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Involutions in Janko’s simple group J4

Peter Rowley and Paul Taylor

Abstract

In this paper we determine the suborbits of Janko’s largest simple group in its conjugation action
on each of its two conjugacy classes of involutions. We also provide matrix representatives of
these suborbits in an accompanying computer file. These representatives are used to investigate
a commuting involution graph for J4.

Supplementary materials are available with this article.

1. Introduction

Janko’s simple group J4 was the last sporadic simple group to be uncovered: in 1976 by
Janko [11]. There he presented a vast amount of information relating to the local subgroups and
conjugacy classes of this (possible) group. Only later was J4 first constructed by D. J. Benson,
J. H. Conway, S. P. Norton, R. A. Parker and J. G. Thackeray [15], making considerable use
of machine calculations. More recently, Ivanov and Meierfrankenfeld [10] gave a computer-free
existence proof for J4. As with all the sporadic simple groups, the maximal subgroups of J4

have been extensively analysed and were eventually classified – see Kleidman and Wilson [12]
and Lempken [13, 14].

That involutions play a central role in understanding finite simple groups was foreshadowed
by the Brauer–Fowler theorem [6] and became ever more evident in the work that culminated
in the classification of the finite simple groups. Recently, the involution conjugacy classes
of a number of the sporadic simple groups have been investigated [2, 3, 17, 18]. Here the
involutions of J4 will occupy our attention and, as an application of the present work, we
uncover the structure of a commuting involution graph for J4, so dealing with one of the open
cases in [3]. So, for the rest of this paper, G denotes J4 and t is some fixed involution of G. Set
X = tG, the G-conjugacy class of t. Of course, acting by conjugation yields a faithful transitive
permutation representation of G on X, and it is this permutation action that we investigate
here. Now G has two conjugacy classes of involutions, namely 2A and 2B — we shall employ
Atlas [8] notation and conventions. Also, the Atlas and its electronic sibling [19] as well
as [12] and [14] will be our primary sources for information about J4. The suborbits of G on
X will be our main focus; that is, we wish to understand the CG(t)-orbits of X. Apart from
finding the sizes of CG(t)-orbits of X, we obtain representatives for each of these orbits. In
order to carry out these calculations, we shall use the 112-dimensional representation of G over
GF (2) given in the electronic Atlas [19] in concert with the algebra packages Magma [5] and
Gap [9]. Calculations using Gap reveal very easily that the permutation rank of G on X is
20 when t ∈ 2A and 119 when t ∈ 2B. So, not surprisingly, when t ∈ 2B we face a much more
challenging task.

Our main conclusions, contained in Section 2, appear in Table 1 (for t ∈ 2A) and Tables 2–9
(for t ∈ 2B). There we give not only the size of each CG(t)-orbit of X but also include a number
of its properties which in many cases aid speedy identification of the given orbit. For more
details of this, see Section 2. In order to facilitate further computation in J4, we supply a file
— in the formats Gap and Magma [5] — containing t and for each CG(t)-suborbit a 112× 112
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matrix (over GF (2)) representative. Additionally, we also provide generators for CCG(t)(x) for
the representatives x. Accordingly, there are two main folders in the file labelled J4_2A_reps
and J4_2B_reps. Additionally, there is a third folder called J4, which contains the generators
taken from [19] as well as a Magma [5] function which outputs the homomorphisms λ and ϕ;
see Sections 2.1 and 2.2.

The folder J4_2A_reps contains a single file J4_2A_reps.m, containing a matrix t, and, for
each suborbit, a representative xCi, where C is the Atlas [8] name of the G-conjugacy class
containing tx and i indicates that x is a representative for the ith suborbit, with respect to
Table 1 (if there is only one such orbit, the i is omitted). Note that we omit the so-called ‘slave’
class designations (see Chapter 7.5 of the Atlas [8] for details) from all file and variable names,
so that we have a representative called x20B1 and not x20B*1. Since there are 119 suborbits
in the t ∈ 2B case, to avoid the files being too large the folder J4_2B_reps contains several
files each containing about a dozen suborbit representatives, in rough correspondence with
the tables in Section 2.2. Within these files, the representatives are named following the same
scheme as above. For example, after loading the J4_4AC_reps.m file from the J4_2B_reps
folder into the computer algebra package Magma, the element stored as x4A3 corresponds to
the suborbit representative x whose product tx is in class 4A and which lies in a suborbit of
size 26.32.5.7.11. (See Table 3.) The folders J4_2A_reps and J4_2B_reps also each contain a
folder Centralizers, containing further files holding generators for the centralizers CCG(t)(x)
for the representatives x. The generators for the centralizer of a representative xCi are stored
in an array called CtxCi. Centralizer generators are omitted when the centralizer is trivial, and
where z = tx has even order 2m and the centralizer has order 2, whence it is generated by zm.

This paper is organized as follows. Section 2 begins with some general results and, then,
in two subsections, gives in addition to the tabulated data for 2A and 2B details of how the
calculations were performed as well as introducing relevant notation. The following section,
using the information in Section 2.2 and the computer files, probes the structure of the
commuting graph on X = 2B. This graph, denoted C(G, X), is defined to be the graph whose
vertex set is X with two distinct involutions in X joined by an edge if they commute. The
commuting involution graph for 2A has already been described in [1].

In Section 4 we gather together class constants for products of involutions in X and the
dimension of the fixed point subspaces of elements of G acting on the 112-dimensional GF (2)-
module for G. This information will aid our determination of CG(t)-orbits of X and the
identification of which class a given element of G belongs to.

Finally, the authors acknowledge the contribution made to the project by Chris Bates.

2. Suborbits of X = tG

When investigating centralizers of involutions in finite groups computationally, the Bray
algorithm [7] is often a vital tool. So it is here, and we recall the essential part of it now.

Lemma 2.1 [7]. Suppose that H is a finite group and s an involution of H. Let h ∈H and
let n be the order of [s, h]. If n is even, then [s, h]n/2, [s, h−1]n/2 ∈ CH(s) and, if n is odd, then
h[s, h](n−1)/2 ∈ CH(s).

Suppose that C is a conjugacy class of G. Then we define the following subset of X:

XC = {x ∈X | tx ∈ C}.

Plainly, XC is either empty or a union of certain CG(t)-orbits of X (note that X1A = {t}).
Our usual strategy is to examine XC for each conjugacy class of G, hunting for CG(t)-orbit
representatives with tx ∈ C. Since, for each C, |XC | may be (and has been, see Tables 12 and 13
in Section 4) immediately calculated from the character table of J4, we can tell when we have
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found all such representatives. The task of breaking the sets XC into CG(t)-orbits is where the
hard work lies. We note that of the 62 classes of G, |XC | is non-zero for 14 classes when t ∈ 2A
and 47 classes when t ∈ 2B.

For g ∈G, we recall that C∗G(g) is defined by

C∗G(g) = {h ∈G | gh = g or gh = g−1}.

