A NOTE ON RAMSEY'S THEOREM

BY
H. L. ABBOTT
In memory of Leo Moser

In this note we prove some results concerning Ramsey's theorem [5]. If $n \geq 2$ is a positive integer, $\langle n\rangle$ will denote the complete graph on n vertices. We shall formulate our results in terms of the "arrow symbol" introduced by Erdös and Rado [1]. If $u \geq 2$ and $k \geq 1$ are positive integers then

$$
\begin{equation*}
n \rightarrow(u)_{k} \tag{1}
\end{equation*}
$$

means that if the edges of an $\langle n\rangle$ are colored arbitrarily in k colors then there results a $\langle u\rangle$ all of whose edges have the same color. It follows from Ramsey's theorem that if u and k are given then $n \rightarrow(u)_{k}$ for all sufficiently large $n . n \nrightarrow(u)_{k}$ will mean the negation of (1).

It is known ([2] and [3]) that

$$
n \rightarrow(\log n / 2 \log 2)_{2}
$$

and that

$$
\begin{equation*}
n \ngtr(2 \log n / \log 2)_{2} . \tag{2}
\end{equation*}
$$

It is also known (see for example [2] or [4]) that (c_{1}, c_{2}, \ldots are absolute constants)

$$
\begin{equation*}
n \rightarrow\left(c_{1} \log n / k \log k\right)_{k} \tag{3}
\end{equation*}
$$

and in [6] it is remarked that the arguments used in [3] to prove (2) can be used to prove

$$
\begin{equation*}
n \nrightarrow\left(c_{2} \log n / \log k\right)_{k} . \tag{4}
\end{equation*}
$$

The object of this note is to narrow somewhat the wide gap between (3) and (4). We shall prove by a fairly simple argument that

$$
\begin{equation*}
n \ngtr\left(c_{3} \log n / k\right)_{k} . \tag{5}
\end{equation*}
$$

Lemma. If $a \nrightarrow(u)_{b}$ and $c \nrightarrow(u)_{d}$ then

$$
\begin{equation*}
a c \nrightarrow(u)_{b+d} . \tag{6}
\end{equation*}
$$

Proof. Let $\langle a\rangle$ have vertices $p_{1}, p_{2}, \ldots, p_{a}$ and color the edges of $\langle a\rangle$ in b colors in such a way that there does not result a monochromatic $\langle u\rangle$. Similarly, let $\langle c\rangle$ have vertices $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{c}^{\prime}$ and color the edges of $\langle c\rangle$ in d colors (different from

Received by the editors April 1, 1971.

H. L. ABBOTT

those used to color the edges of $\langle a\rangle$) so that there does not result a monochromatic $\langle u\rangle$. Let $\langle a c\rangle$ have vertices $p_{i j}, i=1,2, \ldots, a, j=1,2, \ldots, c$. Color the edge ($p_{i j}, p_{i e}$) the same as the edge ($p_{j}^{\prime}, p_{e}^{\prime}$) in $\langle c\rangle$ and, if $i \neq k$, color the edge ($p_{i j}, p_{k e}$) the same as the edge $\left(p_{i}, p_{k}\right)$ in $\langle a\rangle$. Suppose in $\langle a c\rangle$ there is a monochromatic $\langle u\rangle$ with vertices $p_{i_{1} j_{1}}, p_{i_{2} j_{2}}, \ldots, p_{i_{u} j_{u}}$, say. It cannot occur that $i_{1}=i_{2}=\cdots=i_{u}$ since this would imply that $\langle c\rangle$ contains a monochromatic $\langle u\rangle$. Also, we cannot have $i_{1}, i_{2}, \ldots, i_{u}$ all distinct since this would imply the existence of a monochromatic $\langle u\rangle$ in $\langle a\rangle$. Hence we must have $i_{1}=i_{2} \neq i_{3}$, say. However, this clearly implies that the edges ($p_{i_{1} j_{1}}, p_{i_{2} j_{2}}$) and ($p_{i_{1} j_{1}}, p_{i_{3} j_{3}}$) are colored differently. Hence $\langle a c\rangle$ does not contain a monochromatic $\langle u\rangle$ and (6) is proved.

Now we prove (5). There is no harm in assuming that k is even, say $k=2 l$. From (2) we get for all sufficiently large a

$$
a \nrightarrow(2 \log a / \log 2)_{2}
$$

By repeated application of (6) we get

$$
a^{l} \nrightarrow(2 \log a / \log 2)_{2 l} .
$$

Thus if n satisfies

$$
\begin{equation*}
a^{l-1}<n \leq a^{l}, \tag{7}
\end{equation*}
$$

we have

$$
\begin{equation*}
n \nrightarrow(2 \log a / \log 2)_{k} . \tag{8}
\end{equation*}
$$

It is clear that (5) follows from (7) and (8).

References

1. P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489.
2. P. Erdös and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
3. P. Erdös, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
4. R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-17.
5. F. P. Ramsey, On a problem in formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
6. P. Erdös and E. Szemeredi, On a Ramsey type theorem (to appear).
