
6 

Adiabatic limit 

If we assume that the mass of an electron is purely electromagnetic, then by equat­
ing its rest energy and electrostatic Coulomb energy the charge distribution must 
be concentrated in a ball of radius 

2 
e -13 

rei = -- = 3 x 10 em 
mec2 

(6.1) 

which is the so-called classical electron radius. Quantum mechanically one argues 
that on the basis of light scattering the electron appears to have an effective size 
of the order of the Compton wavelength Ae = nmefc = (e2 jn,c)- 1 rc1 = 137 rc1. 
Thus empirically RlfJ is limited to rei _:::: RlfJ _:::: 137rel· Electromagnetic fields which 
can be manipulated in the laboratory vary little over that length scale. rei defines 
a time scale through the time span for light to travel across the diameter of the 
charge distribution, 

tel= re1/c = 10-23 s, equivalently a frequency WeJ = 1023 Hz. (6.2) 

Again, manufactured frequencies are much smaller than Wei· Space-time variations 
as fast as (6.1) and (6.2) lead us deeply into the quantum regime. Thus it is natural 
and physically compelling to study the dynamics of a charged particle under exter­
nal potentials which vary slowly on the scale of the charge radius RlfJ, which is the 
only length scale available. This means we have to introduce a scale of potentials 
and enquire about an approximately autonomous particle dynamics with an error 
depending on the scale under consideration. We will introduce such a scheme in the 
following section. The resulting problem has many similarities with the derivation 
of hydrodynamics from Newtonian particle dynamics - with the most welcome 
bonus that it is simpler mathematically by many orders of magnitude. Still, the 
comparison is instructive. 

65 
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6.1 Scaling limit for external potentials of slow variation 

For the Abraham model, see Eq. (2.41), the Lorentz force has in addition to the 
dynamical fields E(x, t), B(x, t) also prescribed external fields, which are the gra­
dients of the external potentials <Pex (x), Aex (x). 

We want to impose the condition that <Pex and Aex are slowly varying on the scale 
of RlfJ. Formally we introduce a small dimensionless parameter 8 and consider the 
potentials 

(6.3) 

which are slowly varying in the limit 8 --+ 0. Most of our results extend to po­
tentials which vary also slowly in time. For simplicity we restrict ourselves to 
time-independent potentials here. Clearly, 8 appears as a parameter of the poten­
tial, just like wo is a parameter of the harmonic oscillator potential ~ mw5x2. But 
8 should really be thought of as a bookkeeping device which orders the magnitude 
of the various terms and the space-time scales according to the powers of 8. Such 
a scheme is familiar from very diverse contexts and appears whenever one has to 
deal with a problem involving scale separation. 

So how small is 8? From the discussion above one might infer that if <Pex, Aex 
vary over a scale of 1 mm, then 8 = w- 12 . This is a totally meaningless statement, 
because e</Jex, eAex have the dimension of energy and thus the variation depends 
on the adopted energy scale. In (6.3) we merely stretch the spatial axes by a factor 
8- 1 and fix the energy scale. Since from experience this point is likely to be con­
fusing, let us consider the specific example of a charge revolving in the uniform 
magnetic field Bex = (0, 0, Bo). The corresponding vector potential is linear in x, 
and to introduce 8 as in (6.3) just means that the magnetic field strength equals 
8 Bo. The limit 8 --+ 0 is a limit of small magnetic field strength relative to some 
reference field Bo. Thus to obtain 8 we first have to determine the reference field 
and compare it with the magnetic field of interest. This shows that in order to fix 8 

we have to specify the physical situation in detail, in particular the external poten­
tials, the mass of the particle, the charge ofthe particle, y(v), and the time span of 
interest. 

The scaling scheme (6.3) has the great advantage that the analysis can be car­
ried out in generality. In a second step one has to figure out 8 for a concrete sit­
uation, which leads to a quantitative estimate of the error terms. For instance, if 
in the case above we consider an electron with velocities such that y :::; 10, then, 
by comparing the Hamiltonian term and the friction term, the reference field turns 
out to be Bo = 1017 gauss. Laboratory magnetic fields are less than 105 gauss and 
thus 8 < 1 o-12 . In this and many other concrete examples, 8 is very small, less 
than w- 10 , which implies that, firstly, all corrections beyond radiation reaction 
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are negligible. Secondly, we do not have to go each time through the scheme in­
dicated above and may as well set s = 1 thereby returning to conventional units. 
Still on a theoretical level the use of the scale parameter s is very convenient. In 
an appendix to this section we will work out the example of a constant magnetic 
field more explicitly. Ifthe reader feels uneasy about the scaling limit, (s)he should 
consult this example first. 