Our interest in C∗G(g) is prompted by the fact that if g = xy, where x, y ∈X, then x, y ∈ C∗G(g).
As intimated in the introduction, our calculations will be carried out using the

112-dimensional GF (2) representation for G supplied by [19]. So, G= 〈a, b〉, where a and b are
type 1 generators (see [19]); that is, a ∈ 2A, b ∈ 4A, ab has order 37 and ababb has order 10.
Throughout, V will denote the 112-dimensional GF (2)G-module.

Lemma 2.2. Suppose that H is a finite group, N �H and K 6H. Put H =H/N and
K =KN/N . Let N be a complete set of right coset representatives for K ∩N in N and let
H⊆G be such that H= {h | h ∈H} is a complete set of right coset representatives for K in H
with |H|= |H|. Then {nh | n ∈N , h ∈H} is a complete set of right coset representatives for K
in H.

Proof. Suppose that Kn1h1 =Kn2h2, where n1, n2 ∈N and h1, h2 ∈H. Then n1h1h
−1
2

n−1
2 ∈K. Also, h1 = h2 and, hence, as |H|= |H|, h1 = h2. Thus, n1n

−1
2 ∈K ∩N , which gives

n1 = n2, so verifying the lemma.

Lemma 2.3. Suppose that H is a finite group, s is an involution in H and Y = sH . Let
w = sy, where y ∈ Y , and let w′ ∈ 〈w〉. Set N =NH(〈w〉). If w is CH(s)-conjugate to w′, then
w is CN (s)-conjugate to w′.

Proof. By assumption, wc = w′ for some c ∈ CH(s). Since w and w′ have the same order,
〈w〉= 〈w′〉 and so c ∈N . Therefore, w and w′ are CN (s)-conjugate.

Here is an example of how we use Lemma 2.3. Assume that t ∈ 2B, x ∈X and z = tx ∈ 15A.
Now CG(z)∼= Z2 × Z15 and so CCG(t)(x) = CCG(z)(t)∼= Z2. From the size of X15A (see Table 13,
Section 4), we see thatX15A consists of two CG(t)-orbits. SetN =NG(〈z〉). SinceN 6NG(〈z3〉)
with the latter group of shape D10 × 23 : L3(2) (see [12] or [14]), we see that N ∼=D10 × S3 × 2
(using the fact that the centralizer of an element of order 3 in 23 : L3(2) has order 6). Because
t must invert both z3 and z5, t must project non-trivially into the D10 and S3 direct factors.
Thus, CN (t)∼= 23 with CCN (t)(z)∼= 2. Therefore, the elements in 〈z〉 of order 15 have two orbits
(under conjugation by CN (t), namely {z, z4, z11, z14} and {z2, z7, z8, z13}. Now suppose that
x and xz3

are in the same CG(t)-orbit. Then xc = xz3
for some c ∈ CG(t). Consequently,

zc = (tx)c = txc = txz3
= tz−3xz3 = z3txz3 = z7,

which, by Lemma 2.3, means that z and z7 are CN (t)-conjugate, but they are not. Therefore,
x and xz3

are not in the same CG(t)-orbit and so we may take x and xz3
as our CG(t)-orbit

representatives.

2.1. t ∈ 2A

For an involution t ∈ 2A, the group CG(t) has structure 21+12.3.M22 : 2, this being the second
maximal subgroup of G listed in [19]. Thus, |CG(t)|= 221.33.5.7.11. Beginning with this group
and following Section 5.2.2 of [12], we constructQ=O2,3(CG(t))∼= 21+12.3 by randomly finding
elements in CG(t) having order 21 or 33 and taking elements q that are respectively their 7th
or 11th powers. Since M22 : 2 contains elements of orders 7 and 11 but not 21 or 33, these q
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clearly lie in Q and are sufficient to generate it. We identify t as the unique non-trivial central
element of Q.

Given an element x ∈ 2A, the size of CQ(x) is a CG(t)-orbit invariant, as are the values q2A

and q2B , being respectively the numbers of 2A- and 2B-elements in CQ(x). (See Section 2.2
for more details.) As it transpires, these invariants, along with the order of z = tx and the
dimension of its fixed space on V , are enough to distinguish all 20 CG(t)-orbits. Therefore, it
is simple to find representative elements for the suborbits by random searching. We list these
in Table 1.

The only remaining difficulty is calculating CCG(t)(x), and hence the sizes of the orbits.
Considering the action of CG(t) on Q by conjugation gives us a homomorphism λ from CG(t)
to a subgroup S of Sym(24576). In Magma, we can (just) construct this homomorphism
explicitly. Now, suppose that z = tx has even order 2m. Then zm ∈ CCG(t)(x) and CCG(t)(x) 6
CG(z) 6 CG(zm). In particular, CCG(t)(x) 6 CCG(t)(zm). So, we may compute CS(λ(zm)) and,
if it is sufficiently small, compute CCG(t)(x) in its inverse image. Similarly, if CQ(x) is non-
trivial, we may compute its stabilizer in S and compute CCG(t)(x) in the inverse image of this
group. Note that this second approach could work where z has odd order, but we discover that
CQ(x) = 1 in all cases when z has odd order: 3, 5 and 11. However, since we have already found
17 CG(t)-orbits and the permutation rank of G on X is 20, we infer that X3A, X5A and X11B

are each single CG(t)-orbits. To compute their centralizers, we work in C?
G(z) (further details

of this strategy are given in Section 2.2).
We note finally that, although 4A and 4B elements cannot be distinguished by the dimensions

of their fixed spaces, one CG(t)-orbit in X4A ∪X4B has the same size as X4A and all the others
are larger, so it is trivial to separate these orbits.

Table 1. CG(t)-orbits of X when t ∈ 2A.

x |Ox| |CQ(x)| q2A q2B

t 1 213.3 1387 2772

x2A1 25.32.5.7.11 28 107 84

x2A2 2.32.7.11 212 747 1364

x2B1 27.32.5.11 27 71 56

x2B2 24.3.5.7.11 29.3 139 180

x3A 214.32.5.11 1 0 0

x4A 28.32.5.7.11 26 33 30

x4B1 212.33.5.7.11 22 1 2

x4B2 211.33.5.7.11 22 3 0

x4B3 210.32.5.7.11 23 3 4

x4B4 210.32.5.7.11 24 9 6

x4C1 211.32.5.7.11 23 3 4

x4C2 211.32.5.7.11 23 7 0

x5A 215.32.5.7.11 1 0 0

x6B 215.33.5.7.11 1 0 0

x6C 214.32.5.7.11 1 0 0

x8C 215.33.5.7.11 1 0 0

x10A 216.33.5.7.11 1 0 0

x11B 220.33.5.7 1 0 0

x12B 217.32.5.7.11 1 0 0
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2.2. t ∈ 2B

Just as in Section 2.1, we begin by summarizing the structure of CG(t). Set Q=O2(CG(t)).
Then Q∼= 211 and CG(t)/Q∼=M22 : 2 (= Aut(M22)). So, |CG(t)|= 219.32.5.7.11. Also, M1 =
NG(Q) is a maximal subgroup of G with M1/Q∼=M24 and is the first maximal subgroup
(as listed in [19]) of G. We begin our calculations starting with M1 as given in [19]. After
determining Q, we choose t ∈Q ∩ 2B (and of course then fix it). Using Lemma 2.1 (with
H =G, s= t), we calculate CG(t) (generators for CG(t) are given in the file).

