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Abstract. We construct, for q a root of unity of odd order, an embedding of
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1. Introduction. Let C be finite tensor category over k, an algebraically closed
field of characteristic zero. The Brauer–Picard group of C [11, 13], denoted BrPic(C),
consists of equivalence classes of invertible exact C-bimodule categories, endowed with
the group law induced by a natural (but technically involved) notion of tensor product.
It is an important invariant of C, but it seems to be very difficult to compute, or
even difficult to find non-trivial subgroups of it. The Brauer–Picard group of C also
coincides with the Brauer group of the Drinfeld centre of C as defined in [29], in terms
of Azumaya algebras, see [11]. If C = mod(H) is the category of finite-dimensional
representations of a finite-dimensional Hopf algebra H, then the Brauer–Picard group
is known as the strong Brauer of H [8], which is also notoriously known to be difficult
to compute: see [9] for the latest developments (for the case of the Sweedler algebra)
before the new technology from [11, 13], and see [7, 19] for recent computations.

A key result to understand the Brauer–Picard group is given in [11, 13], where
it is shown to be isomorphic with Autbr(Z(C)), the group of isomorphism classes of
braided auto-equivalences of the Drinfeld centre of C, thus providing a more tractable
description. Since any tensor auto-equivalence of C obviously induces a braided tensor
auto-equivalence of Z(C), there exists a group morphism from Aut⊗(C) (the group of
isomorphism classes of tensor auto-equivalences of C) into Autbr(Z(C)), and hence into
BrPic(C). Therefore, the study of Aut⊗(C) seems to be an important step to understand
the structure of the Brauer–Picard group.

When C = mod(H) is the category of finite-dimensional representations of a
finite-dimensional Hopf algebra H, it is shown by Schauenburg in [23] that the
group Aut⊗(mod(H)) is isomorphic to BiGal(H∗), the group of H∗-bi-Galois objects.
This result is very useful to construct tensor auto-equivalences, and Schauenburg
has moreover developed some powerful techniques to describe and study (bi-)Galois
objects over a given Hopf algebra [24, 25]. The aim of this paper is to show how to use
these techniques to compute the group of bi-Galois objects over uq(sl(2))∗ at an odd
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root of unity, the coordinate algebra of the Frobenius–Lusztig kernel of SL(2), and
hence the group Aut⊗(mod(uq(sl(2))), as follows.

THEOREM 1.1. Let q be a root of unity of odd order N > 1, and let n ≥ 2. There
exists an injective group morphism

PSL(n) −→ BiGal(uq(sl(n))∗),

which is an isomorphism at n = 2.

An important difference between the present case of uq(sl(2))∗ and the few
other known computations of groups of bi-Galois objects for finite-dimensional non-
cosemisimple Hopf algebras [5, 18, 25] is that uq(sl(2))∗ is not pointed. Thus, its seems
difficult to use the techniques of these papers. The key tool used here will be a result
by Schauenburg in [24] (Corollary 3.3 there), yielding information on Galois objects
over Hopf algebras involved in an exact sequence, together with the fact that the cleft
Galois objects over O(SLq(2)) are trivial if q �= 1 [3].

As a consequence of Theorem 1.1, we also show that the lazy cohomology [6] of
uq(sl(2))∗ is trivial.

Note that for q not a root of unity, the group of tensor auto-equivalences of
the (semisimple) tensor category of finite-dimensional Uq(sl(n))-modules (or more
generally of Uq(g)-modules for g a semisimple Lie algebra) is described in [21], and is
much smaller than the one we get at roots of unity for uq(sl(n)).

The paper is organized as follows. Section 2 consists of preliminaries, mainly on
Galois and bi-Galois objects over Hopf algebras. In particular, we provide a detailed
exposition of (a particular case of) Schauenburg’s Corollary 3.3 in [24], of which
we provide a variation adapted to bi-Galois objects (Corollary 2.6). The proof of
Theorem 1.1 is given in Section 3, that the reader might consult first to see how the
group morphism in the statement is constructed.

2. Preliminaries.

2.1. Notation and conventions. We assume that the reader is familiar with the
theory of Hopf algebras, as in [20]. In particular, we use Sweedler notation for
coproducts and comodules in the standard way. A pointed set is a set with a
distinguished element. A sequence of maps of pointed sets (X, ∗X ) → (Y, ∗Y ) →
(Z, ∗Z) is said to be exact if the fiber of ∗Z is exactly the image of X .