Adopting (6.3), Newton's equations of motion now read 

d 
dt (mbyv(t)) = e(Ecp(q(t), t) + sEex(sq(t)) 

+ v(t) X (Bcp(q(t), t) + E:Bex(Eq(t)) )) , (6.4) 

where 

Eex = - 'V c/Jex , Bex = 'V X Aex . (6.5) 

Note that if Eex, Bex are smeared by cp, as would be proper, the resulting error in 
(6.4) is of order s3, which can be ignored for our purposes. 

Equation (6.4) has to be supplemented with Maxwell's equations (2.39), (2.40). 
Our goal is to understand the structure of the solution for small s, and as a first 
qualitative step one should discuss the rough order of magnitudes in powers of s. 
But before that we have to specify the initial data. We give ourselves q0 , v0 as 
the initial position and velocity of the charge. The initial fields are assumed to be 
Coulombic, i.e. of the form of a charge soliton centered at q0 with velocity v0 , 

compare with (4.28), which we formalize as 

Condition (I): 

(6.6) 

Equivalently, according to (4.31), (4.32), we may say that the particle has traveled 
freely with velocity v0 for the infinite time span ( -oo, 0]. At time t = 0 the ex­
ternal potentials are turned on. Geometrically, our initial data are exactly on the 
soliton manifold S considered as a submanifold of the phase space M. If there 
are no external forces, the solution stays on S and moves along a straight line. For 
slowly varying external potentials as in (6.3) we will show that the solution stays 
s-close to S in the local energy distance. 

On general grounds one may wonder whether such specific initial data are re­
ally required. In analogy to hydrodynamics, we call this the initial slip problem. In 
times of order tcp ( = Rep I c), the fields close to the charge acquire their Coulombic 
form while the external forces are still negligible; compare with figure 6.1. How­
ever, during that period the particle might gain or lose in momentum and energy 
through the interaction with its own field and the data at time tcp close to the particle 
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s 

Figure 6.1: Schematic phase space with attractive soliton manifold S. Away 
from S the motion is fast, on S it is slow. 

are approximately of the form Sq. v• where ij and v are to be computed from the 
full solution. Of course, at a distance ct away from the charge, the field still re­
members its t = 0 data. Thus we see that the initial slip problem translates into the 
long-time asymptotics of a charge at zero external potentials but with general ini­
tial field data. We refer to section 5.2, where this point has been studied in detail. 
At the moment we just circumvent the initial slip by fiat. 

Let us discuss the three relevant time scales, where we recall that tep = Rep I c. 
(i) Microscopic scale, t = O(tep), q = O(Rep). On this scale the particle moves 

along an essentially straight line. The electromagnetic fields adjust themselves to 
their comoving Coulombic form. As we will see, they do this with a precision O(.s) 
in the energy norm. 

(ii) Macroscopic potential scale, t = O(.s- 1tep), q = O(.s- 1 Rep). This scale 
is defined by the variation of the potentials, i.e. on this scale the potentials are 
<Pex(x), Aex(x). The particle follows the external forces. Since it is in company 
with almost Coulombic fields, the particle responds to the forces according to the 
effective energy-momentum relation, which we determined in chapter 4. On the 
macroscopic scale the motion is Hamiltonian up to errors of order .s. There is no 
dissipation of energy and momentum. 

(iii) Macroscopic friction scale. Accelerated charges lose energy through 
radiation, which means that there must be friction corrections to the effective 
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Hamiltonian motion. According to Larmor's formula the radiation losses are pro­
portional to v(t)2 . Since the external forces are of the order s, these losses are 
proportional to s2 when measured in microscopic units. Integrated over a time 
span s -I trp the friction results in an effect of order s. Thus we expect order s 

dissipative corrections to the conservative motion on the macroscopic scale. 
Followed over the even longer time scale s-2trp, the radiation reaction results in 
0(1) deviations from the Hamiltonian trajectory. 