For R6Q, we define

q2A(R) = |R ∩ 2A| and q2B(R) = |R ∩ 2B|.

Then q2A(Q) = 1771 and q2B(Q) = 276. In Tables 2–9, for x ∈X we write q2A for q2A(CQ(x))
and q2B for q2B(CQ(x)). Furthermore, we have that Q ∩ 2A splits into two CG(t)-orbits of sizes
231 and 1540, while Q ∩ 2B splits into three CG(t)-orbits of sizes 1, 44 and 231. Such CG(t)-
orbits, from time to time, play a useful role in discriminating between certain CG(t)-orbits
of X.

When trying to find new CG(t)-orbits (and representatives of such orbits), it is useful to
quickly discover whether a (usually randomly chosen) x ∈X is in one of the CG(t)-orbits already
catalogued at that point. Our first step for a given x ∈X is to calculate CQ(x) (computationally,
this is relatively as quick as |Q|= 211). Then we determine q2A(CQ(x)) and q2B(CQ(x)) (by
calculating dim(CV (ξ)), ξ ∈ CQ(x) — for 2A-elements it is 62 and for 2B-elements it is 56). A
further straightforward calculation is to determine dim(CV (t) ∩ CV (x)), which we denote by
dx in the following tables. Put z = tx. If z has even order, say 2m, then zm is an involution
which commutes with both t and x. So, zm ∈ CG(t). Hence, we can ask where w = zm is in
CG(t). Set CG(t) = CG(t)/Q. Then either w = 1 or w belongs to one of the three involution
conjugacy classes of CG(t)∼=M22 : 2, which we label by 2A, 2B and 2C. We have that 2A is in
the derived subgroup of CG(t) while 2B and 2C are not, and we choose our notation so that
it agrees with [12]. So, when z has even order, column 3 in Tables 2–9 has entries 1A, 2A, 2B
or 2C if, respectively, w is in 1A, 2A, 2B or 2C.

We dwell a little longer on the case when for x ∈X, z = tx has even order. Then z2 = txtx=
ttx. Set y = tx. So, z2 = ty and y ∈X. Assume that x1, x2 ∈X and xc

1 = x2 for some c ∈ CG(t).
Then (tx1)c = tcxc

1 = tx2. Hence, ((tx1)2)c = (tx2)2. That is, tyc
1 = ty2, where y1 = tx1 and

y2 = tx2 . Therefore, yc
1 = y2. This observation provides us with a possible way of discerning

whether x1, x2 ∈X, where tx1, tx2 ∈ C = zG, are in different CG(t)-orbits. If we can see that
y1 = tx1 and y2 = tx2 are in different CG(t)-orbits, then so must x1 and x2 be. Note that the
CG(t)-orbits of y1 and y2 will be subsets of XD, where D = (z2)G. As our strategy is to analyse
XE for class E = wG of G, starting with w of small order and working up, we will have to
hand data about the CG(t)-orbits of y1 and y2. In Tables 2–9, where relevant we have a final
column giving the CG(t)-orbit of y = tx.

There is a further invariant of a CG(t)-orbit which we mention after outlining our routine
for calculating CCG(t)(x), x ∈X. Since G is a large matrix group whose elements are 112× 112
matrices and |CG(t)|= 219.32.5.7.11 = 1, 816, 657, 920, using standard Magma commands will
not (unless you are very lucky) produce CCG(t)(x). (While calculating CG(x) and then trying to
work out CG(t) ∩ CG(x) brings you up against the membership problem.) In our initial setup,
we define a permutation action of CG(t) upon Ω =Q (given by conjugation of CG(t) on Q).
This gives a homomorphism

ϕ : CG(t)→ CG(t) =M(∼=M22 : 2) 6 Sym(2048),

whose kernel is Q. Calculations within Sym(2048) are quick. Also, we have an accompanying
map

ψ : Ω→{1, . . . , 2048}
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that commutes with the conjugation action of CG(t) on Ω and the permutation action of M
on {1, . . . , 2048}. Thus, we may look at

Sx = StabM (ψ(CQ(x))),

and |Sx| will be a further invariant of the CG(t)-orbit of x. Let Kx be the inverse image in
CG(t) of Sx. Since CQ(x) � CCG(t)(x), it follows that CCG(t)(x) 6Kx. So, this restricts the
location of CCG(t)(x). Now we use the Bray algorithm as in Lemma 2.1, where we take H =G,
s= x and select random elements h ∈Kx to produce elements which commute with x. Suppose
that L is the group generated by these elements. So, L6 CG(x). However, we are investigating
CCG(t)(x) and we have no guarantee that L is contained in CG(t). Therefore, we must take
CL(t) (6 CCG(t)(x)). We repeat this procedure until we obtain a subgroup L∞ 6 CCG(t)(x)
which has ‘small index’ in Kx. We may also suppose CQ(x) 6 L∞. If Sx is of reasonable size,
this process, so far, has always been successful. Our next step is to obtain a complete set of right
coset representatives K∞ for L∞ in Sx (=Kx). Let K be the set consisting of one arbitrary
element k from each ϕ−1(k), k ∈ K. Also, let Q be a complete set of right coset representatives
for CQ(x) in Q. Since |Q|= 211 and L∞ has ‘small index’ in Kx, this can be achieved using
standard Magma commands. With H =Kx, N = CQ(x) and K = L∞, Lemma 2.2 implies
that R= {qk|q ∈Q, k ∈ K} is a complete set of right coset representatives for L∞ ∈Kx (recall
CQ(x) � CCG(t)(x) and CQ(x) 6 L∞ 6 CCG(t)(x)). Usually, the size of R is at most 3000 and
so it is straightforward to check through and find which elements commute with t, giving

Rt = {r | r ∈R, [t, r] = 1}.

Then CCG(t)(x) = 〈L∞,Rt〉 with |CCG(t)(x)|= |L∞||Rt| and very importantly we now have
the size of the CG(t)-orbit of x.