2.2. Galois and bi-Galois objects. Let H be a Hopf algebra. A right H-Galois
object is a non-zero right H-comodule algebra T such that the linear map κr (the
“canonical” map) defined by

κr : T ⊗ T −→ T ⊗ H

t ⊗ t′ −→ tt′(0) ⊗ t′(1),

is bijective. An H-Galois object morphism is an H-colinear algebra morphism. The
set of isomorphism classes of H-Galois objects is denoted Gal(H).
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We now list a number of useful properties and constructions, that will be used
freely later.
� Any morphism of H-Galois objects is an isomorphism ([26], Remark 3.11).
� An H-Galois object T is trivial (i.e. T 	 H as H-comodule algebras) if and only

if there exists an algebra map φ : T → k, an H-Galois object isomorphism T 	 H
being then of the form t 
→ φ(t(0))t(1). The set Gal(H) is viewed as a pointed set, the
distinguished element being the isomorphism class of the trivial Galois object.

� An H-Galois object T is said to be cleft if T 	 H as right H-comodules. We denote
by Cleft(H) the subset of Gal(H) consisting of isomorphism classes of cleft H-
Galois objects. If H is finite-dimensional then Cleft(H) = Gal(H) [16], but this is
not true in general, see [4].

� Let T be an H-Galois object, and consider the map

H −→ T ⊗ T

h 
−→ κ−1
r (1 ⊗ h) =: h[1] ⊗ h[2]

It endows T with a right H-module structure given by t · h= h[1]th[2], called the
Miyashita–Ulbrich action, see e.g. [12]. A morphism of H-Galois objects T → Z
automatically commutes with the Miyashita–Ulbrich actions.

� A Hopf algebra map π : H → L induces a map Gal(L) → Gal(H), sending (the
isomorphism class of) an L-Galois object T to (the isomorphism class of) the H-
Galois object T�LH, where T�LH denotes the cotensor product over L, and H
has the left L-comodule structure induced by π and the right H-comodule structure
is induced by the coproduct of H. See e.g. [26], Remark 3.11. The H-Galois object
T�LH is cleft if T is L-cleft. The Miyashita–Ulbrich action on T�LH is given by

( ∑
i

ti ⊗ hi

)
· h =

∑
i

π (h(2))[1]tiπ (h(2))[2] ⊗ S(h(1))hih(3).

A left H-Galois object is a non-zero left H-comodule algebra T such that the
linear map κl defined by

κl : T ⊗ T −→ H ⊗ T

t ⊗ t′ −→ t(−1) ⊗ t(0)t′,

is bijective. The previous considerations have adaptations to left Galois objects.
Let H and L be Hopf algebras. An L-H-bi-Galois object [23] is an L-H-bicomodule

algebra T which is both a left L-Galois object and a right H-Galois object. A morphism
of L-H-bi-Galois object is a bicolinear algebra map, and the set of isomorphism classes
of L-H-bi-Galois objects is denoted BiGal(L, H), with BiGal(H) = BiGal(H, H) (an
H-H-bi-Galois object is simply called an H-bi-Galois object). Here is a list of useful
facts and constructions regarding bi-Galois objects, to be used freely in the rest of the
paper.
� An H-bi-Galois object T is trivial (i.e. T 	 H as H-bicomodule algebras) if and

only if there exists an algebra map φ : T → k satisfying φ(t(0))t(1) = φ(t(0))t(−1) for
any t ∈ T , an H-bi-Galois object isomorphism T 	 H being then of the form t 
→
φ(t(0))t(1).
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� Any L-H-bi-Galois object T induces an equivalence of k-linear tensor categories
between the categories of right comodules over L and H, given by V 
→ V�LT , and
conversely any such equivalence arises in this way, see [23], Corollary 5.7.

� If T , Z are H-bi-Galois objects, so is the cotensor product T�HZ, and this
construction induces a group structure on BiGal(H). With the construction of the
previous item, this defines a group morphism from BiGal(H) to Aut⊗(Comod(H)),
the group of isomorphism classes of k-linear tensor auto-equivalences of
Comod(H), which is an isomorphism. Again see [23], Corollary 5.7.

