau compactifications, it vanishes. This can be understood
in a variety of ways. First, if we examine the solution of the ten-dimensional equations of
motion, we see that since the Ricci tensor vanishes; there is no cosmological term. Second,
in the two-dimensional conformal field theory the cosmological constant would give rise
to a tadpole for the dilaton but this is forbidden by conformal invariance. Ultimately, the
absence of a cosmological constant is inherent in the form of the solution: we have assumed
that four dimensions are flat. We will see later that this is not necessary: string theory admits
anti-de Sitter (AdS) spaces as well as Minkowski spaces as classical solutions.

From the perspective of trying to understand the Standard Model, a particularly
important set of parameters is the set of Yukawa couplings. These can certainly be
computed in string theory. In principle we should construct the vertex operators for the
appropriate matter fields and then construct the required OPE coefficients or suitable
scattering matrices. In practice this can often be short-circuited. In the orbifold models, for
example, in the untwisted sectors we can read off the Yukawa couplings by dimensional
reduction of the ten-dimensional Lagrangian. The scalar fields are components of the
original ten-dimensional gauge fields Ai. Similarly, the fermions are components of the
ten-dimensional gauginos. In the orbifold theory, alternatively it is not difficult to construct
the vertex operators and to compute the required OPE coefficients.

In the Calabi–Yau case we have seen that, in the α′ expansion, the superpotential
is independent of R. So one can work at very large radius and pick out the leading
contribution. To actually do the computation one can construct the zero modes of the scalar
and spinor fields and substitute into the Lagrangian. A priori one might expect that this
would be quite difficult, given that one does not have an explicit formula for the metric.
But it turns out that the Yukawa couplings have a topological significance, and their values
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can be inferred by general reasoning. We will not have a particular use for explicit formulas
here, but it is important to be aware of their existence.

26.6.9 Other perturbative heterotic string constructions

The quintic is just one of a large class of Calabi–Yau models which can be constructed.
The exact number is not actually known. It is not even known, with certainty, whether the
number of Calabi–Yau vacua is finite or infinite.

So, while we will not assess here the size of this space, there is clearly a large class of
string solutions with gauge group identical to that of the Standard Model. These theories
have varying numbers of generations, including both orbifold (or free-fermion) models
and Calabi–Yau constructions with three generations. There are many models with groups,
numbers of generations, and other features radically different from those of the Standard
Model. Still, it is remarkable how easily we have obtained models which accord with some
of our speculations for Beyond the Standard Model physics. We have found low-energy
supersymmetry, coupling unification, light Higgs particles and discrete symmetries which
can potentially suppress proton decay and give rise to a stable dark matter candidate, all in
a framework where we can imagine that real calculations are possible.

In subsequent chapters we will turn to the problems of actually turning these observa-
tions and discoveries into a real theory which we can confront with experiment.

Suggested reading

Volume 2 of Green et al. (1987) provides a comprehensive introduction to Calabi–Yau
compactification, and I have borrowed heavily from their presentation. Weakly coupled
string models with three generations have been constructed in the context of Calabi–Yau
compactification; their phenomenology is considered by Greene et al. (1987). Models
based on free fermions were been constructed by Faraggi (1999). We will encounter non-
perturbative constructions in Chapter 28. At special points in their moduli spaces, some
Calabi–Yau spaces can be described in terms of solvable conformal field theories. This
program was initiated by Gepner (1987) and is described at some length by Polchinski
(1998). A very accessible description, including computations of physically interesting
couplings, appears in Distler and Greene (1988).

Exercises

(1) Write down the field strength of electrodynamics as a two-form and express its gauge
invariance in the language of forms. Verify that dF = 0 is equivalent to the Bianchi
identity (the homogeneous Maxwell equations).
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(2) Show that, for a Kahler manifold, the non-vanishing components of the affine
connection (Christoffel symbols) are given by Eq. (26.36). Then show that the non-
zero components of the Riemann tensor are given by Eq. (26.37) and verify Eq. (26.38).
Derive Eq. (26.40) by noting that

� ā
b̄ā = ∂b̄ ln det g. (26.76)

Show that our result for the two-dimensional curvature of a Riemann surface is a
special case of this.

(3) For a flat two-dimensional torus, introduce complex coordinates and verify that the
bosonic and fermionic terms are just those of the free string action. You can take K =
X†X for this case.

(4) Write out in some detail the action of the heterotic string propagating in the Calabi–Yau
background with spin connection equal to the gauge connection. Determine the form
of the vertex operators for the 27 and 27 fields, in the RNS formulation ( you can limit
yourself to the NS–NS sector).

(5) Exhibit a combination of Wilson lines and SU(5) singlet expectation values which
breaks the gauge group to that of the Standard Model in the case of the quintic in CP4.
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