We illustrate how the above pans out in a concrete example. Let x= x4B6. Then |CQ(x)|=
22. Calculating in the 2048-degree permutation representation gives |Sx|= 768 = 28.3. So,
|Kx|= 211.28.3 = 219.3 and hence |CCG(t)(x)| divides 210.3. Using the Bray algorithm, we
arrive at an L∞ with CQ(x) 6 L∞ and |L∞|= 29. Then |Q|= 29, |K|= |K|= 2.3 and so
|R|= 29.2.3 = 210.3 = 3, 072. Checking reveals that |Rt|= 2. Consequently, |CCG(t)(x)|= 210

and the CG(t)-orbit of x has size 29.32.5.7.11 = 1,774,080.
The approach just outlined works very well when z = tx has order 4 for then we always have

CQ(x) 6= 1, and consequently Sx 6=M . When z = tx has order 8, then CQ(x) = 1 in the majority
of cases. In order to determine CCG(t)(x) when z = tx has order 8, we calculate CCG(t)(y), where
y = tx, in the manner described above. Since CCG(t)(x) 6 CCG(t)(y) and the order of CCG(t)(y)
is not too large, we can then determine CCG(t)(x).

We now give details of breaking XC into CG(t)-orbits for various classes C of G. So, set
z = tx, where x ∈X. For certain classes C, there are some difficulties which must be overcome.
However, the case when z has order 2 has been much studied.

2.2.1. Order of z is 2. The CG(t)-orbits (and CCG(t)(x)) for C = 2A or 2B may be read
off from [12, Table 1].

2.2.2. Order of z is 3. We find one representative y = x3A2 for which CQ(y) has order
23 and so it is easy to compute CCG(t)(y). A second representative x can easily be found by
random searching having CQ(x) trivial. To compute its centralizer, we first find CG(z) for z = tx
using [4], since z is a strongly real element inverted by t. Computing CCG(t)(x) in this smaller
group, we determine that X3A = x3ACG(t)

2 ∪ xCG(t), so we take this x as our representative
x3A1 and we are done.

2.2.3. Order of z is 4. Finding randomly elements x ∈ 2B with z = tx having order 4, and
calculating the various invariants described above, we arrive at a collection of 19 representatives
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known to be in different CG(t)-orbits (we also know the sizes of these orbits). Since 4C-elements
can be distinguished by the dimensions of their fixed spaces on V , it is easy to partition these
orbits into those in X4A ∪X4B and those in X4C . This method does not allow us to distinguish
between 4A- and 4B-elements.

Unfortunately, the sizes of the orbits we have lying in X4A ∪X4B do not total |X4A|+ |X4B |.
Continued random searching yields no new representatives, so we conclude that one or more
orbits exist in X4A ∪X4B that match in all the invariants we calculate and so are invisible to
our search. Eventually, we determine that this is indeed the case and that two orbits of size
210.32.5.7.11 are the culprits. We describe the procedure by which we arrive at this conclusion
at the end of this section. We now describe how we determine which orbits are in X4A and
which in X4B .

We know that 4A-elements can be found by powering down from elements of order 20,
40 or 44. So, we find elements x′ ∈ 2B with tx′ having order 20, 40 or 44, and then
x= t(tx′)n (n= 5, 8 or 11, respectively) is a 2B-element with tx= z ∈ 4A. In this way, we
find representatives matching in their invariants two of our representatives. These are the
representatives x4A1 and x4A2 in Table 3. We know from the structure constants that X4A

has size not divisible by 5, and only one of our representatives is from an orbit O with 5 - |O|,
so we conclude that this orbit must lie in X4A. This is representative x4A4 in Table 3. Now we
have that |X4A| − |x4ACG(t)

1 | − |x4ACG(t)
2 | − |x4ACG(t)

4 |= 26.32.5.7.11, which is the size of the
smallest remaining orbit for which we have a representative, so we conclude that it too lies in
X4A. Then the remaining orbits lie in X4B .

2.2.4. Order of z is 5. In the case when z = tx ∈ 5A, it turns out that X5A is a union of
two CG(t)-orbits. We first locate x= x5A2, which has |CQ(x)|= 23. Proceeding as above, we
then calculate that CCG(t)(x) has order 26.3.7 and so xCG(t) is a CG(t)-orbit of size 213.3.5.11.
As a byproduct, by orders, C∗G(z) = 〈t, z, CCG(t)(x)〉. Now searching within C∗G(z) we were
able to find x1 and zx1 in 2B and calculate (directly) that |CCG(z)(x1)|= 24. Let g ∈G be
such that (zx1)g = t. Then txg

1 = zg ∈ 5A and CCG(t)(x
g
1) = CCG(z)(x1)g, so xg

1 is in a different
CG(t)-orbit than x5A2, and |(xg

1)CG(t)|= 215.32.5.7.11. To find our representative, we need to
obtain such a g. To do this, we search for an involution r ∈G such that tr and zx1r both
have odd order. Then the groups 〈t, r〉 and 〈r, zx1〉 are dihedral groups with their respective
involutions conjugate, and so we can find an element g conjugating zx1 to t by multiplying
suitably chosen elements from 〈t, r〉 and 〈r, zx1〉. We then take our representative x5A1 = xg

1.

2.2.5. Order of z is 6. The CG(t)-orbits within X6A ∪X6B ∪X6C turn out to be
distinguished by scrutinizing the size of the CG(t)-orbit, the class of w, |CQ(x)|, q2A, q2B ,
dx and y (see earlier in this section for the definitions of these parameters). For example, x6C3

and x6C4 are in different CG(t)-orbits, as w is in 2A for the former and 2B for the latter.

2.2.6. Order of z is 8. There are three G-conjugacy classes of elements of order 8, which,
unfortunately, are not distinguished by the dimension of their fixed space on V (see Table 11,
Section 4.1). Consequently, we need to deal with X8A, X8B and X8C simultaneously. However,
elements in 8A, respectively 8B and 8C, can be obtained by powering down from any element
of G of order 40, respectively order 24 and order 16. Thus, to find x ∈X so that z = tx ∈ 8B,
we first find elements of order 24. In more detail, we choose a random x′ ∈X and check
whether tx′ has order 24. On obtaining such an element, we then set z = (tx′)3 (∈ 8B) and
x= tz. Observe that x ∈X. Hunting for CG(t)-representatives in this manner, we find that X8B

consists precisely of two CG(t)-orbits. Note that (see Table 4) we need to examine the class of
w (defined at the beginning of Section 2.2) or y = xt in order to tell these two orbits apart.

In investigating X8C , we proceed as above except that we require tx′ to have order
16. On looking through a number of such x and calculating CG(t)-orbit invariants such
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as |CQ(x)|, dx(= dim(CV (t) ∩ CV (x))) and the CG(t)-orbit to which y = tx belongs, we were
able to pin down the two CG(t)-orbits x8CCG(t)

1 and x8CCG(t)
4 . However, despite extensive

searching as described above, we were unable to find further representatives for CG(t)-orbits
(although, because of the structure constants and the sizes of the known CG(t)-orbits, we knew
that they were there). It appears that the powering down from elements of order 16 was giving
us a skewed view in that we were not encountering any elements in (what turn out to be) two
CG(t)-orbits of size 214.32.5.7.11 (with representatives x8C2, x8C3). So, we employ a different
strategy, as follows.