� An H-bi-Galois object T is said to be bicleft if T 	 H as bicomodules. The
isomorphism classes of bicleft bi-Galois objects form a normal subgroup of
BiGal(H), denoted Bicleft(H), isomorphic to the lazy cohomology group H2

�(H)
studied in [6]. The elements in Bicleft(A) correspond to isomorphism classes of
tensor auto-equivalences that are isomorphic to the identity functor as linear
functors. The group H2

�(H) can be described by using lazy cocycles: cocycles (see [20])
σ : H ⊗ H → k satisfying σ (x(1), y(1))x(2)y(2) = σ (x(2), y(2))x(1)y(1) for any x, y ∈ H.
See [6].

� Let T be an H-bi-Galois object and let f : H → H be a Hopf algebra automorphism.
From this, one defines a new H bi-Galois object fT which is T as a right Galois
object, and whose left comodule structure is obtained by composing the left coaction
of T with f in the obvious way. This defines an action of AutHopf (H) on Bigal(H).
The H-bi-Galois object fT is isomorphic with T if and only f is co-inner, i.e. there
exists φ ∈ Alg(H, k) such that f = φ ∗ id ∗ φ−1.

� If T and Z are H-bi-Galois objects that are isomorphic as right H-comodule
algebras, then there exists a Hopf algebra automorphism f : H → H such that
Z 	 fT as bi-Galois objects. See Lemma 3.11 in [23].

2.3. Exact sequences of Hopf algebras. Recall that a sequence of Hopf algebra
maps

k → A
i→ H

π→ L → k,

is said to be exact if the following conditions hold:

(1) i is injective, π is surjective and π i = ε1,
(2) Ker(π ) = HA+ = A+H, where A+ = A ∩ Ker(ε),
(3) A = Hco π = {x ∈ H : (id ⊗π )�(x) = x ⊗ 1} = co πH = {x ∈ H : (π ⊗ id)�(x) =

1 ⊗ x}.
A sequence as above satisfying (1), (2) and with H faithfully flat as a right or left
A-module is automatically exact (see e.g. [1], Proposition 1.2.4, or [27], Lemma 1.3).
Elements of A are viewed as elements of H via i, and thus i is not written explicitly in
formulas involving elements.

In an exact sequence as above, the Hopf subalgebra A ⊂ H is automatically
normal, i.e. for a ∈ A and h ∈ H, we have

h(1)aS(h(2)) ∈ A, S(h(1))ah(2) ∈ A.

See e.g. Lemma 3.4.2 in [20]. We will denote by AlgH(A, k) the subset of Alg(A, k)
consisting of algebra maps ϕ : A → k satisfying ϕ(S(h(1))ah(2)) = ε(h)ϕ(a), for any
h ∈ H and a ∈ A. The subset AlgH(A, k) is a subgroup of Alg(A, k): it is clearly stable
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under the convolution product, and stable under inverses by the following computation
(a ∈ A, h ∈ H):

ϕS(S(h(1))ah(2)) = ε(a(1))ϕS(S(h(1))a(2)h(2)) = ϕS(a(1))ϕ(a(2))ϕS(S(h(1))a(3)h(2))

= ϕS(a(1))ϕ(S(h(2))a(2)h(3))ϕS(S(h(1))a(3)h(4))

= ϕS(a(1))ϕ((S(h(1))a(2)h(2))(1))ϕS((S(h(1))a(2)h(2))(2))

= ϕS(a(1))ε(S(h(1))a(2)h(2)) = ϕS(a)ε(h).

2.4. Schauenburg’s exact sequence. We now recall our main tool to prove
Theorem 1.1.

THEOREM 2.1 ([24], Corollary 3.3). Let

k → A
i→ H

π→ L → k,

be an exact sequence of Hopf algebras with H faithfully flat as a right A-module. Then,
we have an exact sequence of pointed sets

1 −→ Alg(L, k) −→ Alg(H, k) −→ AlgH(A, k) −→ Gal(L) −→ Gal(H).

The result above is in fact a special case of what is proved in [24]. We include,
for the sake of completeness, a sketch of proof (the arguments being simpler in our
particular setting).

The first two maps on the left are those induced by the given Hopf algebra maps
in the obvious way, while the one on the right is also the obvious one. The key point is
to describe the map AlgH(A, k) −→ Gal(L), a generalisation of the transgression map
in group cohomology.

We fix an exact sequence as in the statement of the theorem. For ϕ ∈ AlgH(A, k),
we define ϕ′ : A −→ H by ϕ′(a) = ϕ(a(1))a(2). The map ϕ′ is an algebra map and satisfies
ϕ′(S(h(1))ah(2)) = S(h(1))ϕ′(a)h(2) for any a ∈ A, h ∈ H.