On the friction time scale the motion either comes to a standstill or stays uni­
form. In addition, as will be shown, the dissipative effective equation has the same 
long-time behavior as the true solution. Thus we expect no further qualitatively 
distinct time scale beyond the friction scale. 

From our description, in a certain sense, the most natural scale is the macro­
scopic scale and we transform Maxwell's and Newton's equations to this new scale 
by setting 

t 1 = E:t , X 1 = EX . (6.7) 

We have the freedom of how to scale the amplitudes of the dynamic part of the 
electromagnetic fields. We require that their energy is independent of s. Then 

E'(x', t') = s-312 E(x, t), B'(x', t') = s-312 B(x, t). (6.8) 

Finally the new position and velocity are 

q'(t') = sq(t), v'(t') = v(t), (6.9) 

so that d~r q' = v'. There is little risk of confusion in omitting the prime. We then 
denote 

which means that J d3 x cp8 (x) = 1 independent of s and that cp8 is supported in 
a ball of radius s Rep. In the macroscopic coordinates the coupled Maxwell's and 
Newton's equations read 

3tB(x, t) = -\7 x E(x, t), 

OtE(x, t) = \7 x B(x, t)- vfsecp8 (x- q 8 (t))v8 (t), 

d 
dt (mbyv~:(t)) = e(Eex(q~:(t)) + V 0 (t) X Bex(q~:(t))) 

+vfse(Erpc(q~:(t),t) +v~:(t) X Brpc(q~:(t),t)) (6.11) 

together with the constraints 

(6.12) 
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On the macroscopic scale the conserved energy is 

1 f 1 ( 2 2) Emac = mby(v) + er/Jex(q) + 2 d- x E(x) + B(x) . (6.13) 

Also the initial data have to be transformed and become 

Condition (I~:): 

(6.14) 

with 

E 8 = -'V"'8 + v(v · 'V"'8 ) B 8 = -v x 'V"' 8 
v 'f'v 'f'v ' v 'f'v ' (6.15) 

where now 

(6.16) 

On the macroscopic scale, the scaling parameter t: can be absorbed into the 
"effective" charge distribution .)Eecp8 • Its electrostatic energy, 

(6.17) 

is independent oft:, while its charge 

(6.18) 

vanishes as .)E. Recall that t: is a "bookkeeping device". 
We argued that on the macroscopic scale the response to external potentials in 

the motion of the charges is of order one. We thus expect that q~: (t) tends to a 
nondegenerate limit as t: ---+ 0, i.e. 

lim q~:(t) = r(t), lim v~:(t) = u(t). 
8--+0 8--+0 

(6.19) 

The positionr (t) and velocity u(t) should be governed by an effective Lagrangian. 
In section 4.1 we determined the effective inertial term. If the potentials add in as 
usual, one has 

Len(q, q) = T(q)- e(r/Jex(q)- q · Aex(q)), (6.20) 

which results in the equations of motion 

r = u' m(u)it = e(Eex(r) + u X Bex(r)). (6.21) 

https://doi.org/10.1017/9781009402286.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.007


6. 1 Scaling limit for external potentials of slow variation 71 

The velocity-dependent mass m (u) has a bare and a field contribution. From ( 4.12) 

we conclude that 

dPs(u) 
m(u) = -­

du 
(6.22) 

as a 3 x 3 matrix. If instead of the velocity we introduce the canonical momentum, 

p, then the effective Hamiltonian reads 

Heff(r, p) = Eeti(P- eAex(r)) + ec/Jex(r) (6.23) 

with Hamilton's equations of motion 

(6.24) 

Our plan is to establish the limit (6.19) and to investigate the corrections due to 
radiation losses. 

6.1.1 Appendix 1: How small iss? 

We consider an electron moving in an external magnetic field oriented along 
the z-axis, Bex = (0, 0, Bo). The corresponding vector potential is Aex(x) = 
1 Bo( -x2, x1, 0). According to our convention the slowly varying vector potential 

is given by Aex(sx) = ~ sBo(-x2, XJ, 0). Thus Bois a reference field strength, 
which is to be determined, and B = s Bo is the physical field strength in the lab­

oratory. The motion of the electron is assumed to be in the 1-2 plane and we set 
v = (u, 0). According to section 9.2, example (iii), within a good approximation 
the motion of the electron is governed by 

yit = Wc(Uj_- f3cvcU). (6.25) 

Here u_i = (-u2, uJ), We= eBfmoc is the cyclotron frequency, and f3 = 

e2 j6n:c3mo. The first term is the Lorentz force and the second term accounts for 

the radiation reaction. 
We now choose the reference field Bo such that the two terms balance, i.e. 