We know that for z ∈ 8B ∪ 8C, z2 ∈ 4B, while, for z ∈ 8A, z2 ∈ 4A. However, 4A- and 4B-
elements are not distinguished by the dimensions of their fixed spaces. Fortunately, we have
the element y = tx giving ty = z2 and, since we have catalogued all of the order-4 orbits, we can
determine the conjugacy class of z2 and hence of z by examining y. So, we can now determine
whether z is in 8A or in 8B ∪ 8C, and we have already found both orbits with z ∈ 8B so we may
place every orbit. Two orbits in X8A have identical invariants, and we describe the procedure
for determining this and for finding representatives at the end of this subsection.

2.2.7. Order of z is 10. From calculations performed for X5A, we have C∗G(z1) explicitly,
where z1 = tx1 and x1 = x5A2. Also, t ∈ C∗G(z1). Now suppose z = tx ∈ 10A and, after
conjugating, z2 = z1. So, z ∈ C∗G(z1). Clearly, C∗G(z) 6 C∗G(z1) and working directly in the
latter group we find x10ACG(t)

1 ∪ x10ACG(t)
2 =X10A (and can distinguish the orbits by dx(=

dim(CV (t) ∩ CV (x)))). Moving onto the case z = tx ∈ 10B, we encounter four CG(t)-orbits, two
of which (having size 216.32.5.7.11) do not appear to have any properties which would otherwise
allow us to conclude that they are in fact in different CG(t)-orbits. We give the details of how
this unfolds.

With C∗G(z1) as above, we choose t1 ∈ C∗G(z1)\CG(z1) (t1 not in the same C∗G(z1)-conjugacy
class as t) and find si (i= 1, 2, 3) such that si ∈X ∩ CG(z1) ∩ CG(t1) and t1z1si ∈X (i=
1, 2, 3). Then z1si ∈ 10B (i= 1, 2, 3). Set x′i = t1z1si (∈X). Calculating directly in C∗G(z1) gives
that |CCG(t1)(x

′
i)|= 8 for i= 1, 2 and that |CCG(t1)(x

′
3)|= 16. Using the odd order dihedral

trick from Section 2.2.4, we find g ∈G such that tg1 = t. Now set xi = (x′i)
g. Then we find

that CQ(xi) = 1 for i= 1, 2, 3. By normal random searching, we can also find x4 ∈X with
|CQ(x4)|= 4 and |xCG(t)

4 |= 215.32.5.7.11. By the sizes of CQ(x), we know that xCG(t)
3 6= x

CG(t)
4 ,

and by the orbit sizes that neither of these is equal to xCG(t)
1 or xCG(t)

2 .
Now we look at xCG(t)

1 and x
CG(t)
2 . Suppose that x1 and x2 are CG(t)-conjugate. Then

x′1 and x′2 must be CG(t1)-conjugate and so x′h1 = x′2 for some h ∈ CG(t1). Therefore,
(t1x′1)h = t1x

′
2. We also know from our earlier calculations that (t1x′1)2 = (t1x′2)2 ∈ 〈z1〉 and

thus h ∈ CG(t1) ∩ CG((t1x′1)2) = CG(t1) ∩ CG(〈z1〉). Looking at CG(〈z1〉), we see that no such
h exists. Consequently, x1 and x2 are not CG(t)-conjugate. Since |xCG(t)

1 |+ |xCG(t)
2 |+ |xCG(t)

3 |+
|xCG(t)

4 |= |X10B |, we are finished with X10B .

2.2.8. Order of z is 11. Now we outline how X11A was studied. Suppose z = tx ∈ 11A,
x ∈X. Recall from [8] or [12] that NG(〈z〉) is a maximal subgroup of G of order 24.3.5.113.
A G-conjugate of this subgroup is available from [19]. Call this subgroup N1. Within N1,
we found z1 ∈ 11A with 〈z1〉�N1. Then t1, x1 ∈ 2B ∩N1 were obtained (randomly) so that
t1x1 = z1. On calculating, we found that |CCG(z1)(t1)|= 22 and, thus, by the size of X11A, X11A

is a CG(t)-orbit. Now lady luck was with us as tt1 had order 33 and, so, by conjugating with
a suitable g ∈ 〈t, t1〉, we obtained x= xg

1 so that tx ∈ 11A and CCG(t)(x) = (CCG(z1)(x1))g. For
x2 ∈ 2B ∩N1 with z2 = t1x2 ∈ 11B ∩N1, we have |CG(z2)|= 2.112 (see [8]). Clearly, 2 divides
|CCG(z2)(t1)| and, calculating in N1, we find that |CCG(z2)(t1)|= 2. So, X11B is a CG(t)-orbit
and conjugating by g gives x11B1.
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2.2.9. Order of z is 12. Elements g of G of order 12 for which dim(CV (g)) = 10 must be in
class 12C, and as a consequence it is easy to break X12C into CG(t)-orbits. Such considerations
do not distinguish between the classes 12A and 12B, although elements in G of order 24 always
square to 12B-elements.

We describe how we deal with X12A and X12B . First, we find an x ∈X such that z = tx ∈
12A ∪ 12B by checking that dim(CV (z)) = 12. We next calculate CG(z) (which has order 26.3).
Since z4 ∈ 3A, CG(z4)∼= 6·M22. Employing [4] (since z4 is a strongly real element inverted by t)
and using the Meat-axe [16] to check that the order is correct quickly deliver CG(z4). We note
that when using [4] here, we already have generators for CG(t) and so can take random elements
directly without having to use Bray’s algorithm [7]. We generally find the full centralizer of
z4 ∈ 3A after around 500 loops of the procedure. Within this smaller group, we then calculate
CG(z). Then we get C∗G(z) = CG(z)〈t〉. Define the following subset of C∗G(z):

I = {w | w ∈ 2B, wz ∈ 2B, w ∈ C∗G(z)\CG(z)}.

Since |C∗G(z) \ CG(z)|= 26.3, it is straightforward to enumerate I. We discover that |I|= 72
when z ∈ 12A and |I|= 84 when z ∈ 12B (recall that we can identify a 12B-element as the
square of an element of order 24). The size of I is what we use to distinguish between 12A-
and 12B-elements. So now suppose that we have chosen x ∈X such that z = tx ∈ 12A — the
strategy we now follow works just as well for 12B. So next we determine the C∗G(z)-orbits
(under conjugation) of I. It turns out that there are four such orbits O1, O2, O3, O4 with
|O1|= |O2|= 24 and |O3|= |O4|= 12. Note that what we are doing is making z the subject
and letting t ‘vary’. So, at this stage, we see that X12A consists of at most four CG(t)-orbits.
Running through random elements of CG(z4), we find h ∈ CG(z4) for which th = s ∈ O1. So,
we take x1 = (sz)(h

−1). Then x1 ∈X and tx1 ∈ 12A. Calculations then reveal that CQ(x1) = 1,
|CCG(t)(x1)|= 8 and tx1 ∈X6B . We find that we may similarly conjugate with elements from
CG(z4) to make t the ‘subject’ for O3 and O4. However, we did not find an h ∈ CG(z4) such
that th ∈ O2 (for different z this situation may, and can, vary). To deal with the case of O2,
we take s1 ∈ O1 with th = s1, where h ∈ CG(z4), and choose some s2 ∈ O2. Then hunt for an
involution r ∈G such that both s1r and s2r have odd order — this is quickly done. Hence, t
can be conjugated to s2 by using h multiplied by suitably chosen elements from 〈s1, r〉 and
〈s2, r〉.