LEMMA 2.2. Let ϕ ∈ AlgH(A, k). The left ideal Hϕ′(A+) is a two-sided ideal in H.
The map

ρ : H/Hϕ′(A+) −→ H/Hϕ′(A+) ⊗ L

h 
−→ h(1) ⊗ π (h(2)),

defines a right L-comodule algebra structure on H/Hϕ′(A+) making it into a right L-
Galois object.

Proof. We have

ϕ′(a)h = h(1)S(h(2))ϕ′(a)h(3) = h(1)ϕ
′(S(h(2))ah(3))),

for any a ∈ A, h ∈ H and hence ϕ′(A+)H ⊂ Hϕ′(A+). This shows that Hϕ′(A+) is a two-
sided ideal. We have ϕ′(A+) ⊂ Ker(ϕ ◦ S) since for a ∈ A we have ϕ ◦ S(ϕ′(a)) = ε(a),
hence ϕ′(A+) is a proper ideal in A. A standard argument using the faithful flatness of
H as a right A-module then shows that Hϕ′(A+) is also a proper ideal of H, so that
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H/Hϕ′(A+) is a non-zero algebra. Let

ρ0 : H −→ H/Hϕ′(A+) ⊗ L

h 
−→ h(1) ⊗ π (h(2)).

This is an algebra map and for a ∈ A+, we have

ρ0(ϕ′(a)) = ϕ′(a)(1) ⊗ π (ϕ′(a)(2)) = ϕ′(a(1)) ⊗ π (a(2)) = ε(a(1)) ⊗ π (a(2)) = 1 ⊗ π (a) = 0,

since for a ∈ A, ϕ′(a) = ε(a)1. This shows that ρ0 induces the announced algebra map,
which is clearly co-associative, and we get our comodule algebra structure.

For a ∈ A, we have S(a) = ϕ′(ϕ(a(2))S(a(1))), and hence S(a) = ϕ(a)1. We deduce
that

S(a(1)) ⊗ a(2) = 1 ⊗ ϕ(a1)a2 = ε(a)1 ⊗ 1.

This identity shows that we have a map

L −→ H/Hϕ′(A+) ⊗ H/Hϕ′(A+)

π (h) 
−→ S(h(1)) ⊗ h(2),

that enables us to construct an inverse for the canonical map in a standard manner,
and we are done. �

Proof of Theorem 2.1 (sketch). We first examine the exactness at AlgH(A, k). Let
ϕ ∈ Alg(H, k). For a ∈ A, we have ϕ ◦ S(ϕ′(a)) = ε(a). This shows that ϕ ◦ S : H −→ k
induces an algebra map H/Hϕ′(A+) −→ k and hence the L-Galois object H/Hϕ′(A+)
is trivial.

Conversely, let ϕ ∈ AlgH(A, k) be such that H/Hϕ′(A+) is trivial: there exists
an algebra map ψ0 : H/Hϕ′(A+) −→ k. Define ψ : H −→ k by ψ(h) = ψ0(S(h)). For
a ∈ A, we have ψ(a) = ψ0(S(a)) = ψ0(ϕ(a)1) = ϕ(a), and hence one can extend ϕ to
H.

We now check exactness at Gal(L). Let ϕ ∈ AlgH(A, k). The map

H −→ H/Hϕ′(A+)�LH

h 
−→ h(1) ⊗ h(2),

is an H-colinear algebra map between two H-Galois objects, and hence must be an
isomorphism.

Conversely, Let Z be right L-Galois object such that Z�LH is trivial as right
H-Galois object. Fix an H-comodule algebra isomorphism

� : H −→ Z�LH

h 
−→ h(0) ⊗ h(1).

The inverse has the form

Z�LH −→ H

z ⊗ h 
−→ ψ(z ⊗ h(1))h(2),
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for an algebra map ψ : Z�LH −→ k. For a ∈ A, we have 1 ⊗ a ∈ Z�LH, so we
define an algebra map ϕ : A −→ k by letting ϕ(a) = ψ(1 ⊗ a). That ϕ satisfies
ϕ(S(h(1))ah(2)) = ε(h)ϕ(a) for h ∈ H and a ∈ A follows from the fact that an
isomorphism between Galois objects automatically commutes with the Miyashita–
Ulbrich actions (see Subsection 2.2 for the Miyashita–Ulbrich action on T�LH).
Consider now the algebra map

f : H −→ Z

h 
−→ ε(h(1))h(0).