Bo = (f3efmoc)- 1 • (6.26) 

For electrons 

Bo = 1.1 x 1017 gauss (6.27) 

and even larger by a factor (1836)2 for protons. For a laboratory field of 105 gauss 
this yields 

s = w- 12 . (6.28) 
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Written in units of Bo, (6.25) becomes 

y it = cw~(uj_ - cu) (6.29) 

with f3w~ = 1, i.e. w~ = e Bo/ moe= 1.6 x 1028 s- 1. Thus friction is of relative 
order c and higher-order corrections would be of relative order c2 . As will be 
demonstrated, the dimensionless scaling parameter c serves as a bookkeeping de­
vice to track the relative order of the various terms contributing to the dynamics. 

6.1.2 Appendix 2: Adiabatic protection 

The adiabatic limit, as discussed above, relies on the fact that photons have zero 
mass. If they had finite mass, radiation damping would be hindered. This point can 
be most easily argued in the context of a scalar wave field. Moreover, rather than 
having a particle interacting with the field, it suffices to have a source fixed at the 
origin. 

The scalar wave field is denoted by <P with canonically conjugate momentum 
field n. They are governed by 

ut</J(x, t) = n(x, t), atn(x, t) = ~</J(x, t)- K 2<jJ(x, t) + a(t)8(x). (6.30) 

a(t) is a smooth function vanishing outside the interval [0, T]. Assuming that <P = 

0, n = 0 initially we want to determine how much energy is radiated in the long­
time limit. 

The local field energy is given by 

1 
e(x, t) = -(n(x, t) 2 + ('V</J(x, t)) 2 + K 2<jJ(x, t) 2 ) 

2 

from which, using (6.30), the energy current 

follows. The energy flow through a sphere of radius R is given by 

-100 
dtR2 J d2wn(wR, t)w · 'Vcp(wR, t) 

= -4n R2 100 
dtn(R, t)¢' (R, t) 

= -4n 100 
dt Rn(R, R + t)R¢' (R, R + t). 

(6.31) 

(6.32) 

(6.33) 

The first step uses radial symmetry of the solution to (6.30), while retaining the 
notation for the radial fields and setting ¢' ( R, t) = a R¢ ( R, t), and the second step 
uses the condition that the solution is supported inside the light cone. To separate 
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between near and far field one still has to take the limit R --+ oo in (6.33). Thus 

Ectiss = lim -4rr ()() dtRn(R, R + t)Rcp'(R, R + t). 
R--+oo Jo 

The fundamental solution of (6.30) is 

( cp(t)) ( atG G ) (¢) 
n(t) - a(G atG rr . 

G is the propagator for t :::: 0, 

with 

1 
F(z) = -h (z) 

z 

(6.34) 

(6.35) 

(6.37) 

and J1 the integer Bessel function of order I. For the initial conditions ¢ = 0, ;r = 

0 the solution to (6.30) is then 

cp(x, t) =lot dsG(x, t- s)a(s), n(x, t) =lot dsutG(x, t- s)a(s). (6.38) 

Before inserting them in (6.34) both terms have to be somewhat simplified through 
partial integrations using the condition that a(O) = 0. For the momentum field one 
obtains 

4nRn(R, R + t) = a(t)- K2 R lot dsF (KJ(t- s)(2R + t- s)) a(s) 0 

(6.39) 

For the scalar field there are two subleading contributions, which vanish as R --+ 

oo, and the leading term 

4rr Rep' (R, R + t) = -a(t) + K2 R lot ds F ( KJ (t - s)(2R + t - s)) 

x R a(s) + o(_!_). (6.40) 
R+t-s R 

We insert (6.39) and (6.40) into (6.33), which results in four terms. The first 
one is clearly (4rr)- 1 f0

00 dta(t) 2 . For the cross-term the integral involving F con­
verges to a(t) as R--+ oo. Thus the cross-terms add up to -(2rr)-1 J0

00 dta(t) 2 . 