2.2.10. Order of z is 20. In CG(z1) (z1 as in Section 2.2.7), we find an element f of
order 4. Set z = fz1 and take this to define 20A. Then we calculate C∗G(z) = C∗C∗

G(z1)
(z) and

working in this group we discover that 20A breaks into two CG(t)-orbits of different sizes. As
a representative for 20B, we use z3 and repeat the above process.

2.2.11. Order of z is 40. Again calculating within C∗G(z1) reveals that |CCG(t)(x)|= 2
for all x ∈X such that tx ∈ 40A. Thus, on account of |X40A|, X40A splits into two CG(t)-
orbits. To locate representatives, we start with v ∈ C∗G(z1) such that vz ∈X and look at
e= dim(CV (x) ∩ CV (vvz)). We quickly observe e as being 4 and 5 and this serves to distinguish
orbits. We deal with 40B∗ similarly.

We end this section dealing with the following conundrum. Occasionally, we find that two
CG(t)-orbits agree on every invariant we consider. In these cases, we use the following method
to find representatives of such orbits.

Suppose that we have elements x1, x2 ∈X that produce the same invariants but that we
suspect may lie in different orbits. We aim to find a subset Y ⊆ CG(t) of manageable size such
that any element of CG(t) conjugating x1 to x2 must lie in Y . We may then simply test whether
xy

1 = x2 for all y ∈ Y .
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LetH1, H2 be the images of CCG(t)(x1), CCG(t)(x2) in the factor groupM ∼= CG(t)/Q. (Recall
M 6 Sym(2048), where the action is given by conjugation on Q, so computation in M is
straightforward.) If H1, H2 are not M -conjugate, then clearly x1, x2 are in different CG(t)-
orbits. Suppose that they are conjugate by an element g. We compute N =NM (H1), and so
form the coset Ng consisting of all elements in M conjugating H1 to H2. Note that any element
of CG(t) conjugating x1 to x2 must have its image in Ng. Any such element must also conjugate
CQ(x1) to CQ(x2) and, since our group action in M corresponds to conjugacy on Q, we can
use this fact to narrow down the search further, since we need consider only those elements
of Ng that map ψ(CQ(x1)) to ψ(CQ(x2)). Let Z be the set of elements of Ng satisfying this
condition. (Of course, if CQ(x1) = 1, then Z =Ng.) Then our set Y is the inverse image of Z,
this set having size 211.|Z|. We generally find that, by virtue of either the size of N or the
restriction added when CQ(x1) is non-trivial, that the set Y has size not more than a few
hundred thousand, and a search through all these elements is feasible.

For example, the representatives x4B3 and x4B4 have precisely the same invariants (see
Table 3). Let these elements act as x1, x2 above. Then we find that the normalizer N has size
768. In this case, the groups CQ(x1), CQ(x2) are non-trivial, having size 22, so we can pare
down the set Ng to just those elements that conjugate CQ(x1) to CQ(x2). This gives us a set Z
having size 128, and so |Y |= 211.|Z|= 262, 144. We check each of the elements of Y in turn
and, discovering that none of them conjugates x1 = x4B3 to x2 = x4B4, we conclude that they
indeed lie in different CG(t)-orbits.

Table 2. z = tx; z = 1 or z of prime order.

x |Ox| Class of w |CQ(x)| q2A q2B dx

t 1 1A 211 1771 276 56

x2A1 26.32.7.11 2C 26 51 12 31

x2A2 24.3.5.7.11 2A 27 91 36 32

x2A3 3.7.11 1A 211 1771 276 36

x2B1 25.32.5.7.11 2A 27 91 36 28

x2B2 25.3.5.7.11 2B 27 91 36 28

x2B3 22.11 1A 211 1771 276 36

x3A1 213.32.7.11 — 1 0 0 20

x3A2 212.3.5.11 — 23 7 0 20

x5A1 215.32.5.7.11 — 1 0 0 12

x5A2 213.3.5.11 — 23 7 0 12

x11A 218.32.5.7 — 1 0 0 1

x11B 218.32.5.7.11 — 1 0 0 6

x23A 219.32.5.7.11 — 1 0 0 1

x29A 219.32.5.7.11 — 1 0 0 0

x31A 219.32.5.7.11 — 1 0 0 1

x31B ∗ 5 219.32.5.7.11 — 1 0 0 1

x31C ∗ 6 219.32.5.7.11 — 1 0 0 1

x37A 219.32.5.7.11 — 1 0 0 2

x37B ∗ 2 219.32.5.7.11 — 1 0 0 2

x37C ∗ 4 219.32.5.7.11 — 1 0 0 2

x43A 219.32.5.7.11 — 1 0 0 0

x43B ∗ 6 219.32.5.7.11 — 1 0 0 0

x43C ∗ 7 219.32.5.7.11 — 1 0 0 0
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3. Commuting involution graph for class 2B

Recall that for a group H and an involution conjugacy class Y of H, the commuting involution
graph C(H, Y ) is the graph with Y as its vertex set and two distinct vertices joined by an edge
if and only if they commute. For s ∈ Y , we define ∆i(s) = {y ∈ Y | d(s, y) = i}, the ith disc of
C(H, Y ) relative to s. Each disc is a union of CG(s)-orbits.

