A NOTE ON RAMSEY'S THEOREM

BY

H. L. ABBOTT

In memory of Leo Moser

In this note we prove some results concerning Ramsey's theorem [5]. If $n \ge 2$ is a positive integer, $\langle n \rangle$ will denote the complete graph on *n* vertices. We shall formulate our results in terms of the "arrow symbol" introduced by Erdös and Rado [1]. If $u \ge 2$ and $k \ge 1$ are positive integers then

$$(1) n \to (u)_k$$

means that if the edges of an $\langle n \rangle$ are colored arbitrarily in k colors then there results a $\langle u \rangle$ all of whose edges have the same color. It follows from Ramsey's theorem that if u and k are given then $n \to (u)_k$ for all sufficiently large n. $n \to (u)_k$ will mean the negation of (1).

It is known ([2] and [3]) that

$$n \rightarrow (\log n/2 \log 2)_2$$

and that

(2)
$$n \rightarrow (2 \log n/\log 2)_2$$
.

It is also known (see for example [2] or [4]) that $(c_1, c_2, \ldots$ are absolute constants)

(3)
$$n \to (c_1 \log n/k \log k)_k$$

and in [6] it is remarked that the arguments used in [3] to prove (2) can be used to prove

(4)
$$n \mapsto (c_2 \log n / \log k)_k$$

The object of this note is to narrow somewhat the wide gap between (3) and (4). We shall prove by a fairly simple argument that

(5)
$$n \mapsto (c_3 \log n/k)_k.$$

LEMMA. If $a \rightarrow (u)_b$ and $c \rightarrow (u)_d$ then

$$(6) ac \rightarrow (u)_{b+d}$$

Proof. Let $\langle a \rangle$ have vertices p_1, p_2, \ldots, p_a and color the edges of $\langle a \rangle$ in b colors in such a way that there does not result a monochromatic $\langle u \rangle$. Similarly, let $\langle c \rangle$ have vertices p'_1, p'_2, \ldots, p'_c and color the edges of $\langle c \rangle$ in d colors (different from

Received by the editors April 1, 1971.

those used to color the edges of $\langle a \rangle$) so that there does not result a monochromatic $\langle u \rangle$. Let $\langle ac \rangle$ have vertices p_{ij} , $i=1, 2, \ldots, a$, $j=1, 2, \ldots, c$. Color the edge (p_{ij}, p_{ie}) the same as the edge (p'_i, p'_e) in $\langle c \rangle$ and, if $i \neq k$, color the edge (p_{ij}, p_{ke}) the same as the edge (p_i, p_k) in $\langle a \rangle$. Suppose in $\langle ac \rangle$ there is a monochromatic $\langle u \rangle$ with vertices $p_{i_1j_1}, p_{i_2j_2}, \ldots, p_{i_kj_k}$, say. It cannot occur that $i_1 = i_2 = \cdots = i_k$ since this would imply that $\langle c \rangle$ contains a monochromatic $\langle u \rangle$. Also, we cannot have i_1, i_2, \ldots, i_k all distinct since this would imply the existence of a monochromatic $\langle u \rangle$ in $\langle a \rangle$. Hence we must have $i_1 = i_2 \neq i_3$, say. However, this clearly implies that the edges $(p_{i_1j_1}, p_{i_2j_2})$ and $(p_{i_1j_1}, p_{i_3j_3})$ are colored differently. Hence $\langle ac \rangle$ does not contain a monochromatic $\langle u \rangle$ and (6) is proved.

Now we prove (5). There is no harm in assuming that k is even, say k=2l. From (2) we get for all sufficiently large a

$$a \rightarrow (2 \log a / \log 2)_2$$
.

By repeated application of (6) we get

$$a^{l} \rightarrow (2 \log a / \log 2)_{2l}$$
.

Thus if *n* satisfies

 $a^{l-1} < n \le a^l,$

we have

(8)
$$n \rightarrow (2 \log a / \log 2)_k$$

It is clear that (5) follows from (7) and (8).

References

1. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489.

2. P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.

3. P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.

4. R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-17.

5. F. P. Ramsey, On a problem in formal logic, Proc. London Math. Soc. 30 (1930), 264-286.

6. P. Erdös and E. Szemeredi, On a Ramsey type theorem (to appear).

UNIVERSITY OF ALBERTA, Edmonton, Alberta