For a ∈ A, we have

1 ⊗ a = ψ(1 ⊗ a(1))(a(2))(0) ⊗ (a(2))(1),

and hence ε(a) = ψ(1 ⊗ a(1))(a(2))(0)ε((a(2))(1)). We get that

f (ϕ′(a)) = f (ψ(1 ⊗ a(1))a(2)) = ψ(1 ⊗ a(1))(a(2))(0)ε((a(2))(1)) = ε(a)1,

and hence f induces an algebra map H/Hϕ′(A+) −→ Z. One checks that this is L-
colinear by using that � is H-colinear and has its values in Z�LH:

h(0) ⊗ (h(1))(1) ⊗ (h(1))(2) = (h(1))(0) ⊗ (h(1))(1) ⊗ h(2)

(h(0))(0) ⊗ (h(0))(1) ⊗ h(1) = h(0) ⊗ π ((h(1))(1)) ⊗ (h(1))(2).

We conclude that we have an isomorphism. �
REMARK 2.3. Günther [14] has provided a generalisation of Schauenburg’s exact

sequence.

We now apply Schauenburg’s exact sequence to bi-Galois objects. The basic
observation is as follows.

LEMMA 2.4. Let ϕ ∈ AlgH(A, k). The map

λ : H/Hϕ′(A+) −→ L ⊗ H/Hϕ′(A+)

h 
−→ π (h(1)) ⊗ h(2),

defines a left L-comodule algebra structure on H/Hϕ′(A+) making it into a left L-Galois
object, and hence an L-bi-Galois object for the right L-Galois structure in Lemma 2.2.

Proof. We begin with the algebra map

λ0 : H −→ L ⊗ H/Hϕ′(A+)

h 
−→ π (h(1)) ⊗ h(2).

Similarly to the proof of Lemma 2.2, it induces the announced algebra map, which is
clearly co-associative, and turns H/Hϕ′(A+) into a left L-comodule algebra, and into
an L-L-bicomodule algebra. It remains to check the left Galois property. For a ∈ A,
we have, in H/Hϕ′(A+)

a(1)ϕ(a(2)) = a(1)ϕ(a(2))a(3)S(a(4)) = a(1)ε(a(2))S(a(3)) = ε(a)1.
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Then, similarly to the proof in Lemma 2.2, we have, for a ∈ A,

a(1) ⊗ S(a(2)) = ε(a)1 ⊗ 1,

and we get a map

L −→ H/Hϕ′(A+) ⊗ H/Hϕ′(A+)

π (h) 
−→ h(1) ⊗ S(h(2)),

that enables us to construct an inverse for the canonical map in a standard manner. �
REMARK 2.5. That the right L-Galois object H/Hϕ′(A+) is an L-bi-Galois object

can also be deduced from the proof of Theorem 2 in [17].

COROLLARY 2.6. Let

k → A
i→ H

π→ L → k,

be an exact sequence of Hopf algebras with H faithfully flat as a right A-module. There
exists a group morphism

T : AlgH(A, k) −→ BiGal(L),

whose kernel consist of elements ϕ ∈ AlgH(A, k) that have an extension ϕ̃ ∈ Alg(H, k)
and satisfy ϕ̃(h(1))π (h(2)) = ϕ̃(h(2))π (h(1)) for any h ∈ H.

If moreover Cleft(L) = Gal(L) and Cleft(H) is trivial, then any L-bi-Galois object
is isomorphic to fT (ϕ) for some ϕ ∈ AlgH(A, k) and f ∈ AutHopf (L).

Proof. For ϕ ∈ AlgH(A, k), denote by Tϕ the L-bi-Galois objects H/Hϕ′(A+) from
Lemmas 2.2 and 2.4. For ϕ,ψ ∈ AlgH(A, k), We have a map

H −→ Tϕ�LTψ

h 
−→ h(1) ⊗ h(2).

If a ∈ A, this maps send ψϕ(a(1))a(2) = ψ(a(1))ϕ(a(2))a(3) to

ψ(a(1))ϕ(a(2))a(3) ⊗ a(4) = ψ(a(1))ε(a(2))1 ⊗ a(3) = ε(a)1 ⊗ 1,

and therefore induces an algebra map

Tψϕ −→ Tϕ�LTψ.