Table 3. z = tx of order 4.

x |Ox| Class of w |CQ(x)| q2A q2B |Sx| dx

x4A1 212.32.7.11 2C 2 1 0 3840 16

x4A2 210.3.5.7.11 2A 23 7 0 768 17

x4A3 26.32.5.7.11 1A 27 91 36 192 20

x4A4 27.32.7.11 1A 26 51 12 320 20

x4B1 212.32.5.7.11 2C 2 1 0 3840 16

x4B2 210.32.5.7.11 2A 22 3 0 768 16

x4B3 210.32.5.7.11 2A 22 3 0 128 17

x4B4 210.32.5.7.11 2A 22 3 0 128 17

x4B5 210.32.5.7.11 2A 22 3 0 128 16

x4B6 29.32.5.7.11 2A 22 3 0 768 18

x4B7 28.32.5.7.11 1A 26 51 12 32 19

x4B8 28.32.5.7.11 2A 23 7 0 768 19

x4B9 28.3.5.7.11 1A 27 91 36 192 18

x4B10 28.3.5.7.11 2A 23 7 0 768 18

x4C1 212.32.5.7.11 2A 22 3 0 128 14

x4C2 212.32.5.7.11 2B 22 3 0 128 14

x4C3 211.32.5.7.11 2A 22 3 0 128 14

x4C4 211.32.5.7.11 2B 22 3 0 768 14

x4C5 29.3.5.7.11 1A 27 91 36 168 18

x4C6 29.3.5.7.11 2B 23 7 0 768 18

Table 4. z = tx of order 8.

x |Ox| Class of w |CQ(x)| q2A q2B dx y

x8A1 215.32.5.7.11 2A 2 1 0 9 x4A2

x8A2 215.32.5.7.11 2C 1 0 0 9 x4A1

x8A3 213.32.5.7.11 1A 2 1 0 10 x4A4

x8A4 213.32.5.7.11 1A 22 3 0 10 x4A3

x8A5 213.32.5.7.11 2C 1 0 0 10 x4A1

x8A6 213.32.5.7.11 2C 1 0 0 10 x4A1

x8A7 213.32.7.11 1A 2 1 0 10 x4A4

x8A8 213.32.7.11 2C 1 0 0 10 x4A1

x8B1 215.32.5.7.11 2A 1 0 0 8 x4B5

x8B2 215.32.5.7.11 2C 1 0 0 8 x4B1

x8C1 216.32.5.7.11 2C 1 0 0 8 x4B1

x8C2 214.32.5.7.11 2A 1 0 0 9 x4B2

x8C3 214.32.5.7.11 2A 1 0 0 9 x4B6

x8C4 213.32.5.7.11 2A 1 0 0 10 x4B6
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We take G= J4, t ∈ 2B and X = tG as in Section 2.2, and examine C(G, X). Clearly,
∆1(t) =X2A ∪X2B . Lemma 2.2 of [1] allows us to determine quickly from the power maps
in [19] the locations in the graph of several of the sets XC . Part (ii) implies that all suborbits
contained in X4C ∪X6C ∪X10B ∪X12C are in ∆2(t), while part (iv) allows us to determine
that some suborbits have distance 3 or greater from t, in this case those XC with C a class of
elements of odd order greater than 10.

For each CG(t)-orbit representative x 6∈∆1(t), we have the invariant q2B being the
number of 2B-elements in CQ(x). Since CQ(x) 6 CCG(t)(x), if q2B 6= 0, then clearly xCG(t) ∈
∆2(t). Omitting those covered above, this is the case for suborbits with representatives
x4A3, x4A4, x4B7, x4B9. For the remaining orbits, we can check if a representative is in ∆2(t)
by checking whether any of the elements in CCG(t)(x) are 2B-elements. This allows us to find
the remaining suborbits in disc 2.

Finally, we must determine whether the orbits not in ∆1(t) ∪∆2(t) comprise a single third
disc or whether the graph has diameter greater than 3. Our strategy is as follows. Taking

Table 5. z = tx of order 6.

x |Ox| Class of w |CQ(x)| q2A q2B dx y

x6A 213.32.7.11 2C 1 0 0 10 x3A1

x6B1 215.32.5.7.11 2C 1 0 0 11 x3A1

x6B2 213.32.5.7.11 2A 1 0 0 12 x3A1

x6B3 213.32.5.7.11 2A 22 3 0 12 x3A2

x6B4 213.32.5.7.11 2C 22 3 0 11 x3A2

x6B5 213.32.5.7.11 2C 1 0 0 11 x3A1

x6C1 215.32.5.7.11 2A 1 0 0 10 x3A1

x6C2 213.32.5.7.11 2A 22 3 0 10 x3A2

x6C3 213.32.5.7.11 2A 1 0 0 10 x3A1

x6C4 213.32.5.7.11 2B 1 0 0 10 x3A1

x6C5 212.3.5.7.11 2B 23 7 0 10 x3A2

Table 6. z = tx of order 12.

x |Ox| Class of w |CQ(x)| q2A q2B dx y

x12A1 216.32.5.7.11 2C 1 0 0 6 x6B1

x12A2 216.32.5.7.11 2C 1 0 0 6 x6B1

x12A3 215.32.5.7.11 2A 1 0 0 7 x6B2

x12A4 215.32.5.7.11 2A 1 0 0 7 x6B3

x12B1 216.32.5.7.11 2C 1 0 0 6 x6B1

x12B2 216.32.5.7.11 2C 1 0 0 6 x6B1

x12B3 215.32.5.7.11 2A 1 0 0 7 x6B3

x12B4 215.32.5.7.11 2A 1 0 0 7 x6B2

x12B5 215.32.5.7.11 2A 1 0 0 6 x6B3

x12C1 216.32.5.7.11 2A 1 0 0 5 x6C1

x12C2 216.32.5.7.11 2A 1 0 0 5 x6C1

x12C3 216.32.5.7.11 2A 1 0 0 5 x6C1

x12C4 216.32.5.7.11 2B 1 0 0 5 x6C4

x12C5 216.32.5.7.11 2B 1 0 0 5 x6C4

x12C6 216.32.5.7.11 2B 2 1 0 5 x6C3
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a representative x 6∈∆1(t) ∪∆2(t), we find elements y ∈ CG(x) using [7] until we find a 2B-
element for which the order of ty is 3, 4, 5, 6, 8, 10, 12 or 16. Then we know from the above

Table 7. z = tx of orders 10, 20 and 40.

x |Ox| Class of w |CQ(x)| q2A q2B dx y

x10A1 216.32.5.7.11 2C 1 0 0 7 x5A1

x10A2 215.32.5.7.11 2A 1 0 0 8 x5A1

x10B1 216.32.5.7.11 2A 1 0 0 6 x5A1

x10B2 216.32.5.7.11 2A 1 0 0 6 x5A1

x10B3 215.32.5.7.11 2A 1 0 0 6 x5A1

x10B4 215.32.5.7.11 2A 22 3 0 6 x5A2

x20A1 217.32.5.7.11 2C 1 0 0 4 x10A1

x20A2 216.32.5.7.11 2A 1 0 0 5 x10A2

x20B∗1 217.32.5.7.11 2C 1 0 0 4 x10A1

x20B∗2 216.32.5.7.11 2A 1 0 0 5 x10A2

x40A1 218.32.5.7.11 2C 1 0 0 3 x20B∗1
x40A2 218.32.5.7.11 2A 1 0 0 3 x20B∗2
x40B∗1 218.32.5.7.11 2C 1 0 0 3 x20A1

x40B∗2 218.32.5.7.11 2A 1 0 0 3 x20A2

Table 8. z = tx of orders 22, 33, 44 and 66.