The fourth term requires more work. The t-integration of (6.33) is split into [0, T] 
and [T, oo]. The first integral yields ( 4rr) -I f0

00 dta (t )2, thereby cancelling terms 
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1 to 3. The remainder is 

Ectiss = lim -1- {T dsa(s) {T ds'a(s') rXJ dtK4 RF(K/(t- s)(2R + t- s)) 
R---+oo 4rr Jo Jo lr 
x RF(K/(t- s')(2R + t- s')) R . (6.41) 

R + t- s' 

At this point one can use the asymptotics of J1 for large arguments leading through 
oscillating integrands to 

(6.42) 

In the limit K --+ 0 one obtains the familiar analog of the Larmor formula as 

Ectiss = - 1- J dta(t) 2 . 
4rr 

If a has slow time variation, incorporated as a(Et), £ « 1, then 

Ectiss = £ 4~ J dta(t) 2 , 

(6.43) 

(6.44) 

which in our working example would determine the time scale for radiation damp­
ing. On the other hand, for K > 0 

Ectiss = £-1-100 dw]_J w2 - (K /£ ) 2 1wii(w) 12 . 
2rr K/£ w 

(6.45) 

If a has exponential decay, a(w) ~ e -y lwl for large lwl, then Ectiss = Ee -yKjs. The 
low frequencies of the source do not couple to the medium. 

If photons were massive, the adiabatic motion of charges would be protected in 
the sense that radiation damping is of order e-l/s rather than of order £ 2 as is the 
case for photons with dispersion w(k) = clkl. 

6.2 Comparison with the hydrodynamic limit 

In hydrodynamics one assumes that a small droplet of fluid with center r has its 
intrinsic velocity, u(r ), and that relative to the moving frame the particles are dis­
tributed according to thermal equilibrium with density p (r) and temperature T (r). 
For such notions to be reasonably well defined, the hydrodynamic fields p, u, T 
must be slowly varying on the scale of the typical interparticle distance. This is 
how the analogy with the Maxwell-Newton equations arises. As for them we have 
three characteristic space-time scales. 

(i) Microscopic scale. The microscopic scale is measured in units of a colli­
sion time, respectively interatomic distance. On that scale the hydrodynamic fields 
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are frozen. Possible deviations from local equilibrium relax through collisions. To 
prove such behavior one has to establish a sufficiently fast relaxation to equilib­
rium. For Newtonian particles no general method is available. For the Maxwell 
field the situation is much simpler. Local deviations from the Coulomb field are 
transported off to infinity and are no longer seen. 

(ii) Macroscopic Euler scale. The macroscopic space-time scale is defined by 
the variation of the hydrodynamic fields. If, as before, we introduce the dimen­
sionless scaling parameter t:, then space-time is O(t:- 1) in microscopic units. On 
the macroscopic scale the time between collisions is 0 ( t:), the interparticle dis­
tance 0 ( t:), and the pair potential for the particle at position q i and the one at q i 

is V (t:- 1 (q i - q J )). On the macroscopic scale the hydrodynamic fields evolve ac­
cording to the Euler equations. These are first-order equations, which must be so, 
since space and time are scaled in the same way. The Euler equations are of Hamil­
tonian form. There is no dissipation, and no entropy is produced. In fact, there is a 
slight complication here. Even for smooth initial data the Euler equations develop 
shock discontinuities. There the assumption of slow variation fails and shocks are 
a source of entropy. 

(iii) Macroscopic friction scale. In a real fluid there are frictional forces which 
are responsible for the relaxation to global equilibrium. One adds to the Euler 
equations diffusive-like terms, which are second order in spatial derivatives, and 
obtains the compressible Navier-Stokes equations incorporating the shear and vol­
ume viscosity resulting from friction in momentum transport and thermal conduc­
tivity resulting from friction in energy transport. On the macroscopic scale these 
corrections are of order c. In the same spirit, based on the full Maxwell-Newton 
equations, there will be dissipative terms of order t: which have to be added to 
(6.21). Of course, in this context one has to deal only with ordinary differential 
equations as effective dynamics. 