This algebra map is L-bicolinear, so is an isomorphism of L-bi-Galois objects. We get
the announced group morphism

AlgH(A, k) −→ BiGal(L)

ϕ 
−→ [Tϕ−1 ].

If ϕ ∈ AlgH(A, k), then ϕ is in the kernel if and only if there exists an algebra
map ψ : H/H(ϕ−1)′(A+) → k that ψ(h(1))π (h(2)) = ψ(h(2))π (h(1)) for any h ∈ H, if
and only if there exists an algebra map ψ0 : H → k such that ϕ−1(a(1))ψ0(a(2)) = ε(a)
and ψ0(h(1))π (h(2)) = ψ0(h(2))π (h(1)) for any a ∈ A and h ∈ H. The first condition is
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equivalent to say that ψ0 extends ϕ, and therefore the assertion about the kernel is
proved.

If Cleft(L) = Gal(L) and Cleft(H) is trivial, the map Gal(L) → Gal(H) induced
by π is then trivial, and hence if T is a left L-bi-Galois object, Theorem 2.1 ensures
that there exists ϕ ∈ AlgH(A, k) such that T 	 Tϕ = H/Hϕ′(A+) as right L-Galois
object. Then there exists f , a Hopf algebra automorphism of L such that T 	 fTϕ as
L-bi-Galois objects. This concludes the proof. �

REMARK 2.7. The last conclusion in the previous result holds as soon as the map
Gal(L) → Gal(H) induced by π is trivial.

3. Application to uq(sl(n))∗. For q ∈ k∗, we denote by xij, 1 ≤ i, j ≤ n, the standard
generators of O(SLq(n)), the coordinate algebra of the quantum group SLq(n). We
assume that q is a root of unity of odd order N > 1. Then, there exists an injective
Hopf algebra map

i : O(SL(n)) −→ O(SLq(n))

xij 
−→ xN
ij ,

whose image is central. The corresponding Hopf algebra quotient

O(SLq(n)1) = O(SLq(n))/O(SLq(n))O(SL(n))+,

is then the quotient of O(SLq(n)) by the ideal generated by the elements xN
ij − δij,

1 ≤ i, j ≤ n, see [22, 28], and is known as the coordinate algebra of the Frobenius–
Lusztig Kernel of SL(n). It is known that O(SLq(n)1) 	 uq(sl(n))∗ (see [28]), and we
freely write this isomorphism as an equality.

We thus have a central sequence of Hopf algebras

k → O(SL(n))
i→ O(SLq(n))

π→ uq(sl(n))∗ → k,

with O(SLq(n)) faithfully flat (since central) as an O(SL(n))-module (in fact it is a free
module, see e.g. III.7.11 in [10]), and hence this is an exact sequence. Thus, we can
use the considerations in the previous section. The centrality of O(SL(n)) ensures that
AlgO(SLq(n))(O(SL(n)), k) = Alg(O(SL(n)), k) 	 SL(n). Therefore, Corollary 2.6 yields
a group morphism

T : SL(n) −→ BiGal(uq(sl(n))∗)

g 
−→ [Tg].

For g = (gij) ∈ SL(n), it is straightforward to see that the algebra Tg is the quotient
of O(SLq(n)) by the ideal generated by the elements xN

ij − gij, and that its uq(sl(n))∗-
bicomodule algebra structure is given by

ρ : Tg −→ Tg ⊗ uq(sl(n))∗ λ : Tg −→ uq(sl(n))∗ ⊗ Tg

xij 
−→
∑

k

xik ⊗ xkj xij 
−→
∑

k

xik ⊗ xkj

where, with a slight abuse of notation, we still denote xij the generators in all the
considered quotients of O(SLq(n)). An element g ∈ SL(n) has an extension to an
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algebra map on O(SLq(n)) if and only if it is diagonal, and will satisfy the other
condition defining the kernel of our map in Corollary 2.6 if and only it is a scalar
matrix (the elements xij being linearly independent in uq(sl(n))∗). Therefore, we get the
embedding PSL(n) ↪→ BiGal(uq(sl(n))∗) of Theorem 1.1.

To prove the assertion at n = 2 in Theorem 1.1, we need some more considerations.
Recall that for r = (r1, . . . , rn) ∈ (k∗)n with r1 · · · rn = 1, we have a Hopf algebra
automorphism of O(SLq(n)) defined by xij 
→ r−1

i rjxij. It is straightforward to see that
this automorphism induces an automorphism of uq(sl(n))∗, denoted fr.