x |Ox| Class of w |CQ(x)| q2A q2B dx y

x22A 218.32.5.7.11 2C 1 0 0 1 x11A

x33A1 218.32.5.7.11 — 1 0 0 0 —

x33A2 218.32.5.7.11 — 1 0 0 0 —

x33B∗1 218.32.5.7.11 — 1 0 0 0 —

x33B∗2 218.32.5.7.11 — 1 0 0 0 —

x44A1 218.32.5.7.11 2C 1 0 0 1 x22A

x44A2 218.32.5.7.11 2C 1 0 0 1 x22A

x66A1 218.32.5.7.11 2C 1 0 0 0 x33B∗1
x66A2 218.32.5.7.11 2C 1 0 0 0 x33B∗2
x66B∗1 218.32.5.7.11 2C 1 0 0 0 x33A1

x66B∗2 218.32.5.7.11 2C 1 0 0 0 x33A2

Table 9. z = tx of orders 15, 16, 24 and 30.

x |Ox| Class of w |CQ(x)| q2A q2B dx y

x15A1 218.32.5.7.11 — 1 0 0 4 —

x15A2 218.32.5.7.11 — 1 0 0 4 —

x16A1 217.32.5.7.11 2C 1 0 0 5 x8C1

x16A2 217.32.5.7.11 2A 1 0 0 5 x8C4

x24A1 217.32.5.7.11 2A 1 0 0 3 x12B5

x24A2 217.32.5.7.11 2C 1 0 0 3 x12B1

x24B∗1 217.32.5.7.11 2A 1 0 0 3 x12B5

x24B∗2 217.32.5.7.11 2C 1 0 0 3 x12B1

x30A1 218.32.5.7.11 2C 1 0 0 2 x15A1

x30A2 218.32.5.7.11 2C 1 0 0 2 x15A2
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that y is in ∆2(t) and so x is in ∆3(t). For all remaining orbits, we were in fact able to find
such a y, so we conclude that the graph has diameter 3.

These results are summarized in Table 10. We note that only X20A and X20B straddle two
discs in the graph.

Table 10. Discs in the commuting involution graph C(G, X) for G = J4, X = 2B.

Disc Orbits

∆0(t) {t}

∆1(t) X2A, X2B

∆2(t) X3A, X4A, X4B , X4C , X5A, X6A, X6B , X6C , X8A, X8B , X8C , X10A, X10B , X11B , X12A,

X12B , X12C , X16A, X24A, X24B∗, x20A
CG(t)
1 , x20B∗CG(t)

1

∆3(t) X11A, X15A, X22A, X23A, X29A, X30A, X31A, X31B∗5, X31C∗6, X33A, X33B∗, X37A,

X37B∗2, X37C∗4, X40A, X40B , X43A, X43B∗6, X43C∗7, X44A, X66A, X66B∗, x20A
CG(t)
2 ,

x20B∗CG(t)
2

4. Structure constants and fixed spaces

4.1. Dimensions of CV (g), g ∈G

Table 11.

g ∈ C dim(CV (g)) g ∈ C dim(CV (g)) g ∈ C dim(CV (g))

1A 112 12A 12 30A 4
2A 62 12B 12 31A 2
2B 56 12C 10 31B ∗ 5 2
3A 40 14A 8 31C ∗ 6 2
4A 32 14B ∗ ∗ 8 33A 0
4B 32 14C 8 33B∗ 0
4C 28 14D ∗ ∗ 8 35A 0
5A 24 15A 8 35B ∗ ∗ 0
6A 20 16A 8 37A 4
6B 22 20A 8 37B ∗ 2 4
6C 20 20B∗ 8 37C ∗ 4 4
7A 16 21A 4 40A 4

7B ∗ ∗ 16 21B ∗ ∗ 4 40B∗ 4
8A 16 22A 2 42A 2
8B 16 22B 6 42B ∗ ∗ 2
8C 16 23A 2 43A 0
10A 14 24A 6 43B ∗ 6 0
10B 12 24B∗ 6 43C ∗ 7 0
11A 2 28A 4 44A 2
11B 12 28B ∗ ∗ 4 66A 0

29A 0 66B∗ 0
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4.2. The structure constants for G= J4 and t ∈ 2A

Table 12.

C |XC |

1A 1 1
2A 112266 2.36.7.11
2B 81840 24.3.5.11.31
3A 8110080 214.32.5.11
4A 887040 28.32.5.7.11
4B 70963200 212.32.52.7.11
4C 14192640 212.32.5.7.11
5A 113541120 215.32.5.7.11
6B 340623360 215.33.5.7.11
6C 56770560 214.32.5.7.11
8C 340623360 215.33.5.7.11
10A 681246720 216.33.5.7.11
11B 990904320 220.33.5.7
12B 1362493440 217.33.5.7.11

4.3. The structure constants for G= J4 and t ∈ 2B

Table 13.

C |XC | C |XC |

1A 1 1 20B∗ 681246720 216.33.5.7.11
2A 63063 32.72.11.13 22A 908328960 218.32.5.7.11
2B 147884 22.11.3361 23A 1816657920 219.32.5.7.11
3A 6352896 212.3.11.47 24A 908328960 218.32.5.7.11
4A 4331712 26.3.7.11.293 24B∗ 908328960 218.32.5.7.11
4B 32524800 29.3.52.7.112 29A 1816657920 219.32.5.7.11
4C 43760640 210.3.5.7.11.37 30A 1816657920 219.32.5.7.11
5A 114892800 213.3.52.11.17 31A 1816657920 219.32.5.7.11
6A 5677056 213.32.7.11 31B ∗ 5 1816657920 219.32.5.7.11
6B 227082240 216.32.5.7.11 31C ∗ 6 1816657920 219.32.5.7.11
6C 203427840 212.3.5.7.11.43 33A 1816657920 219.32.5.7.11
8A 351977472 214.32.7.11.31 33B∗ 1816657920 219.32.5.7.11
8B 227082240 216.32.5.7.11 37A 1816657920 219.32.5.7.11
8C 369008640 213.32.5.7.11.13 37B ∗ 2 1816657920 219.32.5.7.11
10A 340623360 215.33.5.7.11 37C ∗ 4 1816657920 219.32.5.7.11
10B 681246720 216.33.5.7.11 40A 1816657920 219.32.5.7.11
11A 2575360 218.32.5.7 40B∗ 1816657920 219.32.5.7.11
11B 908328960 218.32.5.7.11 43A 1816657920 219.32.5.7.11
12A 681246720 216.33.5.7.11 43B ∗ 6 1816657920 219.32.5.7.11
12B 794787840 215.32.5.72.11 43C ∗ 7 1816657920 219.32.5.7.11
12C 1362493440 217.33.5.7.11 44A 1816657920 219.32.5.7.11
15A 1816657920 219.32.5.7.11 66A 1816657920 219.32.5.7.11
16A 908328960 218.32.5.7.11 66B∗ 1816657920 219.32.5.7.11
20A 681246720 216.33.5.7.11
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