6.3 Point-charge limit, negative bare mass 

The conventional point-charge limit is to let the diameter ofthe charge distribution 
tend to zero under the condition that the total charge remains fixed. Accordingly, 
let us consider now RlfJ as a reference scale and let R/ RlfJ -+ 0. Then for the point 
charge one sets 

(6.46) 

and takes the limit R -+ 0. This means that the charge diameter is small in units 
of the variation of the external potential, since this is the only other length scale 
available. At first sight, one just seems to say that the potentials vary slowly on 
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the scale set by the charge diameter and that hence the point -charge limit and 
the adiabatic limit coincide. To see the difference let us consider the electrostatic 
energy 

(6.47) 

In particular, the ratio of field mass to bare mass grows as R- 1 in the point-charge 
limit and remains constant in the adiabatic limit. 

To display the order of magnitude of the various dynamical contributions we 
resort again to our standard example of an electron in a uniform magnetic field 
Bex = Bn, n = (0, 0, 1) with B of the order of 1 tesla = 104 gauss, say. It suf­
fices to consider small velocities. In the adiabatic limit we set B = £ Bo where the 
reference field is Bo = 1.1 x 1017 gauss; compare with appendix 1 to section 6.1. 
Up to higher-order corrections, the motion of the electron is then governed by 

( 4 ) e e2 
mb +- mf v =- £Bo(v x ii) + --3 v + 0(£3) 

3 e 6rre 
(6.48) 

on the microscopic scale. Going over to the macroscopic time scale, t' = £-It, 

(6.48) becomes 

( 4 ) . e ~ e2 .. 2 
mb + 3 mf v = ~ Bo(v x n) + 6rre3 EV + 0(£ ) . (6.49) 

Setting mo = mb + 1 mf, w~ = e Bo/ moe, f3 = e2 j6ne3mo, and restricting to the 
motion on the critical manifold, as will be explained in chapter 9, Eq. (6.49) 
becomes 

(6.50) 

equivalently, on the microscopic time scale 

(6.51) 

with the cyclotron frequency We= e £Eo/moe= eB /moe. 
For the point-charge limit we rely on the Taylor expansion of section 7.2. Then, 

for small velocities, 

( 4 ) e e2 
mb + R - 1 - mf v = -B(v x ii) + --3 v + O(R). 

3 e 6rr~ 
(6.52) 

Since based on the same expansion, as long as no limit is taken, of course, we can 
switch back and forth between (6.52) and (6.48), respectively (6.49), provided the 
appropriate units are used. This can be seen more easily if we accept momentarily 
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the differential-difference equation 

(6.53) 

which is exact for a uniformly charged sphere at small velocities, see section 7.1. 
If we expand in the charge diameter R, then 

(6.54) 

which is the analog of (6.52). On the other hand, if we assume that the external 
fields are slowly varying, as explained in section 6.1, then on the macroscopic 
scale 

(6.55) 

where Rep is now regarded as fixed. Taylor expansion ins yields 

(6.56) 

which is the analog of (6.49). 
As can be seen from (6.52), in the point-charge limit the total mass becomes 

so large that the particle hardly responds to the magnetic field. The only way out 
seems to formally compensate the diverging R -l (4j3)mf by setting 

(6.57) 

with mexp the experimental mass of the charged particle. But this is asking for trou­
ble, since the energy (2.44) is no longer bounded from below and potential energy 
can be transferred to kinetic mechanical energy without limit. To see this mecha­
nism in detail we consider the Abraham model with Bex = 0 and ¢ex varying only 
along the 1-axis. The bare mass of the particle is now -mb, with mb > 0 as before. 
We set q(t) = (qt, 0, 0), v(t) = (vt, 0, 0), Eex = (-cp'(q), 0, 0). ¢is assumed to 
be strictly convex with a minimum at q = 0. Initially the particle is at rest at the 
minimum ofthe potential. Thus E(x, 0) = Eo(x) from (4.5) and B(x, 0) = 0. We 
now give the particle a slight kick to the right, which means qo = 0, vo > 0. By 
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conservation of energy 

-mbc2 y(vr) + e </J(qt) + ~ I d3x (E(x, t) 2 + B(x, t) 2 ) 

= -mbc2y(vo) + e</J(qo) +~I d3x E(x, 0)2 . (6.58) 