LEMMA 3.1. For any g in SL(n) and r = (r1, . . . , rn) ∈ (k∗)n with r1 · · · rn = 1, there
exists g′ ∈ SL(n) such that frTg 	 Tg′ as uq(sl(n))∗-bi-Galois objects.

Proof. Define g′ by g′
ij = rN

i gij. It is a straightforward verification to check that
there exists an algebra map

Tg′ −→ frTg

xij 
−→ rixij,

which is bicolinear, hence an isomorphism. �
Assume now that n = 2. For r ∈ k∗, we denote again by r the element (r, r−1) in

(k∗)2, and fr the corresponding automorphism of uq(sl(2))∗. The following lemma is
probably well known.

LEMMA 3.2. Any Hopf algebra automorphism of uq(sl(2))∗ is of the form fr for some
r ∈ k∗, and is co-inner if and only if rN = 1.

Proof. Let f be a Hopf algebra automorphism of uq(sl(2))∗. It is known (see e.g. [22],
Chapter 9, or [15], Chapter VI) that there are exactly N isomorphism classes of simple
uq(sl(2))∗-comodules, of respective dimensions 1, . . . , N. Hence, the tensor equivalence
on comodules induced by f must preserve each such comodule. The two-dimensional
one has (xij) as matrix of coefficients, hence there exists an invertible matrix P such
that

f (
(

x11 x12

x21 x22

)
) = P

(
x11 x12

x21 x22

)
P−1.

Arguing as in the proof of Theorem 5.3 in [4], we see that P is diagonal, and then that
f = fr for some r ∈ k∗. The last assertion is immediate. �

We have Gal(uq(sl(2))∗) = Cleft(uq(sl(2))∗) since this Hopf algebra is finite-
dimensional. Moreover Cleft(O(SLq(2)) is trivial if q �= 1, see the first part of the
proof of Corollary 16 in [3]. Hence, by Corollary 2.6, any uq(sl(2))∗-bi-Galois object is
isomorphic to fTg for some g ∈ SL(2) and a Hopf algebra automorphism f of uq(sl(2))∗.
The combination of the previous two lemmas then shows the surjectivity of the map
T , and this concludes the proof of Theorem 1.1.

REMARK 3.3. It follows also from the fact that the map Gal(uq(sl(2)))∗) →
Gal(O(SLq(2)) is trivial and Schauenburg’s exact sequence that there is a bijection
SL(2)/k∗ 	 Gal(uq(sl(2))∗), where k∗ is viewed as the diagonal subgroup of SL(2).
Also, we see that any right uq(sl(2))∗-Galois object is in fact a uq(sl(2))∗-bi-Galois
object: this implies [23] that uq(sl(2))∗ is categorically rigid in the sense that if H is
any Hopf algebra having its tensor category of comodules equivalent to the one of
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uq(sl(2))∗, then H is isomorphic to uq(sl(2))∗. Such a property was shown for the Taft
algebras in [25], but is not true for uq(sl(2)) [24].

REMARK 3.4. An action of SL(n) on the category of uq(sl(n))-modules, in the even
root of unity case, was also constructed in [2], Corollary 2.5.

We now discuss the lazy cohomology of uq(sl(2))∗. We will use the following easy
lemma.

LEMMA 3.5. Let q : L → B be a surjective Hopf algebra map. Assume that there
exists a cocycle σ on B that is not lazy. Then, the cocycle σq = σ (q ⊗ q) on L is not lazy.

Proof. Let a, b ∈ B be such that σ (a(1), b(1))a(2)b(2) �= σ (a(2), b(2))a(1)b(1). For x, y ∈
L with q(x) = a and q(y) = b, we have q(σq(x(1), y(1))x(2)y(2) − σq(x(2), y(2))x(1)y(1)) �= 0,
which gives the result. �

COROLLARY 3.6. The lazy cohomology group H2
�(uq(sl(2))∗) is trivial.

Proof. Since PSL(2) is a simple group and H2
�(uq(sl(2))∗) is a normal subgroup, it is

enough to check that there exists a bi-Galois object that is not bicleft, or equivalently
that there exists a cocycle on uq(sl(2))∗ that is not lazy. Consider B, the quotient of
uq(sl(2))∗ by the relation x21 = 0. This is a Hopf algebra, isomorphic to a Taft algebra.
It is known that the Taft algebras have cocycles that are not lazy [6], and hence the
previous lemma concludes the proof. �
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