We split E into longitudinal and transverse components, E = E11 + E1_, E11 = 
k(k · E). Clearly J d3 x E II • E 1_ = 0 and therefore 

I d3xE(x, t) 2 ::::_I d3xE11(x, t) 2 =I d3k(k· E(k, t)) 2 

= e2 I d3k lkl-2 1$'(k)l2 =I d3x E(x, 0)2 , (6.59) 

since the initial field has zero transverse component. Inserting in (6.58) yields 

(6.60) 

Since y(vo) > 1, 4t > 0 for short times. As the particle moves to the right, 
( </J ( q t) - </J ( qo)) is increasing and therefore q t --+ 1 and q t --+ oo as t --+ oo. Note 
that vo and mb can be arbitrarily small. Not surprisingly, the Abraham model with 
a negative bare mass behaves rather unphysically. A tiny initial kick suffices to 
generate a runaway solution. 

The point-charge limit is honored by a long tradition, which however seems 
to have constantly overlooked that physically it is more appropriate to have the 
external potentials slowly varying on the scale of a fixed-size charge distribution. 
Then there is no need to introduce a negative bare mass and there are no runaway 
solutions. 

Notes and references 

Section 6 

The importance of slowly varying external potentials has been emphasized re­
peatedly. In the early literature slow variation appears as the quasi-stationary hy­
pothesis and quasi-stationary motion (Miller 1997). Such principles remain vague 
and, interestingly enough, in more mathematical considerations the size Rep of the 
charge distribution is taken as an expansion parameter rather than the appropriate 
parameter in the potential. To me it is rather surprising that, apparently, there is 
no systematic study of the equations of motion with external potentials of slow 
variation. We use the notion "adiabatic limit" to correspond to the adiabatic theo­
rem in classical and quantum mechanics which refers to a Hamiltonian with slow 
time-dependence. More appropriately we should speak of "space-adiabatic limit", 
since the slow variation is in space, the slow variation in time being a consequence. 
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Section 6.1 

In the context of charges coupled to the Maxwell field the adiabatic limit was first 
introduced in Komech, Kunze and Spohn (1999) and in Kunze and Spohn (2000a). 
The fundamental solution (6.36) of the Klein-Gordon equation is discussed in 
Morse and Feshbach (1953). De Bievre (private communication) points out that 
the dissipated energy (6.42) can be guessed also from elementary considerations. 
In Fourier space the wave equation becomes 

(6.61) 

with w(k) 2 = k 2 + K 2 . For a forced harmonic oscillator the equation of motion 
reads x = -w2x + f(t) and the energy transferred by the forcing is rrlf(w)l 2 . 

Inserting in (6.61) and integrating over all k yields (6.42). Schwinger (1949) uses 
a similar argument for the radiated energy. 

Section 6.2 

A more detailed discussion of the hydrodynamic limit can be found in Spohn 
(1991). 

Section 6.3 

In the early days of classical electron theory, one simply expanded in R'P. R'P was 
considered to be small, but finite, roughly of the order of the classical electron ra­
dius. Schott (1912) pushes the expansion to include the radiation reaction. Appar­
ently, the notion of a point charge is first stated explicitly by Frenkel (1925). The 
difficulties resulting from the point charge were clearly understood by P. Ehrenfest 
as stressed by Pauli in his 1933 obituary. The point-charge limit is at the core of 
the famous Dirac (1938) paper, cf. section 3.3. Since then the limit mb --+ -oo has 
become a standard piece of the theory, reproduced in textbooks and survey articles. 
The negative bare mass was soon recognized as a source of instability. We refer 
to the review by Erber (1961 ). On a linearized level stability is studied by Wilder­
muth (1955) and by Moniz and Sharp ( 1977) and Levine, Moniz and Sharp (1977). 
Bambusi (1996), Bambusi and Noja (1996), and Noja and Posilicano (1998, 1999) 
discuss the point-charge limit in the dipole approximation and show that then the 
true solution is well approximated by the linear Lorentz-Dirac equation with the 
full, both physical and unphysical, solution manifold explored. An extension to the 
nonlinear theory is attempted by Marino (2002). The bound (6.60) is taken from 
Bauer and Diirr (2001), which seems to be the only quantitative handling of the 
instability for the full nonlinear problem. 
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